1
|
Lin T, O'Keefe S, Duncan S, Fernández-Fraguas C. Dry beans (Phaseolus vulgaris L.) modulate the kinetics of lipid digestion in vitro: Impact of the bean matrix and processing. Food Res Int 2023; 173:113245. [PMID: 37803558 DOI: 10.1016/j.foodres.2023.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
The lipid-lowering effect of dry beans and their impact on lipid and cholesterol metabolism have been established. This study investigates the underlying mechanisms of this effect and explore how the structural integrity of processed beans influences their ability to modulate lipolysis using the INFOGEST static in vitro digestion model. Dietary fiber (DF) fractions were found to decrease lipolysis by increasing the digesta viscosity, leading to depletion-flocculation and/or coalescence of lipid droplets. Bean flours exhibited a more pronounced reduction in lipolysis compared to DF. Furthermore, different levels of bean structural integrity showed varying effects on modulating lipolysis, with medium-sized bean particles demonstrating a stronger reduction. Hydrothermal treatment compromised the ability of beans to modulate lipid digestion, while hydrostatic-pressure treatment (600 MPa/5min) enhanced the effect. These findings highlight that the lipid-lowering effect of beans is not solely attributed to DF but also to the overall bean matrix, which can be manipulated through processing techniques.
Collapse
Affiliation(s)
- Tiantian Lin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sean O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Susan Duncan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Fernández-Fraguas
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Xu Q, Wang W, Sun-Waterhouse D, Zou Q, Yan M, Liu X, Lan D, Wang Y. Assessing the nutritional quality of lipid components in commercial meal replacement shakes using an in vitro digestion model. Curr Res Food Sci 2023; 7:100568. [PMID: 37654441 PMCID: PMC10465867 DOI: 10.1016/j.crfs.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
This study aimed to investigate the nutritional value of five commercial meal-replacement shakes, and mainly focused on the lipid digestion fates and fat-soluble vitamin bioavailability. Four out of five samples exhibited a low lipolysis level (37.33-61.42%), aligning with the intended objectives of these products. Although the remaining sample rich in diacylglycerol (DAG) had a higher lipolysis level (80.83%), the inherent low-calorie nature of DAG might compensate for this drawback. The release level of individual fatty acid was largely determined by the glycerolipid composition. Moreover, the strong positive correlation between lipid hydrolyzed products amounts and the fat-soluble vitamin bioavailability was observed. Surprisingly, one out of five samples can provide enough vitamin A and vitamin E for consumers as a total replacement of one or two regular meals. Consequently, the meal-replacement shakes hold the potential to emerge as healthy products for this fast-paced era if the composition and structure were carefully designed and calculated.
Collapse
Affiliation(s)
- Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Weifei Wang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, PR China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Qian Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Menglei Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
- Guangdong Yue-shan Special Nutrition Technology Co. Ltd., Foshan, 528000, PR China
| |
Collapse
|
3
|
Tan J, Gjerde N, Del Giudice A, Knudsen KD, Galantini L, Du G, Schillén K, Sande SA, Nyström B. Interactions in Aqueous Mixtures of Cationic Hydroxyethyl Cellulose and Different Anionic Bile Salts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3732-3741. [PMID: 36791398 PMCID: PMC9983013 DOI: 10.1021/acs.jafc.3c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
It is known that the reduction of blood cholesterol can be accomplished through foods containing a large number of dietary fibers; this process is partially related to the binding of bile salt to fibers. To gain new insights into the interactions between dietary fibers and bile salts, this study investigates the interactions between cationic hydroxyethyl cellulose (catHEC) and sodium deoxycholate (NaDC) or sodium cholate (NaC), which have a similar structure. Turbidity measurements reveal strong interactions between catHEC and NaDC, and under some conditions, macroscopic phase separation occurs. In contrast, the interactions with NaC are weak. At a catHEC concentration of 2 wt %, incipient phase separation is approached at concentrations of NaC and NaDC of 32.5 and 19.3 mM, respectively. The rheological results show strong interactions and a prominent viscosification effect for the catHEC/NaDC system but only moderate interactions for the catHEC/NaC system. Both cryogenic transmission electron microscopy and small-angle X-ray scattering results display fundamental structural differences between the two systems, which may explain the stronger interactions in the presence of NaDC. The surmise is that the extended structures formed in the presence of NaDC can easily form connections and entanglements in the network.
Collapse
Affiliation(s)
- Julia
Jianwei Tan
- School
of Pharmacy, Department of Pharmaceutics, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway
| | - Natalie Gjerde
- Department
of Chemistry, ‘‘Sapienza’’
University of Rome, P.O. Box 34, Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Alessandra Del Giudice
- Department
of Chemistry, ‘‘Sapienza’’
University of Rome, P.O. Box 34, Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | | | - Luciano Galantini
- Department
of Chemistry, ‘‘Sapienza’’
University of Rome, P.O. Box 34, Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Guanqun Du
- Division
of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Karin Schillén
- Division
of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sverre Arne Sande
- School
of Pharmacy, Department of Pharmaceutics, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
4
|
Behera SK, Mohapatra M. Exploring the interaction of dietary fiber hydroxypropyl methylcellulose and biosurfactant sodium deoxycholate. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Madalena D, Fernandes J, Avelar Z, Gonçalves R, Ramos ÓL, Vicente AA, Pinheiro AC. Emerging challenges in assessing bio-based nanosystems’ behaviour under in vitro digestion focused on food applications – A critical view and future perspectives. Food Res Int 2022; 157:111417. [DOI: 10.1016/j.foodres.2022.111417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
|
6
|
Zhang H, Lv M, Jiang J, Cui Z, Xia W, Binks BP. Conversion of bile salts from inferior emulsifier to efficient smart emulsifier assisted by negatively charged nanoparticles at low concentrations. Chem Sci 2021; 12:11845-11850. [PMID: 34659724 PMCID: PMC8442726 DOI: 10.1039/d1sc02596a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Bile salts (BS), one of the biological amphiphiles, are usually used as solubilizing/emulsifying agents of lipids or drugs. However, BS such as sodium deoxycholate (NaDC) can't stabilize an oil-in-water (O/W) emulsion alone due to its unusual molecular structure. In this paper we report that these emulsifiers with poor emulsifying ability can be transformed to highly efficient emulsifiers by combining with negatively charged particles (silica or montmorillonite). Both together can synergistically co-stabilize oil-in-water emulsions at extremely low concentrations (minimum 0.01 mM NaDC plus 0.003 wt% particles). Moreover, the emulsions can be reversibly switched between stable and unstable triggered by CO2/N2 at room temperature. This strategy is universal for emulsions containing different oils (alkanes, aromatic hydrocarbons and triglycerides) and for different BS and offers a generic model for a variety of BS of different molecular structure, which will extend their applications in more technical fields such as emulsion polymerization, biphasic catalysis and emulsion extraction. Bile salts can be converted to efficient emulsifiers assisted by a trace amount of similarly charged nanoparticles and the emulsions formed are CO2/N2 switchable at room temperature.![]()
Collapse
Affiliation(s)
- Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi Jiangsu P. R. China
| | - Miao Lv
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi Jiangsu P. R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi Jiangsu P. R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi Jiangsu P. R. China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University 1800 Lihu Road Wuxi Jiangsu P. R. China
| | | |
Collapse
|