1
|
Dewan A, Sridhar K, Yadav M, Bishnoi S, Ambawat S, Nagaraja SK, Sharma M. Recent trends in edible algae functional proteins: Production, bio-functional properties, and sustainable food packaging applications. Food Chem 2025; 463:141483. [PMID: 39369604 DOI: 10.1016/j.foodchem.2024.141483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
In recent years, there has been a notable surge in the development and adoption of edible algae protein-based sustainable food packaging, which presents a promising alternative to traditional materials due to its biodegradability, renewability, and minimal environmental impact. Hence, this review aims to emphasize the sources, cultivation, and downstream potential of algal protein and protein complexes. Moreover, it comprehensively examines the advancements in utilizing protein complexes for smart and active packaging applications, while also addressing the challenges that must be overcome for the widespread commercial adoption of algal proteins to meet industry 4.0. The review revealed that the diversity of algae species and their sustainable cultivation methods offers a promising alternative to traditional protein sources. Being vegan source with higher photosynthetic conversion efficiency and reduced growth cycle has permitted the proposition of algae as proteins of the future. The unique combination of techno-functional combined with bio-functional properties such as antioxidant, anti-inflammatory and antimicrobial response have captured the sustainable groups to invest considerable research and promote the innovations in algal proteins. Food packaging research has increasingly benefited by the excellent gas barrier property and superior mechanical strength of algal proteins either stand alone or in synergy with other biodegradable polymers. Advanced packaging functionality such as freshness monitoring and active preservation techniques has been explored and needs considerable characterization for commercial advancement. Overall, while algal proteins show promising downstream potential in various industries aligned with Industry 4.0 principles, their broader adoption hinges on overcoming these barriers through continued innovation and strategic development.
Collapse
Affiliation(s)
- Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Monika Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sonam Bishnoi
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Shobhit Ambawat
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | | | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
2
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
3
|
Das S, Behera M, Ranjan Das S, Charan Behera K, Singh L. Green Seaweeds as a Potential Source of Biomolecules and Bioactive Peptides: Recent Progress and Applications - A Review. Chem Biodivers 2024:e202401695. [PMID: 39343749 DOI: 10.1002/cbdv.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Over the past few decades, seaweed has been explored as a sustainable source in biotechnological and biomedical industries because of its multiple biopotential actions. However, the composition of biomolecules such as carbohydrates, lipids, fatty acids, free amino acids, ash, minerals, vitamins, and especially protein in green seaweeds varies from species to species based on their growth stage and the environmental conditions. Specifically, seaweed-derived bioactive proteins and peptides have the potential for several health benefits. They serve as a balanced diet. Protein which is an extensive macronutrient in human nutrition, should be explored to avoid using animal-sourced protein, which is expensive to consume. Bioactive peptides that are isolated from marine algae consist of various kinds of functional properties. In the food industry, seaweeds are novel molecules for being used in both nutritional foods and nutraceuticals. In both in vitro and In vivo conditions, various seaweed-derived bioactive compounds have shown a broad range of biological activities including anti-cancer and immunomodulatory, anti-hypertensive, and anti-coagulant activities. Hence, this review paper discusses the screening of seaweed-derived biochemicals with a special focus on their proteins, peptide contents, and nutra-pharmaceutical values.
Collapse
Affiliation(s)
- Sasmita Das
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Odisha, Bhubaneswar, 751003, India
| | - Maheswari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Odisha, Bhubaneswar, 751003, India
| | - Smruti Ranjan Das
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Odisha, Bhubaneswar, 751003, India
| |
Collapse
|
4
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
5
|
Naseem S, Rizwan M, Durrani AI, Munawar A, Gillani SR. Innovations in cell lysis strategies and efficient protein extraction from blue food (Seaweed). SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 39:101586. [DOI: 10.1016/j.scp.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
|
6
|
Rawat R, Saini CS. A novel biopolymeric composite edible film based on sunnhemp protein isolate and potato starch incorporated with clove oil: Fabrication, characterization, and amino acid composition. Int J Biol Macromol 2024; 268:131940. [PMID: 38692554 DOI: 10.1016/j.ijbiomac.2024.131940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Composite edible films were developed by casting method using sunnhemp protein isolate (SHPI) and potato starch (PS) at various proportions (100:0, 90:10, 80:20; 70:30, 60:40, and 50:50) containing glycerol as a plasticizer and clove oil. All the edible films were evaluated for thickness, moisture content, solubility, swelling ratio, water activity. Further characterization of edible films was done on the basis of mechanical, optical, thermal and structural attributes along with morphology. Among all the films, composite film containing 50 % SHPI, 50 % PS and 1 % clove oil were having better characteristics. The solubility and WVP decreased, while the tensile strength and elongation at break of composite film increased with the inclusion of potato starch and clove oil. Intermolecular interactions in the composite film matrix were confirmed by FTIR and XRD analysis. SEM images confirmed the structural compactness and integrity of all the developed films. The amino acid composition of edible films indicated presence of most of the essential amino acids. The present finding of this research work shows that the utilization of sunnhemp protein in the development of biocomposite edible films represents an alternative opportunity of sustainable edible food packaging.
Collapse
Affiliation(s)
- Rashmi Rawat
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India.
| |
Collapse
|
7
|
Sadeghi A, Rajabiyan A, Nabizade N, Meygoli Nezhad N, Zarei-Ahmady A. Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. Int J Biol Macromol 2024; 266:131147. [PMID: 38537857 DOI: 10.1016/j.ijbiomac.2024.131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Seaweed, a diverse group of marine macroalgae, has emerged as a rich source of bioactive compounds with numerous health-promoting properties. Among these, phenolic compounds have garnered significant attention for their diverse therapeutic applications. This review examines the methodologies employed in the extraction and purification of phenolic compounds from seaweed, emphasizing their importance in unlocking the full potential of these oceanic treasures. The article provides a comprehensive overview of the structural diversity and biological activities of seaweed-derived phenolics, elucidating their antioxidant, anti-inflammatory, and anticancer properties. Furthermore, it explores the impact of extraction techniques, including conventional methods and modern green technologies, on the yield and quality of phenolic extracts. The purification strategies for isolating specific phenolic compounds are also discussed, shedding light on the challenges and advancements in this field. Additionally, the review highlights the potential applications of seaweed-derived phenolics in various industries, such as pharmaceuticals, cosmetics, and functional foods, underscoring the economic value of these compounds. Finally, future perspectives and research directions are proposed to encourage continued exploration of seaweed phenolics, fostering a deeper understanding of their therapeutic potential and promoting sustainable practices in the extraction and purification processes. This comprehensive review serves as a valuable resource for researchers, industry professionals, and policymakers interested in harnessing the untapped potential of phenolic compounds from seaweed for the betterment of human health and environmental sustainability.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ali Rajabiyan
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nafise Nabizade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Najme Meygoli Nezhad
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amanollah Zarei-Ahmady
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Karabulut G, Purkiewicz A, Goksen G. Recent developments and challenges in algal protein and peptide extraction strategies, functional and technological properties, bioaccessibility, and commercial applications. Compr Rev Food Sci Food Saf 2024; 23:e13372. [PMID: 38795380 DOI: 10.1111/1541-4337.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
The burgeoning demand for protein, exacerbated by population growth and recent disruptions in the food supply chain, has prompted a rapid exploration of sustainable protein alternatives. Among these alternatives, algae stand out for their environmental benefits, rapid growth, and rich protein content. However, the widespread adoption of algae-derived proteins faces significant challenges. These include issues related to harvesting, safety, scalability, high cost, standardization, commercialization, and regulatory hurdles. Particularly daunting is the efficient extraction of algal proteins, as their resilient cell walls contain approximately 70% of the protein content, with conventional methods accessing only a fraction of this. Overcoming this challenge necessitates the development of cost-effective, scalable, and environmentally friendly cell disruption techniques capable of breaking down these rigid cell walls, often laden with viscous polysaccharides. Various approaches, including physical, chemical, and enzymatic methods, offer potential solutions, albeit with varying efficacy depending on the specific algal strain and energy transfer efficiency. Moreover, there remains a pressing need for further research to elucidate the functional, technological, and bioaccessible properties of algal proteins and peptides, along with exploring their diverse commercial applications. Despite these obstacles, algae hold considerable promise as a sustainable protein source, offering a pathway to meet the escalating nutritional demands of a growing global population. This review highlights the nutritional, technological, and functional aspects of algal proteins and peptides while underscoring the challenges hindering their widespread adoption. It emphasizes the critical importance of establishing a sustainable trajectory for food production, with algae playing a pivotal role in this endeavor.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Türkiye
| | - Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| |
Collapse
|
9
|
Dhaouafi J, Nedjar N, Jridi M, Romdhani M, Balti R. Extraction of Protein and Bioactive Compounds from Mediterranean Red Algae ( Sphaerococcus coronopifolius and Gelidium spinosum) Using Various Innovative Pretreatment Strategies. Foods 2024; 13:1362. [PMID: 38731733 PMCID: PMC11083387 DOI: 10.3390/foods13091362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, the release of proteins and other biomolecules into an aqueous media from two red macroalgae (Sphaerococcus coronopifolius and Gelidium spinosum) was studied using eight different cell disruption techniques. The contents of carbohydrates, pigments, and phenolic compounds coextracted with proteins were quantified. In addition, morphological changes at the cellular level in response to the different pretreatment methods were observed by an optical microscope. Finally, the antioxidant capacity of obtained protein extracts was evaluated using three in vitro tests. For both S. coronopifolius and G. spinosum, ultrasonication for 60 min proved to be the most effective technique for protein extraction, yielding values of 3.46 ± 0.06 mg/g DW and 9.73 ± 0.41 mg/g DW, respectively. Furthermore, the highest total contents of phenolic compounds, flavonoids, and carbohydrates were also recorded with the same method. However, the highest pigment contents were found with ultrasonication for 15 min. Interestingly, relatively high antioxidant activities like radical scavenging activity (31.57-65.16%), reducing power (0.51-1.70, OD at 700 nm), and ferrous iron-chelating activity (28.76-61.37%) were exerted by the different protein extracts whatever the pretreatment method applied. This antioxidant potency could be attributed to the presence of polyphenolic compounds, pigments, and/or other bioactive substances in these extracts. Among all the used techniques, ultrasonication pretreatment for 60 min appears to be the most efficient method in terms of destroying the macroalgae cell wall and extracting the molecules of interest, especially proteins. The protein fractions derived from the two red macroalgae under these conditions were precipitated with ammonium sulfate, lyophilized, and their molecular weight distribution was determined using SDS-PAGE. Our results showed that the major protein bands were observed between 25 kDa and 60 kDa for S. coronopifolius and ranged from 20 kDa to 150 kDa for G. spinosum. These findings indicated that ultrasonication for 60 min could be sufficient to disrupt the algae cells for obtaining protein-rich extracts with promising biological properties, especially antioxidant activity.
Collapse
Affiliation(s)
- Jihen Dhaouafi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba, BP, 382, Beja 9000, Tunisia; (J.D.); (M.J.); (M.R.)
- UMR Transfrontalière BioEcoAgro N°1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France;
| | - Naima Nedjar
- UMR Transfrontalière BioEcoAgro N°1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France;
| | - Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba, BP, 382, Beja 9000, Tunisia; (J.D.); (M.J.); (M.R.)
| | - Montassar Romdhani
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba, BP, 382, Beja 9000, Tunisia; (J.D.); (M.J.); (M.R.)
- UMR Transfrontalière BioEcoAgro N°1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France;
| | - Rafik Balti
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| |
Collapse
|
10
|
Pereira L, Cotas J, Gonçalves AM. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024; 16:1123. [PMID: 38674814 PMCID: PMC11054349 DOI: 10.3390/nu16081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This review delves into the burgeoning field of seaweed proteins as promising alternative sources of protein. With global demand escalating and concerns over traditional protein sources' sustainability and ethics, seaweed emerges as a viable solution, offering a high protein content and minimal environmental impacts. Exploring the nutritional composition, extraction methods, functional properties, and potential health benefits of seaweed proteins, this review provides a comprehensive understanding. Seaweed contains essential amino acids, vitamins, minerals, and antioxidants. Its protein content ranges from 11% to 32% of dry weight, making it valuable for diverse dietary preferences, including vegetarian and vegan diets. Furthermore, this review underscores the sustainability and environmental advantages of seaweed protein production compared to traditional sources. Seaweed cultivation requires minimal resources, mitigating environmental issues like ocean acidification. As the review delves into specific seaweed types, extraction methodologies, and functional properties, it highlights the versatility of seaweed proteins in various food products, including plant-based meats, dairy alternatives, and nutritional supplements. Additionally, it discusses the potential health benefits associated with seaweed proteins, such as their unique amino acid profile and bioactive compounds. Overall, this review aims to provide insights into seaweed proteins' potential applications and their role in addressing global protein needs sustainably.
Collapse
Affiliation(s)
- Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - Ana Marta Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
- Department of Biology and CESAM—Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Naseem S, Rizwan M, Durrani AI, Gillani SR. Green approaches to blue food (Seaweed) protein processing and advances in purification techniques. SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 38:101496. [DOI: 10.1016/j.scp.2024.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
|
12
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
13
|
Zhang X, Zhang T, Zhao Y, Jiang L, Sui X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem 2024; 436:137712. [PMID: 37852073 DOI: 10.1016/j.foodchem.2023.137712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
15
|
Çelekli A, Özbal B, Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods 2024; 13:725. [PMID: 38472838 DOI: 10.3390/foods13050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Much attention has been given to the use of microalgae to produce functional foods that have valuable bioactive chemicals, including essential amino acids, polyunsaturated fatty acids, vitamins, carotenoids, fiber, and minerals. Microalgal biomasses are increasingly being used to improve the nutritional values of foods because of their unique nutrient compositions that are beneficial to human health. Their protein content and amino acid composition are the most important components. The microalgal biomass used in the therapeutic supplement industry is dominated by bio-compounds like astaxanthin, β-carotene, polyunsaturated fatty acids like eicosapentaenoic acid and docosahexaenoic acid, and polysaccharides such as β-glucan. The popularity of microalgal supplements is growing because of the health benefits of their bioactive substances. Moreover, some microalgae, such as Dunaliella, Arthrospira (Spirulina), Chlorella, and Haematococcus, are commonly used microalgal species in functional food production. The incorporation of microalgal biomass leads not only to enhanced nutritional value but also to improved sensory quality of food products without altering their cooking or textural characteristics. Microalgae, because of their eco-friendly potential, have emerged as one of the most promising and novel sources of new functional foods. This study reviews some recent and relevant works, as well as the current challenges for future research, using different methods of chemical modification in foods with the addition of a few commercial algae to allow their use in nutritional and sensory areas. It can be concluded that the production of functional foods through the use of microalgae in foods has become an important issue.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Buket Özbal
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Hüseyin Bozkurt
- Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
16
|
Hans N, Solanki D, Nagpal T, Amir H, Naik S, Malik A. Process optimization and characterization of hydrolysate from underutilized brown macroalgae (Padina tetrastromatica) after fucoidan extraction through subcritical water hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119497. [PMID: 37951112 DOI: 10.1016/j.jenvman.2023.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
The growing demand for macroalgal biomass as a source of proteins, peptides, and amino acids is garnering attention for their biological and functional properties. This study depicts the use of emerging green techniques, i.e. subcritical water, to hydrolyze protein from Padina tetrastromatica. The biomass was treated with subcritical water at varying temperatures between 100 and 220 °C for 10-40 min at a biomass to water proportion of 1:50 (w/v) and pressure of 4.0 MPa. The optimum conditions for recovering the maximum protein (127.2 ± 1.1 mg g-1), free amino acids (58.4 ± 1.0 mg g-1), highest degree of hydrolysis (58.8 ± 1.2 %) and low molecular weight peptides (<650 Da) were found to be 220 °C for 10 min. The amino acid profiling of the hydrolysate revealed that it contains 45 % essential amino acids, with the highest concentration of methionine (0.18 %), isoleucine (0.12 %) and leucine (0.10 %). It was found that the hydrolysate contains phenolics (23.9 ± 1.4 mg GAE g-1) and flavonoids (1.23 ± 0.1 mg QE g-1), which are largely responsible for antioxidant activity. The hydrolysate effectively inhibits acetylcholinesterase and α-amylase in vitro, with IC50 values of 17.9 ± 0.1 mg mL-1 and 16.0 ± 0.5 %, respectively, which can help prevent Alzheimer's disease and diabetes mellitus. Consequently, this study reveals that utilizing eco-friendly subcritical water hydrolysis method, 79 % of the protein was recovered from P. tetrastromatica, which might be an effective source of bioactive peptides in various nutraceutical, pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- Nidhi Hans
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Divyang Solanki
- School of Agriculture and Food Science, The University of Queensland, Brisbane, 4072, Australia.
| | - Tanya Nagpal
- Food Customization and Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Hirah Amir
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Satyanarayan Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
17
|
Şensu E, Ayar EN, Okudan EŞ, Özçelik B, Yücetepe A. Characterization of Proteins Extracted from Ulva sp., Padina sp., and Laurencia sp. Macroalgae Using Green Technology: Effect of In Vitro Digestion on Antioxidant and ACE-I Inhibitory Activity. ACS OMEGA 2023; 8:48689-48703. [PMID: 38162757 PMCID: PMC10753567 DOI: 10.1021/acsomega.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2024]
Abstract
Macroalgal proteins were extracted from Ulva rigida (URPE) (green), Padina pavonica (PPPE) (brown), and Laurencia obtusa (LOPE) (red) using ultrasound-assisted enzymatic extraction, which is one of the green extraction technologies. Techno-functional, characteristic, and digestibility properties, and biological activities including antioxidant (AOA) and angiotensin-I converting enzyme (ACE-I) inhibitory activities were also investigated. According to the results, the extraction yield (EY) (94.74%) was detected in the extraction of L. obtusa, followed by U. rigida and P. pavonica. PPPE showed the highest ACE-I inhibitory activity before in vitro digestion. In contrast to PPPE, LOPE (20.90 ± 0.00%) and URPE (20.20 ± 0.00%) showed higher ACE-I inhibitory activity after in vitro digestion. The highest total phenolic content (TPC) (77.86 ± 1.00 mg GAE/g) was determined in LOPE. On the other hand, the highest AOACUPRAC (74.69 ± 1.78 mg TE/g) and AOAABTS (251.29 ± 5.0 mg TE/g) were detected in PPPE. After in vitro digestion, LOPE had the highest TPC (22.11 ± 2.18 mg GAE/g), AOACUPRAC (8.41 ± 0.06 mg TE/g), and AOAABTS (88.32 ± 0.65 mg TE/g) (p < 0.05). In vitro protein digestibility of three macroalgal protein extracts ranged from 84.35 ± 2.01% to 94.09 ± 0.00% (p < 0.05). Three macroalgae showed high oil holding capacity (OHC), especially PPPE (410.13 ± 16.37%) (p < 0.05), but they showed minimum foaming and emulsifying properties. The quality of the extracted macroalgal proteins was assessed using FTIR, SDS-PAGE, and DSC analyses. According to our findings, the method applied for macroalgal protein extraction could have a potential the promise of ultrasonication application as an environmentally friendly technology for food industry. Moreover, URPE, PPPE, and LOPE from sustainable sources may be attractive in terms of nourishment for people because of their digestibility, antioxidant properties, and ACE-I inhibitory activities.
Collapse
Affiliation(s)
- Eda Şensu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
- Department
of Food Technology, Istanbul Gelisim Higher Vocational School, Istanbul Gelisim
University, Avcılar, Istanbul 34310, Turkey
| | - Eda Nur Ayar
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
| | | | - Beraat Özçelik
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
- BIOACTIVE
Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer 34467, Istanbul, Turkey
| | - Aysun Yücetepe
- Department
of Food Engineering, Faculty of Engineering, Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
18
|
Manzoor M, Mir RA, Farooq A, Hami A, Pakhtoon MM, Sofi SA, Malik FA, Hussain K, Bhat MA, Sofi NR, Pandey A, Khan MK, Hamurcu M, Zargar SM. Shifting archetype to nature's hidden gems: from sources, purification to uncover the nutritional potential of bioactive peptides. 3 Biotech 2023; 13:252. [PMID: 37388856 PMCID: PMC10299963 DOI: 10.1007/s13205-023-03667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.
Collapse
Affiliation(s)
- Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Central University of Kashmir, Tulmulla, Kashmir(J&K) 191131 India
| | - Asmat Farooq
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu (J&K) 180009 India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, 462045 India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science and Technology Awantipora, Awantipora, Kashmir(J&K) 192122 India
| | - Firdose Ahmad Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - khursheed Hussain
- MAR&ES, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Gurez, Shalimar, Kashmir(J&K) 190025 India
| | - M. Ashraf Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Najeebul Rehmen Sofi
- MRCFC, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Shalimar, J&K India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| |
Collapse
|
19
|
Wu H, Huang S, Wang K, Liu Z. Coproduction of amino acids and biohythane from microalgae via cascaded hydrothermal and anaerobic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162238. [PMID: 36804985 DOI: 10.1016/j.scitotenv.2023.162238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In search of the candidate for animal feed and clean energy, a new vision of algal biorefinery was firstly proposed to coproduce amino acids and biohythane via hydrothermal treatment and two-stage anaerobic fermentation. This study focused on the comprehensive analysis of amino acids recovered from Chlorella sp. and the subsequent biohythane production from microalgal residues. The content and recovery rate of amino acids were in the range of 2.07-27.62 g/100 g and 3.65 %-48.66 % with increasing temperature due to more cell wall disruptions. Furthermore, it was rich in essential amino acids for livestock, including leucine, arginine, isoleucine, valine and phenylalanine. A comparable hydrogen production (9 mL/g volatile solids (VS)) was reached at 70 °C and 90 °C, while it reduced to 5.84 mL/gVS at 150 °C. The group at 70 °C got the maximum methane generation of 311.9 mL/gVS, which was 16.67 %, 24.94 %, 38.38 % and 46.49 % higher than that of other groups. Microalgal residues at lower temperature contained more organics, which was the reason for the better biohythane production. The coproduction of amino acids and biohythane at 130 °C was favorable, which led to 43.71 % amino acids recovery and 93.82 mL biohythane production from per gVS of Chlorella sp. The improved microalgal biorefinery could provide an alternative way to mitigate the crisis of food and energy, but animal experimentations and techno-economic assessments should be considered for further study.
Collapse
Affiliation(s)
- Houkai Wu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Sijie Huang
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
20
|
Chehelgerdi M, Heidarnia F, Dehkordi FB, Chehelgerdi M, Khayati S, Khorramian-Ghahfarokhi M, Kabiri-Samani S, Kabiri H. Immunoinformatic prediction of potential immunodominant epitopes from cagW in order to investigate protection against Helicobacter pylori infection based on experimental consequences. Funct Integr Genomics 2023; 23:107. [PMID: 36988775 PMCID: PMC10049908 DOI: 10.1007/s10142-023-01031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Helicobacter pylori is a leading cause of stomach cancer and peptic ulcers. Thus, identifying epitopes in H. pylori antigens is important for disease etiology, immunological surveillance, enhancing early detection tests, and developing optimal epitope-based vaccines. We used immunoinformatic and computational methods to create a potential CagW epitope candidate for H. pylori protection. The cagW gene of H. pylori was amplified and cloned into pcDNA3.1 (+) for injection into the muscles of healthy BALB/c mice to assess the impact of the DNA vaccine on interleukin levels. The results will be compared to a control group of mice that received PBS or cagW-pcDNA3.1 (+) vaccinations. An analysis of CagW protein antigens revealed 8 CTL and 7 HTL epitopes linked with AYY and GPGPG, which were enhanced by adding B-defensins to the N-terminus. The vaccine's immunogenicity, allergenicity, and physiochemistry were validated, and its strong activation of TLRs (1, 2, 3, 4, and 10) suggests it is antigenic. An in-silico cloning and immune response model confirmed the vaccine's expression efficiency and predicted its impact on the immune system. An immunofluorescence experiment showed stable and bioactive cagW gene expression in HDF cells after cloning the whole genome into pcDNA3.1 (+). In vivo vaccination showed that pcDNA3.1 (+)-cagW-immunized mice had stronger immune responses and a longer plasmid DNA release window than control-plasmid-immunized mice. After that, bioinformatics methods predicted, developed, and validated the three-dimensional structure. Many online services docked it with Toll-like receptors. The vaccine was refined using allergenicity, antigenicity, solubility, physicochemical properties, and molecular docking scores. Virtual-reality immune system simulations showed an impressive reaction. Codon optimization and in-silico cloning produced E. coli-expressed vaccines. This study suggests a CagW epitopes-protected H. pylori infection. These studies show that the proposed immunization may elicit particular immune responses against H. pylori, but laboratory confirmation is needed to verify its safety and immunogenicity.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Fatemeh Heidarnia
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahr-e Kord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran.
| | - Shahoo Khayati
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saber Kabiri-Samani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| |
Collapse
|
21
|
Effects of rice vinegar treatment on the antioxidant activities and protein structures of whole egg liquid before and after gastrointestinal digestion. Food Chem 2023; 404:134574. [DOI: 10.1016/j.foodchem.2022.134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
22
|
Harsha Mohan E, Madhusudan S, Baskaran R. The sea lettuce Ulva sensu lato: Future food with health-promoting bioactives. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
23
|
Ultrasonic-Assisted Extraction and Antioxidant Potential of Valuable Protein from Ulva rigida Macroalgae. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010086. [PMID: 36676035 PMCID: PMC9864898 DOI: 10.3390/life13010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Ulva green macroalgae or sea lettuce are rich sources of protein with nutritional benefits that promote health as a future plant-based functional ingredient in the food industry. Alkaline pretreatment improved ultrasonic-assisted protein extraction from Ulva rigida biomass. Parameters affecting ultrasonic-assisted extraction of protein were type of solvent, biomass-solvent ratio, biomass preparation and extraction cycle. In vitro digestibility was evaluated from oven- and freeze-dried biomass. Results showed highest concentration and extraction yield of protein from U. rigida using alkaline rather than acid and distilled water. A high biomass-solvent ratio at 1:10 or 0.1 g mL-1 increased protein extraction. Higher alkaline concentration increased protein extraction. Highest protein extractability was 8.5% dry matter from freeze-dried U. rigida biomass, with highest protein extraction and antioxidant activity from extraction of U. rigida macroalgae at high alkaline concentrations. U. rigida macroalgae oven-dried biomass presented suitable human digestibility. Efficient pretreatment of U. rigida maximized protein hydrolysate and bioactive peptide production for wide-ranging applications.
Collapse
|
24
|
Rautela I, Thapliyal P, Sahni S, Rayal R, Sharma MD. Potential of seaweeds in preventing cancer and HIV infection in humans. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Steinbruch E, Wise J, Levkov K, Chemodnov A, Israel Á, Livney Y, Golberg A. Enzymatic cell wall degradation combined with pulsed electric fields increases yields of water-soluble-protein extraction from the green marine macroalga Ulva sp. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Physicochemical and functional properties of Pleurotus geesteranus proteins. Food Res Int 2022; 162:111978. [DOI: 10.1016/j.foodres.2022.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
27
|
Vinuganesh A, Kumar A, Prakash S, Korany SM, Alsherif EA, Selim S, AbdElgawad H. Evaluation of growth, primary productivity, nutritional composition, redox state, and antimicrobial activity of red seaweeds Gracilaria debilis and Gracilaria foliifera under pCO 2-induced seawater acidification. MARINE POLLUTION BULLETIN 2022; 185:114296. [PMID: 36343546 DOI: 10.1016/j.marpolbul.2022.114296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The genus Gracilaria is an economically important group of seaweeds as several species are utilized for various products such as agar, used in medicines, human diets, and poultry feed. Hence, it is imperative to understand their response to predicted ocean acidification conditions. In the present work, we have evaluated the response of Gracilaria foliifera and Gracilaria debilis to carbon dioxide (pCO2) induced seawater acidification (pH 7.7) for two weeks in a controlled laboratory conditions. As a response variable, we have measured growth, productivity, redox state, primary and secondary metabolites, and mineral compositions. We found a general increase in the daily growth rate, primary productivity, and tissue chemical composition (such as pigments, soluble and insoluble sugars, amino acids, and fatty acids), but a decrease in the mineral contents under the acidified condition. Under acidification, there was a decrease in malondialdehyde. However, there were no significant changes in the total antioxidant capacity and a majority of enzymatic and non-enzymatic antioxidants, except for an increase in tocopherols, ascorbate and glutathione-s-transferase in G. foliifera. These results indicate that elevated pCO2 will benefit the growth of the studied species. No sign of oxidative stress markers indicating the acclimatory response of these seaweeds towards lowered pH conditions. Besides, we also found increased antimicrobial activities of acidified samples against several of the tested food pathogens. Based on these observations, we suggest that Gracilaria spp. will be benefitted from the predicted future acidified ocean.
Collapse
Affiliation(s)
- A Vinuganesh
- Cente for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai-600119, Tamil Nadu, India
| | - Amit Kumar
- Cente for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai-600119, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu, India.
| | - S Prakash
- Cente for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai-600119, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu, India
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Emad A Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
28
|
Arias A, Feijoo G, Moreira MT. Macroalgae biorefineries as a sustainable resource in the extraction of value-added compounds. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Sanchez-Arcos C, Paris D, Mazzella V, Mutalipassi M, Costantini M, Buia MC, von Elert E, Cutignano A, Zupo V. Responses of the Macroalga Ulva prolifera Müller to Ocean Acidification Revealed by Complementary NMR- and MS-Based Omics Approaches. Mar Drugs 2022; 20:md20120743. [PMID: 36547890 PMCID: PMC9783899 DOI: 10.3390/md20120743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.
Collapse
Affiliation(s)
- Carlos Sanchez-Arcos
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Debora Paris
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
| | - Valerio Mazzella
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, 87071 Amendolara, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Maria Cristina Buia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Eric von Elert
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| |
Collapse
|
30
|
Aderinola TA, Alashi AM, Fagbemi TN, Enujiugha VN, Aluko RE. Amino acid composition, mineral profile, free radical scavenging ability, and carbohydrase inhibitory properties of Moringa oleifera seed globulin, hydrolysates, and membrane fractions. J Food Biochem 2022; 46:e14131. [PMID: 35322904 DOI: 10.1111/jfbc.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
The nutritional-amino acid profile and mineral element of Moringa oleifera seed globulin (GLO) and its hydrolysates as well as the in vitro bioactive properties-antioxidant, alpha-amylase, and alpha-glucosidase inhibition of the GLO, hydrolysates, and membrane fractions were reported. The results showed that M. oleifera contained significant amounts of essential amino acids (EAA), which are more than the minimum required by the Food and Agricultural Organization for children, except for tryptophan, which was the limiting amino acid. However, hydrolysis mostly led to a reduction in the contents of the EAA. While the process of hydrolysis and the subsequent membrane fractionation produced peptides with improved activities in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical scavenging ability and oxygen radical absorbance capacity, this process produced no activities in superoxide radical scavenging ability, α-amylase, and α-glucosidase inhibitory potentials of some of the hydrolysates and peptides fractions. In summary, M. oleifera seed peptide fraction (<3 kDa) from the alcalase-derived hydrolysate contains potent antioxidants but relatively low in vitro antidiabetic properties. PRACTICAL APPLICATIONS: Several studies have established the ability of proteins, including hydrolysate and peptide fractions to provide some bioactive properties such as antioxidant, antidiabetic, anti-inflammatory among others. However, because protein functionalities are influenced by several factors such as the source, type, processing method employed among others, research has continued to evaluate the bioactivities of proteins under different conditions. In this study, therefore, we reported the impact of processing methods (hydrolysis, enzyme type, and peptide size) on the nutritional, antioxidant, and in vitro antidiabetic properties of M. oleifera seed globulin, its hydrolysates, and membrane fractions. This information plays an important role in the further exploitation of M. oleifera seed proteins in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, The Federal University of Technology, Akure, Akure, Nigeria.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adeola Monisola Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tayo Nathaniel Fagbemi
- Department of Food Science and Technology, The Federal University of Technology, Akure, Akure, Nigeria
| | - Victor Ndigwe Enujiugha
- Department of Food Science and Technology, The Federal University of Technology, Akure, Akure, Nigeria
| | - Rotimi Emmanuel Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Reynolds D, Caminiti J, Edmundson S, Gao S, Wick M, Huesemann M. Seaweed proteins are nutritionally valuable components in the human diet. Am J Clin Nutr 2022; 116:855-861. [PMID: 35820048 DOI: 10.1093/ajcn/nqac190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023] Open
Abstract
The global population is expected to reach 11 billion people by the year 2100 and will require sustainable sources of dietary protein. Most dietary protein originates from animal and terrestrial plant agriculture, which leads to deforestation, water pollution, and greenhouse gas emissions. Discovering alternative protein sources that are nutritionally adequate for the human diet without harmful environmental effects is imperative. Seaweeds are a promising option as they produce abundant protein with a low carbon footprint. Experimental evidence shows that seaweeds contain high concentrations of the essential amino acids (EAAs) necessary for human consumption, but seaweeds have yet to be evaluated with standardized metrics to compare their nutritional value to other protein sources. In this technical note, independent literature describing the EAA content and protein digestibility of 3 commonly consumed species of seaweeds was evaluated alongside traditional protein sources using a novel hybrid protein quality (HPQ) metric. HPQ is derived from the protein digestibility-corrected amino acid score and digestibility indispensable amino acid score but includes modifications to address the lack of in vivo digestibility data for seaweeds. Seaweed proteins are similar in quality to common plant protein sources such as peas, soy, and tree nuts. Furthermore, seaweed proteins from different species have complementary EAA profiles and can be mixed to form protein blends that are nutritionally on par with animal products such as milk and whey. Thus, seaweeds may be viable protein sources with a reduced footprint that provide beneficial ecosystem services.
Collapse
Affiliation(s)
- Daman Reynolds
- Bioenergy Group, Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA 98382, USA
| | - Jeff Caminiti
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Scott Edmundson
- Bioenergy Group, Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA 98382, USA
| | - Song Gao
- Bioenergy Group, Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA 98382, USA
| | - Macdonald Wick
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA.,Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Michael Huesemann
- Bioenergy Group, Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA 98382, USA
| |
Collapse
|
32
|
Mlambo V, Mnisi CM, Matshogo TB, Mhlongo G. Prospects of dietary seaweeds and their bioactive compounds in sustainable poultry production systems: A symphony of good things? FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.998042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Modern poultry production systems face numerous economic, environmental, and social sustainability challenges that threaten their viability and acceptability as a major source of animal protein. As scientists and producers scramble to find cost-effective and socially acceptable solutions to these challenges, the dietary use of marine macroalgae (seaweeds) could be an ingenious option. Indeed, the incredible array of nutritive and bioactive compounds present in these macroscopic marine organisms can be exploited as part of sustainable poultry production systems of the future. Incorporating seaweeds in poultry diets could enhance feed utilization efficiency, growth performance, bird health, meat stability and quality, and consumer and environmental health. Theoretically, these benefits are mediated through the putative antiviral, antibacterial, antifungal, antioxidant, anticarcinogenic, anti-inflammatory, anti-allergic, antithrombotic, neuroprotective, hypocholesterolemic, and hypoglycemic properties of seaweed bioactive compounds. Despite this huge potential, exploitation of seaweed for poultry production appears to be constrained by a variety of factors such as high fibre, phenolics, and ash content. In addition, conflicting findings are often reported when seaweeds or their extracts are used in poultry feeding trials. Therefore, the purpose of this review paper is to collate information on the production, phytochemical components, and nutritive value of different seaweed species. It provides an overview ofin vivoeffects of dietary seaweeds as measured by nutrient utilization efficiency, growth performance, and product quality and stability in poultry. The utility of dietary seaweeds in sustainable poultry production systems is explored, while gaps that require further research are highlighted. Finally, opportunities that exist for enhancing the utility of seaweeds as a vehicle for sustainable production of functional poultry products for better global food and nutrition security are presented.
Collapse
|
33
|
Gut microbiome modulation and gastrointestinal digestibility in vitro of polysaccharide-enriched extracts and seaweeds from Ulva rigida and Gracilaria fisheri. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Ashokkumar V, Jayashree S, Kumar G, Aruna Sharmili S, Gopal M, Dharmaraj S, Chen WH, Kothari R, Manasa I, Hoon Park J, Shruthi S, Ngamcharussrivichai C. Recent developments in biorefining of macroalgae metabolites and their industrial applications - A circular economy approach. BIORESOURCE TECHNOLOGY 2022; 359:127235. [PMID: 35487449 DOI: 10.1016/j.biortech.2022.127235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The macroalgal industry is expanding, and the quest for novel ingredients to improve and develop innovative products is crucial. Consumers are increasingly looking for natural-derived ingredients in cosmetic products that have been proven to be effective and safe. Macroalgae-derived compounds have growing popularity in skincare products as they are natural, abundant, biocompatible, and renewable. Due to their high biomass yields, rapid growth rates, and cultivation process, they are gaining widespread recognition as potentially sustainable resources better suited for biorefinery processes. This review demonstrates macroalgae metabolites and their industrial applications in moisturizers, anti-aging, skin whitening, hair, and oral care products. These chemicals can be obtained in combination with energy products to increase the value of macroalgae from an industrial perspective with a zero-waste approach by linking multiple refineries. The key challenges, bottlenecks, and future perspectives in the operation and outlook of macroalgal biorefineries were also discussed.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum wan, Bangkok 10330, Thailand.
| | - Shanmugam Jayashree
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - S Aruna Sharmili
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Mayakkannan Gopal
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K 181143, India
| | - Isukapatla Manasa
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Jeong Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
| | | | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum wan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
35
|
Ashkenazi DY, Segal Y, Ben-Valid S, Paz G, Tsubery MN, Salomon E, Abelson A, Israel Á. Enrichment of nutritional compounds in seaweeds via abiotic stressors in integrated aquaculture. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Aasen IM, Sandbakken IS, Toldnes B, Roleda MY, Slizyte R. Enrichment of the protein content of the macroalgae Saccharina latissima and Palmaria palmata. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
38
|
Balde A, Kim SK, Abdul NR. Crab (Charybdis natator) exoskeleton derived chitosan nanoparticles for the in vivo delivery of poorly water-soluble drug: Ibuprofen. Int J Biol Macromol 2022; 212:283-293. [PMID: 35609839 DOI: 10.1016/j.ijbiomac.2022.05.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023]
Abstract
The study aims to extract and purify chitosan (CS) from the exoskeleton of crab (C. natator) and develop ibuprofen (IBU) encapsulated CS nanoparticles (IBU-CSNPs). Analysis of purified CS revealed characteristic functional and crystallinity peaks. Moreover, morphological analysis of prepared IBU-CSNPs showed uniform spherical shape with a size range of 40-100 nm whereas encapsulation efficiency (EE%) and loading capacity (LC%) were estimated to be 68.94 ± 1.61% and 28 ± 1.18% respectively. Further, in vitro release profile of IBU from IBU-CSNPs was observed to be in biphasic form with initial release up to 15 h followed by the sustained release in different test conditions. Further, the effects of purified CS on the viability of RAW264.7 cells exhibited no toxic effects in higher concentrations. Furthermore, fluorescein isothiocyanate (FITC) conjugated nanoparticles (FITC-IBU-CSNPs) were investigated on in vivo model of adult zebrafish for time-dependent circulation and accumulation of the drug through the nano-carrier system. It was observed that the drug diffusion from the nanoparticles was in a sustained manner throughout the gastrointestinal region which resulted in suppression of inflammation. Overall, this study provides an effective and facile process for preparing a crab CS-based nano-carrier system used for the delivery of IBU in vivo which may help in the curing of prolonged chronic inflammatory diseases. Moreover, it may also help to reduce adverse effects of these drugs in the gastrointestinal tract such as ulcers and bleeding.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Life Science, Korea Maritime and Ocean University, Busan, South Korea
| | - Nazeer Rasool Abdul
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India.
| |
Collapse
|
39
|
Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy. SUSTAINABILITY 2022. [DOI: 10.3390/su14095634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seaweeds are attracting increasing attention as an alternative healthy food and renewable drugs source and as agents of climate change mitigation that provide essential ecosystem services. In this context, seaweeds represent marine resources capable of supporting and pursuing the objectives of the Sustainable Blue Economy and the Bio-Based Circular Economy. In this review, we analyze the state of seaweed bio-based products and research on the Mediterranean Sea from the last 20 years. Results of this analysis show a large number of investigations focusing on antimicrobial, antioxidant and anti-inflammatory activities compared to on biofuels and bioplastics. Attempts at seaweed farming, although generally very limited, are present in Israel and some North African countries. Lastly, we focus on the Italian situation—including research, companies and legislation on seaweed production—and we discuss gaps, perspectives and challenges for the potential development of a sustainable seaweed industry according to the Sustainable Blue Economy.
Collapse
|
40
|
Red seaweed: A promising alternative protein source for global food sustainability. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Wang M, Zhou J, Tavares J, Pinto CA, Saraiva JA, Prieto MA, Cao H, Xiao J, Simal-Gandara J, Barba FJ. Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Crit Rev Food Sci Nutr 2022; 63:8357-8374. [PMID: 35357258 DOI: 10.1080/10408398.2022.2054939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Meat constitutes one the main protein sources worldwide. However, ethical and health concerns have limited its consumption over the last years. To overcome this negative impact, new ingredients from natural sources are being applied to meat products to obtain healthier proteinaceous meat products. Algae is a good source of unsaturated fatty acids, proteins, essential amino acids, and vitamins, which can nutritionally enrich several foods. On this basis, algae have been applied to meat products as a functional ingredient to obtain healthier meat-based products. This paper mainly reviews the bioactive compounds in algae and their application in meat products. The bioactive ingredients present in algae can give meat products functional properties such as antioxidant, neuroprotective, antigenotoxic, resulting in healthier foods. At the same time, algae addition to foods can also contribute to delay microbial spoilage extending shelf-life. Additionally, other algae-based applications such as for packaging materials for meat products are being explored. However, consumers' acceptance for new products (particularly in Western countries), namely those containing algae, not only depends on their knowledge, but also on their eating habits. Therefore, it is necessary to further explore the nutritional properties of algae-containing meat products to overcome the gap between new meat products and traditional products, so that healthier algae-containing meat can occupy a significant place in the market.
Collapse
Affiliation(s)
- Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jéssica Tavares
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
42
|
Physicochemical, digestive and rheological properties of protein from tuna by subcritical dimethyl ether: Focus on process-related indexes. Food Chem 2022; 372:131337. [PMID: 34818745 DOI: 10.1016/j.foodchem.2021.131337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/29/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
The process-related physicochemical, digestive and rheological properties of protein prepared by subcritical dimethyl ether extraction (SDEE) were comprehensively investigated and compared with those obtained by pH-shift, to study the industrial potential of SDEE. Two different materials from tuna (meat and liver) were studied in parallel, and SDEE had similar effects on the proteins in them. The protein component was almost unchanged before and after SDEE, while the content of water-soluble protein and alkali-soluble protein was substantially reduced and increased after pH-shift, respectively. We also found that SDEE had superior ability to pH-shift to conserve light metals, remove lipids and heavy metals, and maintain protein structure. Furthermore, SDEE-produced protein powders were easier for humans to digest, and their gelation and emulsification were also superior to those prepared by pH-shift. The aforementioned results suggest that SDEE can remove more impurities, and the obtained protein has outstanding potential in industrial applications.
Collapse
|
43
|
Phuong H, Massé A, Dumay J, Vandanjon L, Mith H, Legrand J, Arhaliass A. Enhanced Liberation of Soluble Sugar, Protein, and R-Phycoerythrin Under Enzyme-Assisted Extraction on Dried and Fresh Gracilaria gracilis Biomass. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.718857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aims to investigate the bio-refinery process through an enzyme-assisted extraction (EAE) on freeze-dried and fresh macroalgae Gracilaria gracilis for the release of water-soluble components (R-phycoerythrin, proteins, and sugar). Three enzymes, cellulase, protease, and enzyme cocktail (mixture of cellulase and protease), were applied in the study. Results showed that freeze-dried biomass yielded the highest target components in the presence of enzyme cocktail while a single enzyme was better with fresh biomass, either protease for the release of R-PE and protein or cellulase for sugar. The extraction of protein and sugar was improved by 43% and 57%, respectively, from fresh biomass compared to dried biomass. The difference of biomass status was shown to affect the required enzyme and recovery yield during the extraction process. Employing an enzyme cocktail on freeze-dried biomass boosted the extraction yield, which was probably due to the complementary effect between enzymes. On the other hand, single enzyme worked better on fresh biomass, giving economic benefits (enzyme limitation and drying stage) for further implementation of the bio-refinery process. Thus, biomass treatment (fresh or freeze-dried) and enzyme-type determined the efficiency of enzyme-assisted extraction according to the target components.
Collapse
|
44
|
Pan Z, Yu Y, Chen Y, Yu C, Xu N, Li Y. Combined effects of biomass density and low-nighttime temperature on the competition for growth and physiological performance of Gracilariopsis lemaneiformis and Ulva prolifera. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Castro-Ferreira C, Gomes-Dias JS, Ferreira-Santos P, Pereira RN, Vicente AA, Rocha CM. Phaeodactylum tricornutum extracts as structuring agents for food applications: Physicochemical and functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Abstract
Macroalgae Ulva lactuca, has been employed as a natural source for the production of extracts with potent bioactivity. The biochemical characterization showed that the macroalgae biomass contains a remarkable amount of the polysaccharide Ulvan (49.9 wt%) which is a valuable chemical compound well known for its benefits in human health. Four nontoxic solvents, water, ethyl acetate, ethanol, and an ethanol/water mixture (70:30 v/v) were examined for their recovery efficiency of total carotenoid and phenolic contents. Experimental results showed that the aqueous mixture of ethanol was the most efficient solvent in the recovery of bioactive compounds with extraction yield of 10–15% dw. The effect of extraction parameters, namely time, temperature, and the ratio of biomass to solvent, on the carotenoid and phenolic compounds’ content, antioxidant activity, and extraction yield, was investigated, using the ethanol/water mixture as a solvent. The extract obtained under 60 °C, 3 h of extraction time and 1:10 biomass to solvent mass ratio showed the highest antioxidant activity. This extract maintained its antioxidant capacity almost stable for five days of storage under cool and dark conditions. Finally, specific phenolic and carotenoid compounds in the U. lactuca extracts were identified using the High-Performance Liquid Chromatography (HPLC) technique.
Collapse
|
47
|
Macroalgal Proteins: A Review. Foods 2022; 11:foods11040571. [PMID: 35206049 PMCID: PMC8871301 DOI: 10.3390/foods11040571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Population growth is the driving change in the search for new, alternative sources of protein. Macroalgae (otherwise known as seaweeds) do not compete with other food sources for space and resources as they can be sustainably cultivated without the need for arable land. Macroalgae are significantly rich in protein and amino acid content compared to other plant-derived proteins. Herein, physical and chemical protein extraction methods as well as novel techniques including enzyme hydrolysis, microwave-assisted extraction and ultrasound sonication are discussed as strategies for protein extraction with this resource. The generation of high-value, economically important ingredients such as bioactive peptides is explored as well as the application of macroalgal proteins in human foods and animal feed. These bioactive peptides that have been shown to inhibit enzymes such as renin, angiotensin-I-converting enzyme (ACE-1), cyclooxygenases (COX), α-amylase and α-glucosidase associated with hypertensive, diabetic, and inflammation-related activities are explored. This paper discusses the significant uses of seaweeds, which range from utilising their anthelmintic and anti-methane properties in feed additives, to food techno-functional ingredients in the formulation of human foods such as ice creams, to utilising their health beneficial ingredients to reduce high blood pressure and prevent inflammation. This information was collated following a review of 206 publications on the use of seaweeds as foods and feeds and processing methods to extract seaweed proteins.
Collapse
|
48
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Samarathunga J, Wijesekara I, Jayasinghe M. Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jayani Samarathunga
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Madhura Jayasinghe
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
50
|
Appaiah P, Sunil L, Martin A, Vasu P. Physicochemical Characterization and In Vitro Digestibility Study of an In Silico Designed Recombinant Protein Enriched with Large Neutral Amino Acids and Lacking Phenylalanine for Phenylketonuria. Protein J 2022; 41:79-87. [DOI: 10.1007/s10930-021-10039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|