1
|
Cui J, Liu D, Zhang Y, Ma M, Shang M, Zhao C, Lu X, Zhao C, Zheng J. Structural characteristics and gelling properties of citrus pectins after chemical and enzymatic modifications: Conformation plays a vital role in Ca 2+-induced gelation. Food Chem 2024; 459:140370. [PMID: 38986208 DOI: 10.1016/j.foodchem.2024.140370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Due to the excellent health benefits of rhamnogalacturonan I (RG-I)-enriched pectin, there has been increasing research interest in its gelling properties. To elucidate its structure-gelation relationship, chemical modifications were used to obtain RG-I-enriched pectin (P11). Then, enzymatic modification was performed to obtain debranched pectins GP11 and AP11, respectively. The effects of RG-I side chains on structural characteristics (especially spatial conformation) and gelling properties were investigated. Among the low-methoxylated pectins (LMPs), AP11, with a loose conformation (Dmax 52 nm) showed the poorest gelling, followed by GP11. In addition to primary structure, spatial conformation (Dmax and Rg) also showed strong correlations (r2 > 0.8) with gelation. We speculate that compact conformation may shorten distance between pectin chains and reduces steric hindrance, contributing to formation of strong gel network. This is particularly important in LMPs with abundant side chains. The results provide novel insights into relationship between spatial conformation and gelling properties of RG-I-enriched pectin.
Collapse
Affiliation(s)
- Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuyang Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengyu Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengshan Shang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Cheng Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Wang W, Ma S, Shao Q, Yi S. Effects of Soy Protein Isolate and Inulin Conjugate on Gel Properties and Molecular Conformation of Spanish Mackerel Myofibrillar Protein. Foods 2024; 13:2920. [PMID: 39335849 PMCID: PMC11431295 DOI: 10.3390/foods13182920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The gel properties and molecular conformation of Spanish mackerel myofibrillar protein (MP) induced by soy protein isolate-inulin conjugates (SPI-inulin conjugates) were investigated. The addition of SPI-inulin conjugates significantly enhanced the quality of the protein gel. An analysis of different additives was conducted to assess their impact on the gel strength, texture, water-holding capacity (WHC), water distribution, intermolecular force, dynamic rheology, Raman spectrum, fluorescence spectrum, and microstructure of MP. The results demonstrated a substantial improvement in the strength and water retention of the MP gel with the addition of the conjugate. Compared with the control group (MP), the gel strength increased from 35.18 g·cm to 41.90 g·cm, and WHC increased from 36.80% to 52.67% with the inclusion of SPI-inulin conjugates. The hydrogen bond content was notably higher than that of other groups, and hydrophobic interaction increased from 29.30% to 36.85% with the addition of SPI-inulin conjugates. Furthermore, the addition of the conjugate altered the secondary structure of the myofibrillar gel, with a decrease in α-helix content from 62.91% to 48.42% and an increase in β-sheet content from 13.40% to 24.65%. Additionally, the SPI-inulin conjugates led to a significant reduction in the endogenous fluorescence intensity of MP. Atomic force microscopy (AFM) results revealed a substantial increase in the Rq value from 8.21 nm to 20.21 nm. Adding SPI and inulin in the form of conjugates is an effective method to improve the gel properties of proteins, which provides important guidance for the study of adding conjugates to surimi products. It has potential application prospects in commercial surimi products.
Collapse
Affiliation(s)
- Wei Wang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (W.W.); (S.M.); (Q.S.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Sirui Ma
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (W.W.); (S.M.); (Q.S.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Qing Shao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (W.W.); (S.M.); (Q.S.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (W.W.); (S.M.); (Q.S.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| |
Collapse
|
3
|
Yu K, Zhou L, Huang H, Xu J, Li Y, Yu W, Peng S, Zou L, Liu W. The improvement of water barrier property in gelatin/carboxymethyl cellulose composite film by electrostatic interaction regulation and its application in strawberry preservation. Food Chem 2024; 450:139352. [PMID: 38640532 DOI: 10.1016/j.foodchem.2024.139352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Gelatin (GL) and carboxymethyl cellulose (CMC) are common natural components for edible films, but their water barrier performance are finite as hydrophilic polymers. In this study, a GL/CMC water barrier film was prepared, characterized and applied. The microstructure results showed that complex coacervation at pH 2.0 and cross-linking effect of sodium benzoate resulted in strong interaction forces and dense structure of this film. Compared with pure GL or CMC film, this novel composite film decreased water vapor permeability by approximately 90%, and possessed applicable water solubility (51.5%) and stronger barrier to oxygen and UV light. Acidic environment and sodium benzoate endowed antibacterial activity. Furthermore, the water barrier coating film decreased water loss by 47.8% and improved overall quality of fresh strawberries stored at 25 °C for 6 d. Therefore, the novel water barrier film based on complex coacervation and cross-linking is promising to control the postharvest quality of perishable berries.
Collapse
Affiliation(s)
- Kaibo Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Hairong Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yangyang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenzhi Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
4
|
Zhuo Z, Yin C, Zhang Z, Han Y, Teng H, Xu Q, Li C. Nano-Reactors Based on Ovotransferrin Organic Skeleton through a Ferroptosis-like Strategy Efficiently Enhance Antibacterial Activity. J Funct Biomater 2024; 15:205. [PMID: 39194643 DOI: 10.3390/jfb15080205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The issue of bacterial resistance is an escalating problem due to the misuse of antibiotics worldwide. This study introduces a new antibacterial mechanism, the ferroptosis-like death (FLD) of bacteria, and an approach to creating green antibacterial nano-reactors. This innovative method leverages natural iron-containing ovotransferrin (OVT) assembled into an organic skeleton to encapsulate low-concentration adriamycin (ADM) for synthesizing eco-friendly nano-reactors. FLD utilizes the Fenton reaction of reactive oxygen species and ferrous ions to continuously produce ·OH, which can attack the bacterial cell membrane and destroy the cell structure to achieve bacteriostasis. The OVT@ADM nano-reactors are nearly spherical, with an average diameter of 247.23 nm and uniform particle sizing. Vitro simulations showed that Fe3+ in OVT@ADM was reduced to Fe2+ by glutathione in the bacterial periplasmic space, which made the structure of OVT loose, leading to a sustained slow release of ADM from OVT@ADM. The H2O2 continuously produced by ADM oxidized Fe2+ through the Fenton reaction to produce ·OH and Fe3+. The results of the antibacterial assay showed that OVT@ADM had a satisfactory antibacterial effect against S. aureus, and the inhibition rate was as high as 99.3%. The cytotoxicity results showed that the mitigation strategy significantly reduced the cytotoxicity caused by ADM. Based on the FLD mechanism, OVT@ADM nano-reactors were evaluated and applied to bacteriostasis. Therefore, the novel antibacterial mechanism and OVT@ADM by the green synthesis method have good application prospects.
Collapse
Affiliation(s)
- Zihan Zhuo
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Chunfang Yin
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Zhenqing Zhang
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Yumeng Han
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Haoye Teng
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Qi Xu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Changming Li
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
5
|
Jin Z, Wei Z. Molecular simulation for food protein-ligand interactions: A comprehensive review on principles, current applications, and emerging trends. Compr Rev Food Sci Food Saf 2024; 23:e13280. [PMID: 38284571 DOI: 10.1111/1541-4337.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
In recent years, investigations on molecular interaction mechanisms between food proteins and ligands have attracted much interest. The interaction mechanisms can supply much useful information for many fields in the food industry, including nutrient delivery, food processing, auxiliary detection, and others. Molecular simulation has offered extraordinary insights into the interaction mechanisms. It can reflect binding conformation, interaction forces, binding affinity, key residues, and other information that physicochemical experiments cannot reveal in a fast and detailed manner. The simulation results have proven to be consistent with the results of physicochemical experiments. Molecular simulation holds great potential for future applications in the field of food protein-ligand interactions. This review elaborates on the principles of molecular docking and molecular dynamics simulation. Besides, their applications in food protein-ligand interactions are summarized. Furthermore, challenges, perspectives, and trends in molecular simulation of food protein-ligand interactions are proposed. Based on the results of molecular simulation, the mechanisms of interfacial behavior, enzyme-substrate binding, and structural changes during food processing can be reflected, and strategies for hazardous substance detection and food flavor adjustment can be generated. Moreover, molecular simulation can accelerate food development and reduce animal experiments. However, there are still several challenges to applying molecular simulation to food protein-ligand interaction research. The future trends will be a combination of international cooperation and data sharing, quantum mechanics/molecular mechanics, advanced computational techniques, and machine learning, which contribute to promoting food protein-ligand interaction simulation. Overall, the use of molecular simulation to study food protein-ligand interactions has a promising prospect.
Collapse
Affiliation(s)
- Zihan Jin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Wei Z, Dong Y, Li X, Wang M, Zhang K. Design of Novel Knot-like Structures Based on Ovotransferrin Fibril-Gum Arabic Complexes: Effective Strategies to Stabilize Pickering Emulsions. Foods 2023; 12:3767. [PMID: 37893660 PMCID: PMC10606543 DOI: 10.3390/foods12203767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This work aimed to clarify the effects of gum arabic (GA) on the morphology and properties of ovotransferrin fibrils (OVTFs). By constructing OVTF-GA complexes and exploring the dispersion stability, turbidity and the ζ-potential of the complexes, the optimum mass ratio of OVTFs to GA and pH for complex formation were confirmed as being 1:1 and pH 4.6, respectively. The interaction between OVTFs and GA was determined to be predominantly driven by electrostatic attraction. The OVTF-GA complexes exhibited a knot-like structure when observed using atomic force microscopy. Then, OVTFs and OVTF-GA complexes were compared in terms of contact angle, surface hydrophobicity and dynamic interfacial tension. The combination of OVTFs and GA decreased the contact angle of OVTFs from 80.85° to 70.36°. In comparison with OVTFs, OVTF-GA complexes reduced the oil-water interfacial tension to a lower level (8.14 mN/m). Furthermore, the capacities of OVTF-GA complexes in stabilizing emulsions were explored. OVTF-GA complex-stabilized oleogel-based Pickering emulsion (OGPE) was constructed, and OVTF-stabilized oleogel-based Pickering emulsion (OPE) was used as the control. OGPE had a higher emulsified phase volume fraction (EPVF) and stability index (SI). The EPVF of OGPE was 100.0% and 99.4% before and after one-month storage, respectively, compared with 98.3% and 95.7% of OPE. This work can provide some useful references for the design of biopolymers with novel structures composed of protein fibrils and polysaccharides, which may also help to construct and apply protein fibril-polysaccharide complexes under specific needs.
Collapse
Affiliation(s)
- Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | | | | | | | | |
Collapse
|
7
|
Ding Y, Qin F, Guo J, Gong D, Li Q, Wang X, Tan X, Liu H, Huang Z. Visible-light-driven Oxygen Vacancy and Carbon Doping of C@TiO 2-x Photocatalyst for Enhanced Pollutants Degradation Performance. Chemphyschem 2023; 24:e202300183. [PMID: 37285235 DOI: 10.1002/cphc.202300183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Oxygen Vacancy (OVs) and carbon doping of the photocatalyst body will significantly enhance the photocatalytic efficiency. However, synchronous regulation of these two aspects is challenging. In this paper, a novel C@TiO2-x photocatalyst was designed by coupling the surface defect and doping engineering of titania, which can effectively remove rhodamine B (RhB) and has a relatively high performance with wide pH range, high photocatalytic activity and good stability. Within 90 minutes, the photocatalytic degradation rate of RhB by C@TiO2-x (94.1 % at 20 mg/L) is 28 times higher than that of pure TiO2 . Free radical trapping experiments and electron spin resonance techniques reveal that superoxide radicals (⋅O2- ) and photogenerated holes (h+ ) play key roles in the photocatalytic degradation of RhB. This study demonstrates the possibility of regulating photocatalysts to degrade pollutants in wastewater based on an integrated strategy.
Collapse
Affiliation(s)
- Yifan Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Fanghong Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Jialin Guo
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Danming Gong
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Qiufei Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiangyi Wang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiuniang Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Haibo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| |
Collapse
|
8
|
Zhang J, Li F, Shen S, Yang Z, Ji X, Wang X, Liao X, Zhang Y. More simple, efficient and accurate food research promoted by intermolecular interaction approaches: A review. Food Chem 2023; 416:135726. [PMID: 36893635 DOI: 10.1016/j.foodchem.2023.135726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The investigation of intermolecular interactions has become increasingly important in many studies, mainly by combining different analytical approaches to reveal the molecular mechanisms behind specific experimental phenomena. From spectroscopic analysis to sophisticated molecular simulation techniques like molecular docking, molecular dynamics (MD) simulation, and quantum chemical calculations (QCC), the mechanisms of intermolecular interactions are gradually being characterized more clearly and accurately, leading to revolutionary advances. This article aims to review the progression in the main techniques involving intermolecular interactions in food research and the corresponding experimental results. Finally, we discuss the significant impact that cutting-edge molecular simulation technologies may have on the future of conducting deeper exploration. Applications of molecular simulation technology may revolutionize the food research, making it possible to design new future foods with precise nutrition and desired properties.
Collapse
Affiliation(s)
- Jinghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China.
| |
Collapse
|
9
|
Abker AM, Wang S, Chen S, Ma M, Fu X. The effects of high-intensity ultrasound and oil types on the physicochemical properties of egg white protein emulsions. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Chitosan can improve the storage stability of ovalbumin fibrils at pH higher than isoelectric point. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Fibrous and Spherical Aggregates of Ovotransferrin as Stabilizers for Oleogel-Based Pickering Emulsions: Preparation, Characteristics and Curcumin Delivery. Gels 2022; 8:gels8080517. [PMID: 36005118 PMCID: PMC9407489 DOI: 10.3390/gels8080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to explore the effects and mechanisms of differently shaped aggregates of ovotransferrin (OVT) particles on oleogel-based Pickering emulsions (OPEs). Medium-chain triglyceride oil-based oleogels were constructed using beeswax, and their gel-sol melting temperatures were investigated. Atomic force microscopy confirmed that both OVT fibrils and OVT spheres were successfully prepared, and the three-phase contact angle measurements indicated that fibrous and spherical aggregates of OVT particles possessed great potential to stabilize the OPEs. Afterward, the oil-in-water OPEs were fabricated using oleogel as the oil phase and OVT fibrils/spheres as the emulsifiers. The results revealed that OPEs stabilized with OVT fibrils (FIB-OPEs) presented a higher degree of emulsification, smaller droplet size, better physical stability and stronger apparent viscosity compared with OPEs stabilized with OVT spheres (SPH-OPEs). The freeze–thaw stability test showed that the FIB-OPEs remained stable after three freeze–thaw cycles, while the SPH-OPEs could barely withstand one freeze–thaw cycle. An in vitro digestion study suggested that OVT fibrils conferred distinctly higher lipolysis (46.0%) and bioaccessibility (62.8%) of curcumin to OPEs.
Collapse
|
12
|
Zhang T, Chen S, Xu X, Zhuang X, Chen Y, Xue Y, Xue C, Jiang N. Effects of konjac glucomannan on physical properties and microstructure of fish myofibrillar protein gel: Phase behaviours involved. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wang L, Wei Z, Xue C, Tang Q, Zhang T, Chang Y, Wang Y. Fucoxanthin-loaded nanoparticles composed of gliadin and chondroitin sulfate: Synthesis, characterization and stability. Food Chem 2022; 379:132163. [DOI: 10.1016/j.foodchem.2022.132163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 01/02/2023]
|
14
|
Dong Y, Wei Z, Wang Y, Tang Q, Xue C, Huang Q. Oleogel-based Pickering emulsions stabilized by ovotransferrin–carboxymethyl chitosan nanoparticles for delivery of curcumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Zhang X, Wei Z, Wang X, Wang Y, Tang Q, Huang Q, Xue C. Fabrication and characterization of core-shell gliadin/tremella polysaccharide nanoparticles for curcumin delivery: Encapsulation efficiency, physicochemical stability and bioaccessibility. Curr Res Food Sci 2022; 5:288-297. [PMID: 36561330 PMCID: PMC9764391 DOI: 10.1016/j.crfs.2022.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
The objectives of the present study were to synthesize gliadin/tremella polysaccharide nanoparticles (Gli/TP NPs) as well as curcumin-loaded gliadin/tremella polysaccharide nanoparticles (Cur-Gli/TP NPs) and evaluate the encapsulation efficiency (EE), physicochemical stability and bioaccessibility of Cur-Gli/TP NPs. The physicochemical properties of the nanoparticles depended on the mass ratio of Gli to TP and pH values. The characterization of the Gli/TP NPs indicated that the prepared nanoparticles were the most stable when the Gli/TP mass ratio was 1:1 and pH was at 4.0-7.0. Afterward, prepared Cur-Gli/TP NPs at different pH values were studied. Compared with the EE of Cur (58.2%) in Cur-Gli NPs at pH 5.0, the EE of Cur (90.6%) in Cur-Gli/TP NPs at pH 5.0 was increased by 32.4%. Besides, the Cur-Gli/TP NPs possessed excellent physical stability, photostability, thermal stability and re-dispersibility than Cur-Gli NPs. Furthermore, the bioaccessibility of Cur reached 83.5% after encapsulation of Cur into Gli/TP NPs after in vitro digestion, indicating that Cur-Gli/TP NPs could improve curcumin bioaccessibility significantly. In summary, this study demonstrates that the new food-grade Gli/TP NPs possess high encapsulation efficiency, excellent stability and prominent nutraceutical bioaccessibility. Meanwhile, it contributes to expanding the application of TP in food-grade delivery systems.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China,Corresponding author.
| | - Xin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, United States
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
16
|
Wang X, Wei Z, Xue C. The past and future of ovotransferrin: Physicochemical properties, assembly and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Xu T, Jiang C, Zhou Q, Gu Z, Cheng L, Tong Y, Hong Y. Complexation behavior of octenyl succinic anhydride starch with chitosan. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Dong Y, Wei Z, Xue C. Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Xia T, Xue C, Wei Z. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Wen Y, Xu Z, Liu Y, Corke H, Sui Z. Investigation of food microstructure and texture using atomic force microscopy: A review. Compr Rev Food Sci Food Saf 2020; 19:2357-2379. [PMID: 33336971 DOI: 10.1111/1541-4337.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
We review recent applications of atomic force microscopy (AFM) to characterize microstructural and textural properties of food materials. Based on interaction between probe and sample, AFM can image in three dimensions with nanoscale resolution especially in the vertical orientation. When the scanning probe is used as an indenter, mechanical features such as stiffness and elasticity can be analyzed. The linkage between structure and texture can thus be elucidated, providing the basis for many further future applications of AFM. Microstructure of simple systems such as polysaccharides, proteins, or lipids separately, as characterized by AFM, is discussed. Interaction of component mixtures gives rise to novel properties in complex food systems due to development of structure. AFM has been used to explore the morphological characteristics of such complexes and to investigate the effect of such characteristics on properties. Based on insights from such investigations, development of food products and manufacturing can be facilitated. Mechanical analysis is often carried out to evaluate the suitability of natural or artificial materials in food formulations. The textural properties of cellular tissues, food colloids, and biodegradable films can all be explored at nanometer scale, leading to the potential to connect texture to this fine structural level. More profound understanding of natural food materials will enable new classes of fabricated food products to be developed.
Collapse
Affiliation(s)
- Yadi Wen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
|
23
|
Ovotransferrin nanofibril formation in the presence of glycerol or sorbitol. Food Chem 2020; 305:125453. [DOI: 10.1016/j.foodchem.2019.125453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/29/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
|
24
|
Wei Z, Chen Y, Wijaya W, Cheng Y, Xiao J, Huang Q. Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles. Food Funct 2020; 11:1478-1488. [DOI: 10.1039/c9fo02564b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel ovotransferrin fibril–xanthan gum hydrogels were assembled to deliver dihydromyricetin effectively.
Collapse
Affiliation(s)
- Zihao Wei
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
- College of Food Science and Engineering
| | - Yongsheng Chen
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
- Department of Food Science and Engineering
| | - Wahyu Wijaya
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
- Enzyme and Protein Chemistry Group
| | - Yujia Cheng
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Jie Xiao
- College of Food Science
- South China Agricultural University
- Guangzhou
- China
| | - Qingrong Huang
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| |
Collapse
|
25
|
Chen X, Qiu Q, Chen K, Li D, Liang L. Water-soluble myofibrillar protein–pectin complex for enhanced physical stability near the isoelectric point: Fabrication, rheology and thermal property. Int J Biol Macromol 2020; 142:615-623. [DOI: 10.1016/j.ijbiomac.2019.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 01/05/2023]
|
26
|
Wei Z, Huang Q. Impact of covalent or non-covalent bound epigallocatechin-3-gallate (EGCG) on assembly, physicochemical characteristics and digestion of ovotransferrin fibrils. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105314] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Modification of ovotransferrin by Maillard reaction: Consequences for structure, fibrillation and emulsifying property of fibrils. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Ovotransferrin fibril–stabilized Pickering emulsions improve protection and bioaccessibility of curcumin. Food Res Int 2019; 125:108602. [DOI: 10.1016/j.foodres.2019.108602] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
|
29
|
Wei Z, Cheng Y, Huang Q. Heteroprotein complex formation of ovotransferrin and lysozyme: Fabrication of food-grade particles to stabilize Pickering emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Wei Z, Huang Q. Development of high internal phase Pickering emulsions stabilised by ovotransferrin–gum arabic particles as curcumin delivery vehicles. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14340] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zihao Wei
- Department of Food Science Rutgers University 65 Dudley Road New Brunswick NJ 08901 USA
| | - Qingrong Huang
- Department of Food Science Rutgers University 65 Dudley Road New Brunswick NJ 08901 USA
| |
Collapse
|
31
|
Wei Z, Huang Q. Modulation of Formation, Physicochemical Properties, and Digestion of Ovotransferrin Nanofibrils with Covalent or Non-Covalent Bound Gallic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9907-9915. [PMID: 31436102 DOI: 10.1021/acs.jafc.9b02630] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The impact of covalent or non-covalent bound gallic acid (GA) on the formation, physicochemical properties, and digestion of ovotransferrin (OTF) nanofibrils was comprehensively studied. Thioflavin T fluorescence results revealed that bound GA could inhibit OTF nanofibrillation and that the fibril-inhibitory activity of bound GA was dose dependent. Covalent bound GA exerted stronger inhibition on OTF nanofibrillation than an equal amount of non-covalent bound GA. Atomic force microscopy revealed that covalent bound GA shortened OTF nanofibrils significantly, while non-covalent bound GA did not change the contour length of OTF fibrils remarkably. Bound GA altered diameter of OTF nanofibrils. Both covalent and non-covalent bound GA could alter the zeta potential, surface hydrophobicity, and rheological properties of OTF nanofibrils. Bound GA endowed OTF nanofibrils with a strong antioxidant activity. In vitro gastrointestinal digestion results showed that covalent bound GA elevated the fibril digestion rate better than non-covalent bound GA. Polyphenol binding provided a new approach to modulating the physicochemical properties of protein nanofibrils.
Collapse
Affiliation(s)
- Zihao Wei
- Department of Food Science , Rutgers University , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| | - Qingrong Huang
- Department of Food Science , Rutgers University , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
32
|
|
33
|
Wei Z, Cheng Y, Zhu J, Huang Q. Genipin-crosslinked ovotransferrin particle-stabilized Pickering emulsions as delivery vehicles for hesperidin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Wei Z, Huang Q. Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Wei Z, Zhang H, Huang Q. Curcumin-loaded Pickering emulsion stabilized by insoluble complexes involving ovotransferrin-gallic acid conjugates and carboxymethyldextran. Food Funct 2019; 10:4911-4923. [PMID: 31342040 DOI: 10.1039/c9fo01162e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work aimed to fabricate antioxidant particle-stabilized Pickering emulsions with outstanding protection of encapsulated nutraceuticals. Antioxidant ovotransferrin-gallic acid conjugates (OTGCONJ) were prepared using the alkaline method, and the electrostatic assembly technique was utilized to construct OTGCONJ-CMD particles with OTGCONJ and carboxymethyldextran (CMD) as the building blocks. After the investigation of the particle size, insoluble nature and intermediate wettability of the OTGCONJ-CMD particles, the OTGCONJ-CMD particles were verified as eligible Pickering stabilizers. Visual observation showed that the stable OTGCONJ-CMD particle-stabilized Pickering emulsion consisted of the emulsified phase alone. Rheological analysis revealed that the Pickering emulsion had a high viscosity and a gel-like structure. In terms of the protective effect, the OTGCONJ-CMD particle-stabilized Pickering emulsion could significantly retard curcumin degradation under UV light. An in vitro digestion study revealed that the OTGCONJ-CMD particle-stabilized Pickering emulsion improved both the extent of lipolysis and curcumin bioaccessibility remarkably, suggesting that the OTGCONJ-CMD particle-stabilized Pickering emulsion was an excellent nutraceutical delivery vehicle. The novel findings in this work could have important implications for the design of nutraceutical-loaded Pickering emulsions with an excellent protective effect and nutraceutical delivery efficiency.
Collapse
Affiliation(s)
- Zihao Wei
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | | | | |
Collapse
|
36
|
|
37
|
|
38
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Kassozi V, Dewettinck K, Stevens CV, Van der Meeren P. Pickering stabilization of thymol through green emulsification using soluble fraction of almond gum – Whey protein isolate nano-complexes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Wei Z, Huang Q. Assembly of Protein-Polysaccharide Complexes for Delivery of Bioactive Ingredients: A Perspective Paper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1344-1352. [PMID: 30640454 DOI: 10.1021/acs.jafc.8b06063] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein-polysaccharide complexes can be created in various ways (physical mixing, enzymatic cross-linking, chemical cross-linking, and Maillard reaction), and diverse protein-polysaccharide complexes are generally grouped into non-covalent and covalent complexes. Delivery systems constructed through assembly of protein-polysaccharide complexes (DSAPC) consist of emulsion-based delivery systems, capsule-based delivery systems, molecular complexes, nanogels, core-shell particles, composite nanoparticles, and micelles. DSAPC are effective delivery vehicles in enhancing the overall efficacy of bioactive ingredients, and DSAPC may possess multiple advantages over other delivery vehicles in bioactive ingredient delivery. However, designing and applying DSAPC are still faced with some challenges, such as low loading of bioactive ingredients. Efforts are required to reconsider and improve efficiency of DSAPC in many aspects, such as controlled release and targeted delivery. On the basis of more comprehensive and deeper understandings, DSAPC can be designed more rationally for delivery of bioactive ingredients.
Collapse
Affiliation(s)
- Zihao Wei
- Department of Food Science , Rutgers, The State University of New Jersey , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| | - Qingrong Huang
- Department of Food Science , Rutgers, The State University of New Jersey , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|