1
|
Wang Z, Liu S, Yang W, Geng JT, Huang T, Wei H, Qiao Z, Jia R. Ovalbumin/sodium alginate Pickering emulsion: Structural characteristics and its contribution to enhancing the gel properties of Hairtail (Trichiurus haumela) surimi. Food Chem 2024; 461:140893. [PMID: 39178539 DOI: 10.1016/j.foodchem.2024.140893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
In this study, ovalbumin (OV) and sodium alginate (SA), two macromolecular complexes, were coagulated into the emulsifier (OV/SA), which stabilized soybean oil by electrostatic interaction, hydrophobic interactions, and hydrogen bonding. The structure of OV/SA and properties of OV/SA Pickering emulsion were investigated. Additionally, the effect of emulsions on the gel and protein properties of hairtail surimi was studied. The results revealed that with the increasing concentration of OV/SA, the particle size and zeta potential value (negative value) of the emulsion initially decreased and then increased, while the rheological properties gradually improved. Compared with the surimi gel directly supplemented with soybean oil, the addition of emulsion enhanced gel strength, whiteness, water holding capacity, and hydrophobic interactions, resulting in a more stable gel network structure. In summary, incorporating emulsion into surimi at the same lipid content not only maintained its gel properties but also improved its color and compensated for lipid loss.
Collapse
Affiliation(s)
- Zhufen Wang
- College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Siqi Liu
- College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wenge Yang
- College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jie-Ting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tao Huang
- College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huamao Wei
- College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhaohui Qiao
- College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru Jia
- College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
2
|
Monto AR, Yuan L, Xiong Z, Shi T, Li M, Wang X, Liu L, Jin W, Li J, Gao R. Effect of α-tocopherol, soybean oil, and glyceryl monostearate oleogel on gel properties and the in-vitro digestion of low-salt silver carp (Hypophthalmichthys molitrix) surimi. Food Chem 2024; 460:140588. [PMID: 39068801 DOI: 10.1016/j.foodchem.2024.140588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
To improve nutritional health, a low-salt (0.5 %) silver carp (Hypophthalmichthys molitrix) surimi gel with α-tocopherol, soybean oil, and glyceryl monostearate oleogel was fabricated and evaluated for textural qualities, lipid oxidation, and in-vitro digestion analysis. Based on the texture profile analysis, gel strength, water holding capacity (WHC), rheological, protein secondary structure, and microstructural examination, 5 % oleogel addition to low-salt surimi exhibited similar physicochemical properties to regular-salt surimi gels. By crosslinking myosin and filling protein network voids, the oleogel increased surimi gel density. Increasing oleogel content improved the physicochemical qualities of heat-induced surimi, causing protein aggregation during digestion and reducing digestibility. The presence of oleogel altered protein secondary structure, reducing α-helix content and increasing β-sheet and other structures, enhancing WHC and gel strength of low salt surimi. Adding oleogel improved the antioxidant activity of digestive solutions. This study will help understand myosin-oleogel interaction and the development of sustainable and nutritious surimi-based foods.
Collapse
Affiliation(s)
- Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengzhe Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
3
|
Zheng B, Liu R, Chang J, Ren Z, An Y, Wang T, Zhang Y, Wang H. Effects of moderately oxidized lard on myofibrillar protein emulsion gels: Gel-forming properties, water distribution, and digestibility. Int J Biol Macromol 2024; 282:136944. [PMID: 39486735 DOI: 10.1016/j.ijbiomac.2024.136944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Emulsion gels were prepared by adding lard with different degrees of oxidation (0, 1, 2, 3, 4, and 5 h, 110 °C) to porcine myofibrillar proteins (MP). The findings demonstrated that changes in sulfhydryl content and carbonyl content reflected that oxidized lard induced the oxidation of MP. Compared with the control (CON), moderately oxidized lard (2 h) led to the unfolding of the protein structure, increased β-sheet content, and exposed hydrophobic groups. These modifications facilitated interactions between the protein and lard at the interface, enhancing the emulsifying properties of MPs. Furthermore, the moderate oxidation of lard (2 h) enhanced the organization of the gel structure and improved the gel performance of MPs, resulting in uniform water distribution. In contrast, the hardness and springiness of MP gel treated with excessively oxidized lard (5 h) were significantly reduced (p < 0.05). The microstructure of MP gel also exhibited irregular aggregation, resulting in a decline in protein digestibility. In addition, lard oxidation (2 h) had a positive effect on maintaining gel stability during storage.
Collapse
Affiliation(s)
- Beibei Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jinyang Chang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Zhiyang Ren
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Yafeng An
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
4
|
Wang W, Yan L, Yi S. Fucoidan-Vegetable Oil Emulsion Applied to Myosin of Silver Carp: Effect on Protein Conformation and Heat-Induced Gel Properties. Foods 2024; 13:3220. [PMID: 39456282 PMCID: PMC11507639 DOI: 10.3390/foods13203220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
How to improve the gel properties of protein has become a research focus in the field of seafood processing. In this paper, a fucoidan (FU)-vegetable oil emulsion was prepared, and the mechanism behind the effect of emulsion on protein conformation and the heat-induced gel properties was studied. The results revealed that the FU-vegetable oil complex caused the aggregation and cross-linking of myosin, as well as increased the surface hydrophobicity and total sulfhydryl content of myosin. In addition, the addition of the compound (0.3% FU and 1% vegetable oil) significantly improved the gel strength, hardness, chewiness, and water-holding capacity of the myosin gel (p < 0.05). In particular, when the addition of camellia oil was 1%, the gel strength, hardness, chewiness, and water-holding capacity had the highest values of 612.47 g.mm, 406.80 g, 252.75 g, and 53.56%, respectively. Simultaneously, the emulsion (0.3% FU-1% vegetable oil) enhanced the hydrogen bonds and hydrophobic interaction of the myosin gels. The image of the microstructure showed that the emulsion with 0.3% FU-1% vegetable oil improved the formation of the stable three-dimensional network structure. In summary, the FU-vegetable oil complex can promote unfolding of the protein structure and improve the gel properties of myosin, thus providing a theoretical basis for the development of functional surimi products.
Collapse
Affiliation(s)
| | | | - Shumin Yi
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (W.W.); (L.Y.)
| |
Collapse
|
5
|
Zhou F, Jiang W, Tian H, Wang L, Zhu J, Luo W, Liang J, Xiang L, Cai X, Wang S, Wu Q, Lin H. Influence of EGCG ( Epigallocatechin Gallate) on Physicochemical-Rheological Properties of Surimi Gel and Mechanism Based on Molecular Docking. Foods 2024; 13:2412. [PMID: 39123603 PMCID: PMC11312070 DOI: 10.3390/foods13152412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The influence of epigallocatechin gallate (EGCG) on the physicochemical-rheological properties of silver carp surimi gel was investigated. The gel strength, texture, water-holding capacity (WHC), dynamic distribution of water, and rheological properties of surimi gels added with different levels (0, 0.02, 0.04, 0.06, 0.08, and 0.1%) of EGCG were measured. The results showed that with the increase of EGCG content, the gel strength, hardness, WHC, and immobilized water contents of surimi gels showed a trend of first increasing and then decreasing, and EGCG 0.02% and EGCG 0.04% showed better gel performance as compared with the control. EGCG 0.02% had the highest gel strength (406.62 g·cm), hardness (356.67 g), WHC (64.37%), and immobilized water contents (98.958%). The gel performance decreased significantly when the amounts of EGCG were higher than 0.06%. The viscosity, G', and G″ of the rheological properties also showed the same trends. The chemical interaction of surimi gels, secondary structure of myofibrillar protein (MP), and molecular docking results of EGCG and silver carp myosin showed that EGCG mainly affected the structure and aggregation behavior of silver carp myosin through non-covalent interactions such as those of hydrogen bonds, hydrophobic interactions, and electrostatic interactions. The microstructures of EGCG 0.02% and EGCG 0.04% were compact and homogeneous, and had better gel formation ability. The lower concentrations of EGCG formed a large number of chemical interactions such as those of disulfide bonds and hydrophobic interactions inside the surimi gels by proper cross-linking with MP, and also increased the ordered β-sheet structure of MP, which facilitated the formation of the compact three-dimensional network gel.
Collapse
Affiliation(s)
- Fengchao Zhou
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Wenting Jiang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Han Tian
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Liuyun Wang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Jiasi Zhu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Wei Luo
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Jie Liang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Leiwen Xiang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
| | - Xixi Cai
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Shaoyun Wang
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Qiming Wu
- Fujian Province Yaming Food Co., Ltd., Putian 351100, China; (Q.W.); (H.L.)
| | - Honglai Lin
- Fujian Province Yaming Food Co., Ltd., Putian 351100, China; (Q.W.); (H.L.)
| |
Collapse
|
6
|
Li K, Wang LM, Cui BB, Chen B, Zhao DB, Bai YH. Effect of vegetable oils on the thermal gel properties of PSE-like chicken breast meat protein isolate-based emulsion gels. Food Chem 2024; 447:138904. [PMID: 38447238 DOI: 10.1016/j.foodchem.2024.138904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
To enhance the gel properties of PSE (pale, soft, and exudative)-like chicken meat protein isolate (PPI), the effect of peanut, corn, soybean, and sunflower oils on the gel properties of PPI emulsion gels was investigated. Vegetable oils improved emulsion stability and gel strength and enhanced viscosity and elasticity. The gel strength of the PPI-sunflower oil emulsion gel increased by 163.30 %. The thermal denaturation temperature and enthalpy values were increased. They decreased the particle size of PPI emulsion (P < 0.05) and changed the three-dimensional network structure of PPI emulsion gels from reticular to sheet with a smooth surface and pore-reduced lamellar. They elevated the content of immobile water PPI emulsion gels, decreased the α-helix and β-turn, and increased the β-sheet and random coil. Vegetable oil improved the gel properties of PPI in the following order: sunflower oil > soybean oil > corn oil ≈ peanut oil > control group.
Collapse
Affiliation(s)
- Ke Li
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China.
| | - Lin-Meng Wang
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Bing-Bing Cui
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Bo Chen
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Dian-Bo Zhao
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China.
| |
Collapse
|
7
|
Lu S, Pei Z, Lu Q, Li Q, He Y, Feng A, Liu Z, Xue C, Liu J, Lin X, Li Y, Li C. Effect of a collagen peptide-fish oil high internal phase emulsion on the printability and gelation of 3D-printed surimi gel inks. Food Chem 2024; 446:138810. [PMID: 38402769 DOI: 10.1016/j.foodchem.2024.138810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The effect of a high internal phase emulsion (HIPE) on three-dimensional-printed surimi gel inks was studied. Increasing the concentration of collagen peptide decreased the particle size of HIPE droplets and improved the viscoelasticity and stability. For example, when the collagen peptide concentration was 5 wt%, the viscoelasticity of the HIPE was high, as indicated by the presence of small and uniform particles, which formed a monolayer in the outer layer of the oil droplets to form stable a HIPE. A HIPE was used as the filling material to fill the surimi gel network, which reduced the porosity of the network. Surimi protein and peptides have dual emulsifying effects on the stabilization of oil. After adding the emulsion, the texture, gel properties and rheological properties of the surimi were reduced, and its printing adaptability was improved. This study provides new ideas for the production of surimi and its application in 3D printing.
Collapse
Affiliation(s)
- Shanshan Lu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhisheng Pei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya, 572022, China
| | - Quanhong Lu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qian Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanfu He
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Aiguo Feng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya, 572022, China
| | - Jianhua Liu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangdong Lin
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongcheng Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Peh FZW, Zhao L, Chia YY, Ng CKZ, Du J. Texture improvement and in vitro digestion modulation of plant-based fish cake analogue by incorporating hydrocolloid blends. Curr Res Food Sci 2024; 8:100775. [PMID: 38840808 PMCID: PMC11150973 DOI: 10.1016/j.crfs.2024.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Hydrocolloids have proven effective in improving the texture of surimi gels, yet their application in plant-based seafood analogues remains underexplored. This study aimed to develop a hydrocolloid blend comprising methylcellulose (MC), curdlan gum (CG), and high-acyl gellan gum (GG) to achieve a surimi-like texture in plant-based fish cakes (PBFC) made from brown rice and pea protein isolates. The research showcased that higher MC concentration boosted protein powder's heated oil holding capacity, while CG concentration increments lowered it. However, heated water holding capacity remained stable despite changes in MC and GG levels. Incorporating hydrocolloids elevated PBFC moisture content, decreasing expressible moisture and oil amounts with rising MC, CG and GG concentrations. PBFC hardness increased with higher hydrocolloid levels and was influenced by temperature, while springiness remained unaffected. GG helped maintain storage modulus (G') during PBFC cooling at higher concentrations, whereas the opposite effect was observed for MC. Analytically, higher MC concentrations reduced protein digestibility, while increased GG concentrations appeared to enhance it. Microstructural analysis corroborated these findings, with more protein aggregates in PBFC containing 3.8% MC and fewer in PBFCs with 6% CG and 3% GG. Consumer evaluations indicated that PBFC formulated with 1% MC, 3% CG, and 1.5% GG matched the springiness of commercial surimi-tofu fish cake, though it received slightly lower overall liking scores. In conclusion, the combined use of these three hydrocolloids demonstrated the potential to enhance the physical properties of PBFC and modify protein digestibility, offering insights into the development of innovative plant-based seafood analogues.
Collapse
Affiliation(s)
- Felicia Zhi Wen Peh
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Lin Zhao
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Yin Yin Chia
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Cheryl Kwoek Zhen Ng
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA
- Sengkang General Hospital, Singapore Health Services, 10 Hospital Boulevard, Singapore, 168582, Singapore
| |
Collapse
|
9
|
Lin M, Cui Y, Shi L, Li Z, Liu S, Liu Z, Weng W, Ren Z. Characteristics of hairtail surimi gels treated with myofibrillar protein-stabilized Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4251-4259. [PMID: 38311866 DOI: 10.1002/jsfa.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Hairtail (Trichiurus haumela) surimi exhibits poor gelation properties and a dark gray appearance, which hinder its utilization in high-quality surimi gel products. The effect of Pickering emulsions stabilized by myofibrillar proteins (MPE) on the gel properties of hairtail surimi has been unclear. In particular, the impact of MPE under NaCl and KCl treatments on the quality of hairtail surimi gels requires further elucidation. RESULTS Pickering emulsions stabilized by myofibrillar proteins and treated with NaCl or KCl (Na-MPE, K-MPE) were added to hairtail surimi in amounts of 10-70 g kg-1. The addition of 50 g kg-1 Na-MPE and K-MPE improved the gel strength, textural properties, whiteness, and water-holding capacity (WHC) of hairtail surimi. The relative content of β-turn and β-sheet in the surimi gels increased and the relative content of random coils and α-helix decreased with the addition of oil. The addition of Na-MPE and K-MPE did not affect the secondary structure of surimi gels but stimulated the gelation of hairtail surimi gels. Hairtail surimi containing K-MPE demonstrated similar performance in terms of hardness, microstructure, and WHC compared with the addition of Na-MPE. CONCLUSION The quality of hairtail surimi gels can be improved by the addition of Na-MPE or K-MPE. The K-MPE proved to be an effective option for enhancing the properties of hairtail surimi gels at 50 g kg-1 to replace Na-MPE. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yaqing Cui
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Beijing, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian // Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province // Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian // Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province // Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
10
|
Mi H, Liang S, Chen J, Li X, Li J. Effect of starch-based emulsion with different amylose content on the gel properties of Nemipterus virgatus surimi. Int J Biol Macromol 2024; 259:129183. [PMID: 38176498 DOI: 10.1016/j.ijbiomac.2023.129183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
The emulsion was prepared with peanut oil and corn starch with different amylose content using high-speed homogenization assisted high-pressure homogenization, and the effect of starch-based emulsion on the gel properties, whiteness, microstructure, protein secondary structure, chemical forces, texture and sensory properties of Nemipterus virgatus surimi was investigated. The results showed that high amylose corn starch was more beneficial to the stability of emulsion than normal and waxy starch. The gel strength, water holding capacity and texture properties of surimi were significantly improved by adding 10 % waxy corn starch-based emulsion or 15 % high amylose or normal corn starch-based emulsion. Moreover, the whiteness of surimi gel containing starch-based emulsion was higher, and the microstructure was more compact and delicate than that of surimi without emulsion. The addition of starch-based emulsion could increase the hydrophobic interaction and disulfide bond content, and promote the transformation of protein secondary structure to irregular direction. The sensory properties such as color, texture, taste and overall acceptability could be improved to varying degrees. Therefore, starch-based emulsion could be used to enhance the gel properties and nutritional value of surimi products.
Collapse
Affiliation(s)
- Hongbo Mi
- College of Food Science and Technology, Bohai University, Jinzhou, People's Republic of China; Institute of Ocean Research, Bohai University, Jinzhou, People's Republic of China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, People's Republic of China; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China
| | - Shangyun Liang
- College of Food Science and Technology, Bohai University, Jinzhou, People's Republic of China; Institute of Ocean Research, Bohai University, Jinzhou, People's Republic of China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, People's Republic of China; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China
| | - Jingxin Chen
- College of Food Science and Technology, Bohai University, Jinzhou, People's Republic of China; Institute of Ocean Research, Bohai University, Jinzhou, People's Republic of China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, People's Republic of China; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou, People's Republic of China; Institute of Ocean Research, Bohai University, Jinzhou, People's Republic of China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, People's Republic of China; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, People's Republic of China; Institute of Ocean Research, Bohai University, Jinzhou, People's Republic of China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, People's Republic of China; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China.
| |
Collapse
|
11
|
Du Y, Lan J, Zhong R, Shi F, Yang Q, Liang P. Insight into the effect of large yellow croaker roe phospholipids on the physical properties of surimi gel and their interaction mechanism with myofibrillar protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1347-1356. [PMID: 37814156 DOI: 10.1002/jsfa.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND The present study aimed to investigate the effects of large yellow croaker roe phospholipids (LYCRPLs) on the physical properties of surimi gels and to clarify their interaction mechanism with myofibrillar proteins (MPs) in terms of chemical forces and the spatial conformation. RESULTS LYCRPLs could improve the gel strength, textural properties, rheological properties and water-holding capacity of surimi gels. Moreover, the interaction mechanism between LYCRPLs with MPs was revealed through intermolecular forces, Fourier transform infrared spectroscopy and ultraviolet visible absorption spectroscopy. The findings demonstrated that LYCRPLs enhanced the surface hydrophobicity and particle size of MPs, facilitating expansion and cross-linking of MPs. CONCLUSION These results provide a theoretical basis for improving the characteristics of surimi gels and thus facilitate the application of LYCRPLs in the aquatic food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanyu Du
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Jiaojiao Lan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Qian Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| |
Collapse
|
12
|
Shen Z, Gao H, Peng W, Wang F, Liu Y, Wu J, Wang S, Li X. Cryoprotective effect of soybean oil on surimi gels and the mechanism based on molecular dynamics simulation. J Texture Stud 2023. [PMID: 37968073 DOI: 10.1111/jtxs.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
The effect of soybean oil (SO) on freeze-thaw (F-T)-treated surimi was investigated and its related mechanism was revealed by molecular dynamics (MD) simulations. The results displayed that SO has a disrupting effect on the structure of fresh samples. However, in the F-T-treated samples, surimi gels supplemented with SO had a more uniform microstructure. Simultaneously, when SO was added from 0% to 7% in the F-T-treated samples, the gel strength increased from46.66 to 51.86 N · mm $$ 46.66\ \mathrm{to}\ 51.86\;\mathrm{N}\cdotp \mathrm{mm} $$ (p < .05), the physically bound water was increased from 92.90% to 94.15% (p < .05), and storage modulus was increased from 5939 to 6523 Pa. Triglycerides of SO generated hydrophobic interactions with myosin mainly in carbon chains. Computational results from MD simulations illustrated that the structure of myosin combined with triglycerides was more stable than that of myosin alone during temperature fluctuations (-20 to 4°C). During ice crystal growth, triglycerides absorbed on the myosin surface inhibited the growth of surrounding ice crystals and mitigated the ice crystal growth rate (from 7.54 to 5.99 cm/s). The addition of SO during the F-T treatments allowed myosin to be less negatively affected by ice crystal formation and temperature fluctuations and ultimately contributed to the formation of a more uniform network gel structure.
Collapse
Affiliation(s)
- Zhiwen Shen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Huaqian Gao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Wanqi Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha, Hunan Province, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha, Hunan Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| |
Collapse
|
13
|
Zheng G, Wei K, Kang X, Fan W, Ma NL, Verma M, Ng HS, Ge S. A new attempt to control volatile organic compounds (VOCs) pollution - Modification technology of biomass for adsorption of VOCs gas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122451. [PMID: 37648056 DOI: 10.1016/j.envpol.2023.122451] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.
Collapse
Affiliation(s)
- Guiyang Zheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Kang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Fan
- School of Textile Science and Engineering & Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an, Shanxi 710048, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030 Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Panpipat W, Tongkam P, Çavdar HK, Chaijan M. Single Ultrasonic-Assisted Washing for Eco-Efficient Production of Mackerel ( Auxis thazard) Surimi. Foods 2023; 12:3817. [PMID: 37893710 PMCID: PMC10606066 DOI: 10.3390/foods12203817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
This study highlights a promising single washing method for producing dark-fleshed mackerel surimi aided by ultrasonication in conjunction with cold carbonated water containing 0.6% NaCl and mixed antioxidants (0.5% EDTA/0.2% sodium erythorbate/0.2% sodium tripolyphosphate) (CSA). Different washing periods (5, 10, and 15 min) with and without ultrasound were tested. Unwashed mince (A1) and conventional water-washed surimi (10 min/cycle, 3 cycles) (A2) were used as controls. A3, A4, and A5 were subjected to ultrasound-assisted washing for 5, 10, and 15 min, respectively, whereas A6, A7, and A8 had non-ultrasound-assisted washing for 5, 10, and 15 min. Results showed that the surimi yield decreased as the ultrasonic treatment time increased from 5 to 15 min (p < 0.05). Increased ultrasonic time resulted in greater protein denaturation, protein oxidation, myoglobin removal, and lipid oxidation in surimi (p < 0.05). Surimi produced by CSA ultrasonication for 5 min (A3), on the other hand, had a comparable overall quality to A2 surimi (p > 0.05). The correspondence gel (A3) outperformed the control gel (A2) in terms of gel strength, whiteness, and water-holding capacity (p < 0.05). The formation of regularly continuous, more organized, and smooth network structures in surimi gel was observed in A2 and A3 gels, whereas sparse and larger pore sizes were noticed in surimi gels produced by longer ultrasonic treatment. All of the surimi gels had identical FTIR spectra, indicating that the functional groups of the protein gel were consistent throughout. As a result, a single 5 min CSA-ultrasonic washing could potentially yield surimi of comparable quality to conventional washing. This could pave the way for the development of dark-fleshed fish surimi, which would require less washing time and produce less waste water.
Collapse
Affiliation(s)
- Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.P.); (P.T.)
| | - Pornthip Tongkam
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.P.); (P.T.)
| | - Hasene Keskin Çavdar
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, University Boulevard, TR-27310 Gaziantep, Turkey;
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.P.); (P.T.)
| |
Collapse
|
15
|
Liu Y, Huang Y, Zhang L, Li S, Cheng Q, Zhu B, Dong X. Effects of pork fat and linseed oil as additives on gel quality of fish cake. J Texture Stud 2023; 54:693-705. [PMID: 37119016 DOI: 10.1111/jtxs.12759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/30/2023]
Abstract
Pork fat (PF) is a necessary ingredient in making traditional fish cakes (TFCs), which contains saturated fatty acids with potential health concerns. While linseed oil (LO) containing α-linolenic acid is a potential nutrient-enhancing fat substitute. In this study, the effect of pork fat and linseed oil level on gel quality, sensory characteristics, microstructure, and protein conformation of TFCs were characterized. Results showed that the TFCs with 30% pork fat (wt/wt) had the highest gel strength. Additionally, sensory evaluation determined that TFCs with 30% pork fat scored the best by a sensory panel with high gel strength, water-holding capacity, and fresh and sweet taste. The gel strength, chewiness, and hardness of nutrient-enriched fish cakes with 20% linseed oil replaced for pork fat were higher than that only with pork fat (wt/wt) without changing in tenderness and elasticity. Visual results showed that the network was uniform at a moderate level of linseed oil addition (20% LO/PF replacement ratio). The results of this study provided technical guidelines for standardizing the TFC manufacture processes, and useful insight for the development of fish cakes with reduced animal fat content for additional health benefits for consumers.
Collapse
Affiliation(s)
- Yu Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Yizhen Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Lin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Shengjie Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Beiwei Zhu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| |
Collapse
|
16
|
Li X, Zhang N, Jiao X, Zhang W, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Insight into Ionic Strength-Induced Solubilization of Myofibrillar Proteins from Silver Carp ( Hypophthalmichthys molitrix): Structural Changes and 4D Label-Free Proteomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13920-13933. [PMID: 37688549 DOI: 10.1021/acs.jafc.3c04254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
In this study, changes in the physical, structural, and assembly characteristics of silver carp myofibrillar proteins (MPs) at different ionic strength (I) values were investigated. Moreover, the differential proteomic profile of soluble MPs was analyzed using 4D proteomics based on timsTOF Pro mass spectrometry. Solubility of MPs significantly increased at high I (>0.3), and the increase in I enhanced the apparent viscosity, fluorescence intensity, surface hydrophobicity, and α-helix content of MPs solution. Particle size and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns also supported the solubility profiles. Transmission electron microscopy and atomic force microscopy observations revealed the morphological assembly and disassembly of MPs under different I conditions. Finally, proteomic analysis revealed the evolution law of salt-induced solubilization of MPs and the critical molecular characteristics in different I environments. The number of differentially abundant proteins (DAPs) decreased with the increase of I, and most DAPs related to the muscle filament sliding, contraction and assembly, actinin binding, and actin filament binding. The soluble abundance of myosin and some structural proteins was dependent on I, and structural proteins in the Z-disk and M-band might contribute to the solubilization of myosin. Our findings provide insightful information about the impact of common I on the solubility pattern of MPs from freshwater fish.
Collapse
Affiliation(s)
- Xingying Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenhai Zhang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- ANJOY FOODS GROUP CO., LTD., Xiamen 361022, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- ANJOY FOODS GROUP CO., LTD., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Lv Y, Sun X, Jia H, Hao R, Jan M, Xu X, Li S, Dong X, Pan J. Antarctic krill (Euphausia superba) oil high internal phase emulsions improved the lipid quality and gel properties of surimi gel. Food Chem 2023; 423:136352. [PMID: 37182492 DOI: 10.1016/j.foodchem.2023.136352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
In the study, high internal phase emulsions (HIPEs) prepared from Antarctic krill oil (AKO) were added into surimi and the effects on gel properties, lipid quality and stability were investigated. It is found that HIPEs-added groups exhibited higher gel strength and lower cooking loss than Oil-added counterparts. HIPEs-added groups had higher proportion of capillary water, and microstructure of HIPEs-added gels showed fewer large voids and small size droplets. HIPEs-added groups also showed less pronounced myosin heavy chain band. HIPEs- and Oil-added gels showed > 3500 mg/kg EPA + DHA and 0.4-0.8 mg/kg astaxanthin, and most HIPEs-added groups had higher levels of them but lower TBARS values. Results suggest AKO-HIPEs could reduce the intervention by lipids on myosin crosslinking during gelation, and protect fatty acids and asxtanthin from oxidation due to oxygen-isolation led by their high accumulation. Thus, AKO-HIPEs can be applied to fortify ω-3 PUFA and maintain good gel properties in surimi product.
Collapse
Affiliation(s)
- Yinyin Lv
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaosong Sun
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Jia
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Ruoyi Hao
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Mráz Jan
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Xianbing Xu
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shengjie Li
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
18
|
Tong Y, Wang Y, Chen M, Zhong Q, Zhuang Y, Su H, Yang H. Effect of high‐content ultrasonically emulsified lard on the physicochemical properties of surimi gels from silver carp enhanced by microbial transglutaminase. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Yuqian Tong
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Yudong Wang
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Min Chen
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Qian Zhong
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Yang Zhuang
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Hongchen Su
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Hong Yang
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education Wuhan 430070 China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan) Wuhan 430070 China
- Aquatic Product Engineering and Technology Research Center of Hubei Province Wuhan 430070 China
| |
Collapse
|
19
|
Liu C, Feng R, Li J, Hu Z, Xu Y, Xia W, Jiang Q. The migration and loss of water in emulsified surimi gels prepared with different phase states of lipids: Effect of freeze-thawing treatments. J Food Sci 2023; 88:1253-1267. [PMID: 36789876 DOI: 10.1111/1750-3841.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
The freeze-thawing (FT) stability generally correlates well with the economic value and acceptability of frozen surimi-based products. However, quality changes of emulsified surimi gels under FT conditions are still unclear. Therefore, the gel properties of samples with different phase states of lipids (lard, lard + soybean oil, and soybean oil) were investigated at FT conditions. Results showed that the soybean oil evidently improved the rheological behaviors of sols/gels compared to the lard group. The moisture content of samples with different lipids decreased by 2.40%-2.71% after 4 FT cycles. With increasing FT cycles, the water-holding capacity decreased accompanied by the increase of cooking loss. Spin-spin relaxation spectra and hydrogen proton density images proved the occurrence of water migration of gels during these processes. Better gel integrity was observed in samples consisting of soybean oil, where the proportion of pores was lower than those with lard regardless of FT treatments. Additionally, the intermolecular forces of gels also changed under FT treatments. There results suggested that the lipids with different phase states affected the migration and loss of water in emulsified surimi gels under FT cycles. PRACTICAL APPLICATION: The quality changes of heating-induced surimi gel products under frozen storage have been ignored, especially the emulsified surimi gels. This study discloses the changes of the gel properties in emulsified gel products with different phase states of lipids after FT treatments, which provides critical insights into the quality improvement of this novel emulsified surimi product during processing, storage, and transportation.
Collapse
Affiliation(s)
- Cikun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruonan Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongliang Hu
- Taizhou Anjoy Food Share Co. Ltd., Taizhou, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Enhancing gel performance of surimi gels via emulsion co-stabilized with soy protein isolate and κ-carrageenan. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Lv Y, Lv W, Li G, Zhong Y. The research progress of physical regulation techniques in 3D food printing. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
22
|
Li G, Zhan J, Hu Z, Huang J, Yuan C, Takaki K, Hu Y, Yao Q. Effects of heating process on
3D
printing properties of
Pennahia argentata
surimi: Water distribution, gel formation, rheology, chemical bonds. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gaoshang Li
- Institute of Food Engineering, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang China
- College of Food Science and Engineering Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research Sanya Hainan China
| | - Junqi Zhan
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang China
- College of Food Science and Engineering Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research Sanya Hainan China
| | - Jiayin Huang
- Institute of Food Engineering, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang China
- College of Food Science and Engineering Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research Sanya Hainan China
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture Iwate University Ueda Morioka Japan
| | - Koichi Takaki
- Faculty of Science and Engineering Iwate University Ueda Morioka Japan
| | - Yaqin Hu
- College of Food Science and Engineering Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research Sanya Hainan China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu China
| |
Collapse
|
23
|
Physicochemical properties, texture, and in vitro protein digestibility in high-moisture extrudate with different oil/water ratio. Food Res Int 2023; 163:112286. [PMID: 36596192 DOI: 10.1016/j.foodres.2022.112286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Oil addition is challenging during high-moisture extrusion due to the negative fiber formation effects. A previous study found that oil-in-water (O/W) emulsions could significantly increase the oil content in high-moisture extrudates, but the molecular mechanism remained unclear. This study aimed to determine O/W emulsion influence on protein physicochemical properties in SPI extrudates during high-moisture extrusion. O/W emulsions were mixed with soy protein isolates (SPI) to prepare extrudates with oil/water ratios of 0/65, 4/61, and 8/57 (w/w). SDS-PAGE and ATR-FTIR analysis showed that higher oil/water ratios enhanced protein aggregation and promoted alteration from β-sheet to random coil in SPI extrudates, which could be correlated to the reduction of protein solubility. The color was altered to lighter and yellow, and hardness, chewiness, and fiber degree decreased with increased oil/water ratios in SPI extrudates. In addition, in vitro digestion analyses showed that higher oil content contributed to improved protein digestibility.
Collapse
|
24
|
Wu S, Xu X, Yang N, Jin Y, Jin Z, Xie Z. Non-Conventional Induction Heat Treatment: Effect of Design and Electrical Parameters on Apple Juice Safety and Quality. Foods 2022; 11:3937. [PMID: 36496744 PMCID: PMC9735545 DOI: 10.3390/foods11233937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The proposed non-conventional induction heating, which combines an MSCP and VDC structure, was proved to have excellent thermal effect. Different from other electric field sterilization, this electrotechnology operates with no electrodes, and it is a continuous-flow process with short-duration (about 20 s). In current study, the parameters related to temperature rise were investigated, including applied voltage, frequency, the diameter of the secondary coil and heating tube, as well as their length, etc. It was demonstrated that a smaller diameter of the heating tube, parallel connection sample coils, and higher frequency were beneficial for the inactivation of microorganisms. At 500 Hz, the optimal condition is 800 V, d1 = 2 mm, and L1 = 10 cm. Notably, the system could inactivate all microorganisms and maintained the physicochemical properties of apple juice at 40 kHz. It suggests that this structural design has the potential for industrial applications and the proposed induction heating can realize the rapid sterilization of liquid food without applying electrodes.
Collapse
Affiliation(s)
- Shilin Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academic of Sciences, Jinan 250301, China
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academic of Sciences, Jinan 250301, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengjun Xie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
25
|
Piao X, Li J, Zhao Y, Guo L, Zheng B, Zhou R, Ostrikov K(K. Oxidized cellulose nanofibrils-based surimi gel enhancing additives: Interactions, performance and mechanisms. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Effects of preheating-induced denaturation treatments on the printability and instant curing property of soy protein during microwave 3D printing. Food Chem 2022; 397:133682. [DOI: 10.1016/j.foodchem.2022.133682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/22/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
|
27
|
Yang Y, Meng L, Wang Y, Yan B. Effects of exogenous lipids on gelling properties of silver carp surimi gel subjected to microwave heating. Food Sci Nutr 2022; 10:4296-4307. [PMID: 36514778 PMCID: PMC9731522 DOI: 10.1002/fsn3.3021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022] Open
Abstract
Lipids are important components of surimi products because they enhance the whiteness and flavor of food. The effects of three common types of exogenous lipids on the gel properties of surimi subjected to two different heating methods were investigated in this work, using frozen silver carp (Hypophthalmichthys molitrix) surimi as the raw material. The surimi gels were prepared by two-stage water bath heating or single-stage water bath heating followed by microwave heating. We found that the quality of surimi gels was in the order of lard > chicken fat/soybean oil, which may be associated with polyunsaturated fatty acid content. The surimi gel strength was reduced with an increase in the amount of lipid added. Microwave heating significantly increased the gel strength of surimi containing exogenous lipids when compared to conventional heating. Surimi gels prepared by microwave heating showed more denser protein network microstructures by scanning electron microscopy (SEM), suggesting aggregation of protein molecules. The findings of this study provide a theoretical basis for using microwave heating to generate surimi gels with exogenous lipids.
Collapse
Affiliation(s)
- Yiling Yang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Linglu Meng
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yuxin Wang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Bowen Yan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
28
|
Xu P, Liu L, Liu K, Wang J, Gao R, Zhao Y, Bai F, Li Y, Wu J, Zeng M, Xu X. Flavor formation analysis based on sensory profiles and lipidomics of unrinsed mixed sturgeon surimi gels. Food Chem X 2022; 17:100534. [DOI: 10.1016/j.fochx.2022.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
|
29
|
Effects of actomyosin dissociation on the physicochemical and gelling properties of silver carp myofibrillar protein sol during freeze–thaw cycles. Food Res Int 2022; 162:112075. [DOI: 10.1016/j.foodres.2022.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
30
|
Liu Y, Huang Y, Wang Y, Zhong J, Li S, Zhu B, Dong X. Application of cod protein-stabilized and casein-stabilized high internal phase emulsions as novel fat substitutes in fish cake. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Zheng O, Sun Q, Dong A, Han Z, Wang Z, Wei S, Xia Q, Liu Y, Ji H, Liu S. Gelation Process Optimization of Shrimp Surimi Induced by Dense Phase Carbon Dioxide and Quality Evaluation of Gel. Foods 2022; 11:foods11233807. [PMID: 36496615 PMCID: PMC9739194 DOI: 10.3390/foods11233807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Dense phase carbon dioxide (DPCD) is a new non-thermal method to induce surimi gel. However, the gel quality is affected by many factors, such as DPCD treatment time, temperature, and pressure, which makes it complicated to determine its operating parameters. Box-Behnken and backward linear regression were used to optimize the conditions (temperature, pressure, and treatment time) of DPCD-induced shrimp surimi gel formation, and a model between shrimp surimi gel strength and treatment conditions was developed and validated in the present study. Meanwhile, the heat-induced method was used as a control to analyze the effect of DPCD on the quality of shrimp surimi gel in the present study. The results showed that DPCD treatment affected the strength of shrimp surimi gel significantly, and the pressure of DPCD had the greatest influence on the gel strength of shrimp surimi, followed by time and temperature. When the processing pressure was 30 MPa, the temperature was 55 °C, and the treatment time was 60 min, the gel strength of the shrimp surimi was as high as 197.35 N·mm, which was not significantly different from the simulated value of 198.28 N mm (p > 0.05). The results of the gel quality properties showed that, compared with the heat-induced method, DPCD reduced the nutrient and quality loss of the shrimp surimi gel, and increased the gel strength and gel water-holding capacity. The results of low-field nuclear magnet resonance showed that DPCD increased the binding capacity of shrimp surimi to bound water and immobilized water, and reduced their losses. Gel microstructure further demonstrated that DPCD could improve shrimp surimi gelation properties, characterized by a finer and uniformly dense gel network structure. In summary, DPCD is a potential method for inducing shrimp surimi to form a suitable gel. The prediction model established in this study between DPCD treatment temperature, pressure, time, and gel strength can provide a reference for the production of shrimp surimi by DPCD.
Collapse
Affiliation(s)
- Ouyang Zheng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qinxiu Sun
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Andi Dong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zongyuan Han
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zefu Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiuyu Xia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongwu Ji
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-0759-238-3143
| |
Collapse
|
32
|
Improving modification of structures and functionalities of food macromolecules by novel thermal technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Zhu S, Zhu H, Xu S, Lv S, Liu S, Ding Y, Zhou X. Gel-type emulsified muscle products: Mechanisms, affecting factors, and applications. Compr Rev Food Sci Food Saf 2022; 21:5225-5242. [PMID: 36301621 DOI: 10.1111/1541-4337.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
The gel-type emulsified muscle products improve fatty acid composition, maintain the oxidative stability, and achieve a better sensory acceptability. This review emphasizes the stabilization mechanisms of these emulsified muscle products. In particular, factors associated with the stability of the emulsified muscle systems are outlined, including the processing conditions (pH and heating), lipids, and emulsifiers. Besides, some novel systems are further introduced, including the Pickering emulsions and organogels, due to their great potential in stabilizing emulsified gels. Moreover, the promising prospects of emulsion muscle products such as improved gel properties, oxidative stability, freeze-thaw stability, fat replacement, and nutraceutical encapsulation were elaborated. This review comprehensively illustrates the considerations on developing gel-type emulsified products and provides inspiration for the rational design of emulsified muscle formulations with both oxidatively stable and organoleptically acceptable performance.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hao Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Siyao Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shuangbao Lv
- Zhejiang NF Refrigerated Food Co. Ltd, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| |
Collapse
|
34
|
Zhu Y, Nie Y, Lu Y, Ye T, Jiang S, Lin L, Lu J. Contribution of phosphorylation modification by sodium tripolyphosphate to the properties of surimi-crabmeat mixed gels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
36
|
Mechanism of low-salt surimi gelation induced by microwave heating combined with l-arginine and transglutaminase: On the basis of molecular docking between l-arginine and myosin heavy chain. Food Chem 2022; 391:133184. [DOI: 10.1016/j.foodchem.2022.133184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
|
37
|
Effective role of konjac oligosaccharide against oxidative changes in silver carp proteins during fluctuated frozen storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Li HL, Li MJ, Zhao Q, Huang JJ, Zu XY. Analysis of Water Distribution and Muscle Quality of Silver Carp ( Hypophthalmichthys molitrix) Chunks Based on Electron-Beam Irradiation. Foods 2022; 11:2963. [PMID: 36230039 PMCID: PMC9563409 DOI: 10.3390/foods11192963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Electron-beam irradiation (EBI) is an efficient, safe, and nonthermal sterilization technique that is extensively used in food preservation research. Here we report the effects of different EBI doses (0, 4, 8 kGy) and preservation temperatures (room temperature [RT], 4 °C) on the muscle water distribution and muscle quality indices of silver carp chunks (SCCs). The highest entrapped water content was found in the 4-kGy-irradiated/4-°C-stored samples. The expressible moisture content (EMC) of the SCCs increased with increasing irradiation dose and was significantly lower in the RT group than in the 4 °C group. The irradiation dose and preservation temperature had no significant effect on the moisture content, whiteness value and protein content of SCCs (p > 0.05). When the irradiation dose reached 8 kGy, AV value, POV value and TVB value were significantly increased (p < 0.05). The myofibrillar protein content and actomyosin content of the SCCs in the 4 °C group was higher than that of the specimens in the RT group by 0.29−0.98 mg/mL (p < 0.05) and 36.21−296.58 μg/mL (p < 0.05), respectively. Overall, EBI treatment (4 kGy) and low-temperature preservation (4 °C) helped retain the muscle water content of the SCCs and preserve their quality, thereby endorsing the EBI treatment of silver carp products.
Collapse
Affiliation(s)
- Hai-Lan Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Mei-Jin Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Qing Zhao
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jia-Jun Huang
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Xiao-Yan Zu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| |
Collapse
|
39
|
Song C, Lin Y, Hong P, Liu H, Zhou C. Compare with different vegetable oils on the quality of the Nemipterus virgatus surimi gel. Food Sci Nutr 2022; 10:2935-2946. [PMID: 36171767 PMCID: PMC9469861 DOI: 10.1002/fsn3.2889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
To enhance the quality and flavor of surimi-based products, we investigated the effects of vegetable oils (peanut, soybean, corn, coconut, olive, and safflower seed oils) on the texture, water-holding capacity (WHC), microstructure, and flavor of the Nemipterus virgatus surimi gel. The results showed that 6 kinds of vegetable oils could improve the whiteness and flavor of gels. However, peanut, olive, and coconut oils enriching oleic acid or lauric acid were easy to accumulate with an average diameter of more than 0.15 μm. Thus, the gel with the oil showed a loose network structures with large cavities, and the texture was deteriorated, accompanied by decreased WHC (p < .05). Compared with other vegetable oils, soybean, corn and safflower seed oils enriching linoleic acid were emulsified with protein forming a stable interfacial protein film. The gel with the oil showed an increase in the WHC and bound water content. Furthermore, the oil droplets with an average diameter of less than 0.15 μm were evenly distributed in the gel matrix, and the gel exhibited dense network structures with small cavities and smooth surface. In general, soybean and safflower seed oils can be used as a potential additive to improve the quality and flavor of surimi-based products.
Collapse
Affiliation(s)
- Chunyong Song
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
| | - Yufeng Lin
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
| | - Pengzhi Hong
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong China
| | - Huanming Liu
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
| | - Chunxia Zhou
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong China
| |
Collapse
|
40
|
Huang Q, Jiao X, Yan B, Zhang N, Huang J, Zhao J, Zhang H, Chen W, Fan D. Changes in physicochemical properties of silver carp (Hypophthalmichthys molitrix) surimi during chilled storage: The roles of spoilage bacteria. Food Chem 2022; 387:132847. [DOI: 10.1016/j.foodchem.2022.132847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
|
41
|
Liu L, Xiong Y, Yin T, Xiong S, You J, Liu R, Huang Q, Shi L. Effects of repeated deboning on structure, composition, and gelling properties of silver carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5312-5320. [PMID: 35318664 DOI: 10.1002/jsfa.11885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Surimi is produced from the various sequences of filleting, deboning, washing, dehydrating, blending with cryprotectant, and freezing. Deboning, after which fish flesh is minced and separated from bone, skin, etc., is a vital step in the surimi production. In this study, effects of repeated deboning on yield, structure, composition, and gelling properties of silver carp surimi were investigated. RESULTS Surimi yield increased rapidly from 10% to 23% as the cycle of repeated deboning was increased from one to three, and then slowly increased up to 26%. As the cycle increased, cellular structure and ultrastructure of muscle fibers progressively fractured. Contents of fat, cathepsins, heme proteins, and transglutaminase of surimi obviously increased and then decreased. Three-dimensional network of surimi gel without setting (NS gel) became more porous with the increase of cycles. It became more compact, and then turned to aggregated forms with lower homogeneity, for the surimi gel with setting (WS gel). Correspondently, the NS gel textural values gradually decreased with the cycles, while the WS gel textural values increased up to three cycles and then decreased. Regardless of setting, whiteness of surimi gels decreased and then increased with the cycles. CONCLUSION Our results suggested that structure and compositions of surimi changed with the cycle of repeated deboning, which affected gelling properties of surimi. It is recommended to debone three or four cycles in silver carp surimi production. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lulu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yuxin Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, P. R. China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, P. R. China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Liu Shi
- Institute of Agricultural Products Processing and Nuclear-agricultural Technology, Livestock, Poultry and Aquatic Products, Hubei Academy of Agricultural Sciences, Wuhan, P. R. China
| |
Collapse
|
42
|
Cai Y, Wang J, Xiao S, Zhu J, Yu J, Li L, Liu Y. The interaction study of soluble pectin fiber and surimi protein network from silver carp (Hypophthalmichthys molitrix) based on a new prediction model. Food Chem 2022; 403:134429. [DOI: 10.1016/j.foodchem.2022.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
|
43
|
Pei Z, Wang H, Xia G, Hu Y, Xue C, Lu S, Li C, Shen X. Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation. Food Chem 2022; 403:134424. [DOI: 10.1016/j.foodchem.2022.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
44
|
Shen Z, Li S, Wu J, Wang F, Li X, Yu J, Liu Y, Ma X. Effect of different oil incorporation on gelling properties, flavor and advanced glycation end-products of silver carp surimi sausages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
45
|
Enhanced sodium release and saltiness perception of surimi gels by microwave combined with water bath heating. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Lu Y, Zhu Y, Ye T, Nie Y, Jiang S, Lin L, Lu J. Physicochemical properties and microstructure of composite surimi gels: The effects of ultrasonic treatment and olive oil concentration. ULTRASONICS SONOCHEMISTRY 2022; 88:106065. [PMID: 35724484 PMCID: PMC9234091 DOI: 10.1016/j.ultsonch.2022.106065] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 05/23/2023]
Abstract
This study was conducted to evaluate the effects of extra virgin olive (EVO) oil incorporation on the physicochemical properties and microstructure of surimi gels subjected to ultrasound-assisted water-bath heating. As the oil content was increased from 0 to 5 g/100 g, the breaking force and gel strength of the surimi gels significantly decreased, while the whiteness level exhibited the opposite tendency irrespective of the heating method. Compared with the traditional water-bath heating method, the ultrasonic heating promoted the unfolding of the α-helix structure and intensified the formation of β-sheet content and non-covalent bonds (ionic bonds, hydrogen bonds, and disulfide bonds), especially disulfide bonds, which contributed to the further crosslinking of the proteins and to gelation, thereby improving the gels' strength. In addition, smaller cavities and compact microstructures were observed in the low-oil (≤3 g/100 g) surimi gels under ultrasonic treatment, which effectively prevented water migration in the gel network and resulted in a high water holding capacity and uniform water distribution. However, the ultrasonic treatment barely remedied the poor microstructures of the high-oil (>3 g/100 g) surimi gels owing to oil coalescence, which weakened the protein-protein interaction. In conclusion, ultrasonic treatment combined with water-bath heating significantly improved the gelation properties of the low-oil surimi gels, although it did not remarkably improve those of the high-oil gels. The choice of a suitable oil concentration could be of great importance for the production and functioning of surimi products via ultrasound-assisted treatments.
Collapse
Affiliation(s)
- Yufeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yajun Zhu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Tao Ye
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yongtao Nie
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Shaotong Jiang
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Lin Lin
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| | - Jianfeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| |
Collapse
|
47
|
Mao M, Jia R, Gao Y, Yang W, Tong J, Xia G. Effects of innovative gelation and modified tapioca starches on the physicochemical properties of surimi gel during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Min Mao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Ru Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Yuanpei Gao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan 316022 China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Jingjing Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Geran Xia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| |
Collapse
|
48
|
Zhu K, Yan W, Dai Z, Zhang Y. Astaxanthin Extract from Shrimp ( Trachypenaeus curvirostris) By-Products Improves Quality of Ready-to-Cook Shrimp Surimi Products during Frozen Storage at -18 °C. Foods 2022; 11:foods11142122. [PMID: 35885365 PMCID: PMC9323547 DOI: 10.3390/foods11142122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
The effects of astaxanthin extract (AE) from shrimp by-products on the quality and sensory properties of ready-to-cook shrimp surimi products (RC-SSP) during frozen storage at −18 °C were investigated. Changes in 2-thiobarbituric acid reactive substances (TBARS) value, sulfhydryl groups, carbonyls, salt-soluble protein content, textural properties, color, and sensory quality over specific storage days were evaluated. The AE from shrimp by-products contained 4.49 μg/g tocopherol and 23.23 μg/g astaxanthin. The shrimp surimi products supplemented with 30 g/kg AE had higher redness values and greater overall acceptability and texture properties after cooking (p < 0.05). AE showed higher oxidative stability in RC-SSP than the control, as evidenced by lower TBARS and carbonyl content, and higher sulfhydryl and salt-soluble protein content. AE from shrimp by-products had positive effects on the antioxidant activity and color difference of RC-SSP, and could be used as a potential multifunctional additive for the development of shrimp surimi products.
Collapse
|
49
|
de Albuquerque Sousa TC, Ferreira VCDS, da Silva Araújo ÍB, da Silva FAP. Natural Additives as Quality Promoters in Surimi: a Brief Review. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2092434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thamyres César de Albuquerque Sousa
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Valquiria Cardoso da Silva Ferreira
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Íris Braz da Silva Araújo
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Fábio Anderson Pereira da Silva
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| |
Collapse
|
50
|
Effects of soybean phospholipids, ovalbumin, and starch sodium octenyl succinate on the mechanical, microstructural, and flavor properties of emulsified surimi gels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|