1
|
Ashaolu TJ, Greff B, Varga L. The structure-function relationships and techno-functions of β-conglycinin. Food Chem 2025; 462:140950. [PMID: 39213968 DOI: 10.1016/j.foodchem.2024.140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
β-conglycinin (β-CG) is a prominent storage protein belonging to the globulin family in soybean (Glycine max) seeds. Along with other soybean proteins, it serves as an important source of essential amino acids and high-quality nutrition. However, the digestibility and nutritional value of β-CG are key factors affecting the nutritional profile of soy-based foods. The heterotrimeric, secondary, and quaternary structures of β-CG, particularly the spatial arrangement of its α, α', and β subunits, influence its functional properties. Considering these aspects, β-CG emerges as a significant protein with diverse applications in the food and health sectors. Therefore, this review explores β-CG's composition, structure, function, health implications, and industrial uses. Salient discussions are presented on its molecular structure, nutrition, digestibility, allergenicity, and techno-functions including emulsification, solubility, gelling, and structure-function complexities. Overall, the multifaceted potential of β-CG in the healthcare sector and the food industry is evident.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Babett Greff
- Department of Food Science, Széchenyi István University, Mosonmagyaróvár 9200, Hungary
| | - László Varga
- Department of Food Science, Széchenyi István University, Mosonmagyaróvár 9200, Hungary
| |
Collapse
|
2
|
Liu Q, Chen A, Hong P, Zhou C, Li X, Xie M. pH-induced interface protein structure changes to adjust the stability of tilapia protein isolate emulsion prepared by high-pressure homogenization. Food Chem X 2024; 24:101841. [PMID: 39377085 PMCID: PMC11456911 DOI: 10.1016/j.fochx.2024.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
The pH is a crucial external factor affecting the structure and emulsification characteristics of proteins. The current study aimed to reveal the correlation between the secondary structure changes and tilapia protein isolate (TPI) emulsion stability under different pH (3.0-10.0) prepared by high-pressure homogenization. The results showed that TPI with significantly increased solubility and emulsifying properties when the pH keep away from the isoelectric point (pH 5.0). Meanwhile, TPI emulsions presented significantly enhanced stability (with decreased particle size, increased zeta potential, creaming index close to 0, and uniform dispersion of droplets) at pH 3.0 and 10.0. Interface-adsorbed protein mainly consists of a myosin-heavy chain and actin, and the secondary structure was significantly influenced by pH and high-pressure homogenization. The α-helix will be transformed into β-sheet and β-turn when pH is closer to pH 5.0. However, the high-pressure homogenization induced α-helix conversion to β-sheet. The correlation analysis revealed that emulsion stability is positively correlated with α-helix and negatively correlated with β-sheet. This work provides a deep insight into the correlation between secondary structure changes and the stability of TPI emulsion as affected by pH to offer an alternative way to enhance TPI emulsion stability.
Collapse
Affiliation(s)
- Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ailin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiang Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mengya Xie
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
3
|
Pan Y, Liu S, Han Z, Zeng H, Xu X, Shao JH, Xing L, Yin Y. The influence of pH-ultrasonic-induced myofibrillar protein conformation of Penaeus vannamei (Litopenaeus vannamei) on emulsification and digestion characteristics of fish oil oleogel-based emulsions. Int J Biol Macromol 2024:137419. [PMID: 39542286 DOI: 10.1016/j.ijbiomac.2024.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
pH-induced and ultrasound treatment can both adjust spatial conformation to improve the interfacial stability, and fish oil oleogel could be used to enhance oil binding capacity. The relationship between stabilization mechanism and lipid digestion was revealed, considering the protein conformation and interfacial characteristics. The results showed that pH-ultrasonic-induced myofibrillar proteins (MPs) at pH 7.0 had higher interfacial adsorption capacity and surface hydrophobicity as well as more stable secondary structures, which lowered the particle size and enhanced the interfacial stability. In the stomach, the particle size increased along with the decrease in electrostatic repulsion, and β-sheets significantly increased, which promoted aggregation and flocculation. In the small intestine, the reduction of β-sheets favored the interfacial replacement and facilitated the lipid digestion. Therefore, pH-ultrasonic-modified method improved the structure and function of MPs, facilitated the interfacial stability and intestinal digestion.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Huilan Zeng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Xuefei Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| |
Collapse
|
4
|
Yan G, Li Y, Wang S, Li Y, Zhang L, Yan J, Sun Y. Oil-water interfacial behaviour of different caseins and stability of emulsions: Effect of micelle content and caseins concentrations. Food Chem X 2024; 23:101784. [PMID: 39286043 PMCID: PMC11403417 DOI: 10.1016/j.fochx.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to investigate the interfacial behaviour of caseins in different micelle content and its effect on the stability of emulsions, including micellar casein concentrate (MCN), calcium caseinate (CaC) and sodium caseinate (NaC). Results revealed that at high protein concentrations (0.5 %-2.5 %), MCN, CaC and NaC exhibited similar interfacial behaviour as well as unfolding rate constants (k 1 ) of 3.11-3.41 × 10-4 (s-1), 2.96-3.35 × 10-4 (s-1) and 2.75-3.27 × 10-4 (s-1), respectively. The interfacial layer formed was dominated by non-micelles, and microscopic images revealed the thickness of the interfacial layer to be 10-20 nm. By contrast, at low concentrations, the differences in the slope of E-π curves and k 1 indicated that the micelle content of casein affects protein interfacial behaviour and properties and that micellar casein is involved in the formation of the interfacial layer. The formation of large numbers of droplets during emulsion preparation results in a similar low concentration environment. Cryo-TEM showed adsorption of micellar casein in all three casein-stabilised emulsions, and the amount of adsorption was proportional to the micelle content. NaC has faster adsorption and rearrangement rates due to fewer micelles and more non-micelles, so that NaC forms smaller droplets and more stable emulsions than those formed by MCN and CaC within the range of 0.5 % to 2.0 %.
Collapse
Affiliation(s)
- Guosen Yan
- Beijing Engineering and Technology Research Centre of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Shiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- Beijing Engineering and Technology Research Centre of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liebing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianguo Yan
- Ningxia Saishang Dairy Industry, Yinchuan 750000, China
| | - Yanfang Sun
- Ningxia Saishang Dairy Industry, Yinchuan 750000, China
| |
Collapse
|
5
|
Tang L, Liu X, Bai S, Zhao D, Guo X, Zhu D, Su G, Fan B, Wang B, Zhang L, Wang F. Okara protein extracted by alternating ultrasonic/alkali treatment and its improved physicochemical and functional properties. ULTRASONICS SONOCHEMISTRY 2024; 111:107129. [PMID: 39467489 PMCID: PMC11558629 DOI: 10.1016/j.ultsonch.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Okara protein (OP) is a potential plant-based protein that is beneficial to human health. In this work, an alternating ultrasonic/alkali treatment method with non-continued cavitation and thermal energy output was used to extract protein (AUA-OP) from okara to enhance the functional properties of OP and improve the stability of OP-based emulsions. The purity of AUA-OP was greater than 80%. Compared with traditional (physical-assisted) alkali treatment, FTIR and SDS-PAGE revealed that AUA-OP retained the chemical structure of the protein, but the number of ultrasound-induced exposure sites increased, with increased fluorescence intensity, surface hydrophobicity, and absolute ζ-potential. After alternating ultrasonic/alkali treatment, the protein particles were looser and smaller. In addition, the water/oil holding capacity, EAI, and ESI of AUA-OP further increased. The viscosity of the AUA-OP-stabilized emulsion was also greater. Finally, a 28-day emulsion storage assay revealed that the AUA-OP-stabilized emulsion was stable with a relatively low droplet size and creaming index, indicating great potential for the development of stable protein-based emulsions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolin Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiru Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuzhen Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dandan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guiying Su
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Zhang J, Mao X, Zhang J, Liu Q. Structural changes and functional characteristics of common vetch isolate proteins altered by different pH-shifting treatments. Int J Biol Macromol 2024; 282:136887. [PMID: 39490483 DOI: 10.1016/j.ijbiomac.2024.136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
To investigate protein structure and functional changes, common vetch protein isolate (CVPI) during pH-shifting were performed. Results showed secondary and tertiary structures of CVPI were improved during these treatments compared with the pH 7.0. Scanning electron microscopy showed the microstructure was changed from lamellar to spherical granular and rod-like structure during pH - shifting. Under 8 pH treatments (pH 2.0, 3.0, 12.0, 2.0 → 7.0, 3.0 → 7.0, 12.0 → 7.0, 11.0 → 9.0 and 11.0 → 7.0), the average particle sizes were smaller and from 82 to 146 nm. Under 8 pH treatments (pH 2.0, 3.0, 11.0, 12.0, 11.0 → 9.0, 11.0 → 7.0,12.0 → 9.0 and 12.0 → 7.0), the protein solubility was higher and from 63 to 86 %. Under 3 pH treatments (pH 2.0, 11.0 and 12.0), the emulsion activity index and emulsion stability index was higher and from 40 to 60 m2/g and from 54 to 97 min. Under 5 pH treatments (pH 2.0, 12.0, 11.0 → 9.0, 12.0 → 9.0 and 12.0 → 7.0), the foaming capacity and foaming stability was higher and from 145 to 185 % and from 67 to 82 %. Therefore, the pH - shifting treatment gave the CVPI improved characteristics in structural and functional properties.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Xinqi Mao
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Jing Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Quanlan Liu
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
7
|
Yao XN, Dong RL, Li YC, Lv AJ, Zeng LT, Li XQ, Lin Z, Qi J, Zhang CH, Xiong GY, Zhang QY. pH-shifting treatment improved the emulsifying ability of gelatin under low-energy emulsification. Int J Biol Macromol 2024; 282:136979. [PMID: 39490473 DOI: 10.1016/j.ijbiomac.2024.136979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The effects of pH-shifting treatments (pH 3, 5, 7, 9, and 11) on the stability of gelatin emulsions made by low-energy stirring were investigated. pH-shifting treatments significantly enhanced the ESI and EAI of the emulsion (P < 0.05) and reduced its particle size (P < 0.05) under low-energy emulsifying conditions. The pH11-7 shifting treatment significantly increased the degree of depolymerization and the level of ordered structure of gelatin (P < 0.05). These transformations resulted in a significant increase in the exposure of hydrophobic and negatively charged residues (P < 0.05) on the surface of gelatin, facilitating a faster adsorption rate of gelatin onto the oil-water interface as well as an increase in the amount of gelatin adsorbed at the interface. Moreover, the alkali-shifting treatment promoted the formation of a thin viscoelastic interfacial film, which contributed to the enhanced stability of the emulsion.
Collapse
Affiliation(s)
- Xiu-Ning Yao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Rui-Ling Dong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Yu-Cong Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Ao-Jing Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Li-Ting Zeng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Xue-Qing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Zhou Lin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China.
| | - Chun-Hui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guo-Yuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Qing-Yong Zhang
- Shandong Province Grilled Chicken Co., Ltd., Dezhou 253000, China
| |
Collapse
|
8
|
Wang M, Bu G, Zhu T, Liu J, Li M, Rashid MT, Han M. Effects of enzymatic hydrolysis combined with glycation on the emulsification characteristics and emulsion stability of peanut protein isolate. Food Res Int 2024; 192:114722. [PMID: 39147546 DOI: 10.1016/j.foodres.2024.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024]
Abstract
Peanut protein isolate (PPI) has high nutritional value, but its poor function limits its application in the food industry. In this study, peanut protein isolate was modified by enzymatic hydrolysis combined with glycation. The structure, emulsification and interface properties of peanut protein isolate hydrolysate (HPPI) and dextran (Dex) conjugate (HPPI-Dex) were studied. In addition, the physicochemical properties, rheological properties, and stability of the emulsion were also investigated. The results showed that the graft degree increased with the increase of Dex ratio. Fourier transform infrared spectroscopy (FTIR) confirmed that the glycation of HPPI and Dex occurred. The microstructure showed that the structure of HPPI-Dex was expanded, and the molecular flexibility was enhanced. When the ratio of HPPI to Dex was 1:3, the emulsifying activity and the interface pressure of glycated HPPI reached the highest value, and the emulsifying activity (61.08 m2/g) of HPPI-Dex was 5.28 times that of PPI. The HPPI-Dex stabilized emulsions had good physicochemical properties and rheological properties. In addition, HPPI-Dex stabilized emulsions had high stability under heat treatment, salt ion treatment and freeze-thaw cycle. According to confocal laser scanning microscopy (CLSM), the dispersion of HPPI-Dex stabilized emulsions was better after 28 days of storage. This study provides a theoretical basis for developing peanut protein emulsifier and further expanding the application of peanut protein in food industry.
Collapse
Affiliation(s)
- Meiyue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guanhao Bu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Tingwei Zhu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jia Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyao Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengqing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Yang Y, Zhang C, Ma CM, Bian X, Zou L, Fu Y, Shi YG, Wu Y, Zhang N. Characterization of structural and functional properties of soybean 11S globulin during renaturation after denaturation induced by changes in pH. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6778-6786. [PMID: 38567792 DOI: 10.1002/jsfa.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 03/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.0 to facilitate renaturation. It investigated the structural and functional changes during renaturation induced by a change in pH, revealing the stabilization mechanism of 11S globulin. RESULTS The findings revealed that during pH adjustment to neutral, the denatured soybean 11S globulin - resulting from alkaline (pH 10.0) or acidic (pH 3.0) treatments - experienced a refolding of its extended tertiary structure to varying extents. The particle size and the proportions of α-helix and β-sheet in the secondary structure aligned progressively with those of the natural-state protein. However, for the alkali-denatured 11S, the β-sheet content decreased upon adjustment to neutral, whereas an increase was observed for the acid-denatured 11S. In terms of functional properties, after alkaline denaturation, the foaming capacity (FC) and emulsifying activity index (EAI) of 11S increased by 1.4 and 1.2 times, respectively, in comparison with its native state. The solubility, foamability, and emulsifiability of the alkali-denatured 11S gradually diminished during renaturation but remained superior to those of the native state. Conversely, these properties showed an initial decline, followed by an increase during renaturation triggered by pH neutralization. CONCLUSIONS This research contributes to the enhancement of protein functionality, offering a theoretical foundation for the development of functional soy protein products and expanding their potential applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Can Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ling Zou
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Yan-Guo Shi
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
10
|
Xie M, Zhou C, Li X, Ma H, Liu Q, Hong P. Preparation and characterization of tilapia protein isolate - Hyaluronic acid complexes using a pH-driven method for improving the stability of tilapia protein isolate emulsion. Food Chem 2024; 445:138703. [PMID: 38387313 DOI: 10.1016/j.foodchem.2024.138703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
This study aimed to investigate the non-covalent complexation between hyaluronic acid (HA) and tilapia protein isolate (TPI) on the stability of oil-in-water (O/W) TPI emulsion. The results showed that HA binds to TPI through electrostatic, hydrophobic, and hydrogen bonding interactions, forming homogeneous hydrophilic TPI-HA complexes. The binding of HA promoted the structural folding of TPI and altered its secondary structure during pH neutralization. The TPI-HA complexes presented significantly improved EAI and ESI (P < 0.05) when the HA concentration was 0.8 % (w/v). Emulsion characterization showed that HA promoted the transfer of TPI to the O/W interface, forming an emulsion with excellent stability, which, combined with the high surface charge and strong spatial site resistance effect of HA, improved TPI emulsion stability. Therefore, non-covalent complexation with HA is an effective strategy to improve the stability of TPI emulsion.
Collapse
Affiliation(s)
- Mengya Xie
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China
| | - Xiang Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Huanta Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China.
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China.
| |
Collapse
|
11
|
Ye J, Hua X, Shao X, Yang R. Acid-induced conformation regulation of peanut polysaccharide and its effect on stability and digestibility of oil-in-water emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2704-2717. [PMID: 37997448 DOI: 10.1002/jsfa.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Developing the stable and healthy emulsion-based food is in accord with the needs of people for health. In the present study, acidification at pH 3.0 of peanut polysaccharide (APPSI) was employed to regulate its conformation and further improve its advantages in preparing oil-in-water emulsion. RESULTS The results indicated that acidification induced conversion of PPSI aggregates into linear chains. Increasing concentration promoted formation of cross-linked network structure shown in transmission electron microscopy images. Consequently, the viscosity, yield stress, storage modulus and flow activation energy significantly increased, further fabricating gel structure. Moreover, aggregation behavior suggested that more exposed proteins were involved in gel structure, thereby forming many hydrophobic cores as verified by fluorescence spectroscopy of pyrene. Afterwards, emulsion characteristics indicated that APPSI produced strong and thick steric hindrance around oil droplets and the coil-like interweaved chains locked the continuous phase, bringing strong elasticity and resistance to stress and creaming. Meanwhile, the lower fatty acid in APPSI-emulsion was released after simulated gastrointestinal digestion, mainly as a result of the high retention ratio of emulsion droplets. Furthermore, the elastic and viscous Lissajous curves suggested that the structure strength of APPSI-emulsion was similar to that of the salad dressing within the strain 53.22%. CONCLUSION The conformation of PPSI after acidification at pH 3.0 was suitable for preparing the stable emulsion. The obtained emulsion could resist digestion and maintain a strong structure, comprising a cholesterol-free and low-fat salad dressing substitute. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianfen Ye
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiao Hua
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Ma K, Zhang L, Sun X, Chen F, Zhu T. Correlationship between self-assembly behavior and emulsion stabilization of pea protein-high methoxyl pectin complexes treated with ultrasound at pH 2.0. ULTRASONICS SONOCHEMISTRY 2023; 100:106596. [PMID: 37722249 PMCID: PMC10511478 DOI: 10.1016/j.ultsonch.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
This study investigated the effects of ultrasound on the self-assembly behavior of pea protein (PP)-high methoxyl pectin (HMP) complexes at pH 2.0 through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and intrinsic fluorescence analysis. The emulsion stabilization mechanism of PP-HMP treated with ultrasound (PP-HMP-US) was also elucidated. The results indicated that ultrasound increased the emulsifying activity index (EAI) and emulsifying stability index (ESI) of PP-HMP. Moreover, PP-HMP-US-based emulsions formed small, dispersed oil drops, which were stable during storage. PP-HMP- and PP-HMP-US-based emulsions did not demonstrate any creaming. The TEM results revealed that ultrasound can regulate the self-assembly behavior of PP and HMP to form spherical particles with a core-shell structure. This structure possessed low turbidity, a small particle size, and high absolute zeta potential values. The FTIR and intrinsic fluorescence spectra demonstrated that ultrasound increased the α-helix and β-sheet contents and exposed the tryptophan groups to more hydrophilic environments. Ultrasound also promoted the PP-HMP self-assembly through electrostatic interaction and improved its oil-water interfacial behavior, as indicated by the EAI and ESI values of PP-HMP-US-based emulsions. The current results provide a reference for the development of an innovative emulsifier prepared by ultrasound-treated protein-pectin complexes at low pH.
Collapse
Affiliation(s)
- Kaiyuan Ma
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Lifen Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Xiaoyang Sun
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tingwei Zhu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
13
|
Zhang T, Chen T, Jiang H, Zhang M, Gong P, Liu J, Liu X. Effect of pH treatment on egg white protein digestion and the peptidomics of their in vitro digests. Food Res Int 2023; 173:113327. [PMID: 37803637 DOI: 10.1016/j.foodres.2023.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 10/08/2023]
Abstract
The pH treatment significantly enhanced the functional properties of egg white protein (EWP), but little is known about the relationship between pH treatment and in vitro digestion of EWP. In this paper, we explored the effect of pH treatment (pH 2, pH 2-7, pH 12 and pH 12-7) on the digestibility of egg white protein and peptide profiling using the digestion kinetics and peptidomics methods, separately. The results implied that all pH treatment reduced the protein digestibility in gastric phase, while alkaline pH (pH 12 and pH 12-7) showed greater digestion level and more gastric peptides, and more importantly, produced a greater amount of potentially bioactive peptides than acid treated samples. Besides, the least number of potentially bioactive peptides was obtained at pH 2, but this could be improved by adjusting pH 2 back to 7. Notably, the unique bioactive peptides induced by pH were mainly relevant to DPP IV inhibitor. These differences of digestibility and peptide profiling might be attributed to the change of protein structure and the formation of molten sphere, altering cleavage sites of digestive enzymes. This work would give an enlightening insight into the digestive and nutritional characteristics of the pH-induced EWP to expand their application in the field of food and healthcare.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tingting Chen
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Hongyu Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Ping Gong
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Roy VC, Islam MR, Sadia S, Yeasmin M, Park JS, Lee HJ, Chun BS. Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds. Mar Drugs 2023; 21:485. [PMID: 37755098 PMCID: PMC10532690 DOI: 10.3390/md21090485] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Fishery production is exponentially growing, and its by-products negatively impact industries' economic and environmental status. The large amount of bioactive micro- and macromolecules in fishery by-products, including lipids, proteins, peptides, amino acids, vitamins, carotenoids, enzymes, collagen, gelatin, chitin, chitosan, and fucoidan, need to be utilized through effective strategies and proper management. Due to the bioactive and healthy compounds in fishery discards, these components can be used as functional food ingredients. Fishery discards have inorganic or organic value to add to or implement in various sectors (such as the agriculture, medical, and pharmaceutical industries). However, the best use of these postharvest raw materials for human welfare remains unelucidated in the scientific community. This review article describes the most useful techniques and methods, such as obtaining proteins and peptides, fatty acids, enzymes, minerals, and carotenoids, as well as collagen, gelatin, and polysaccharides such as chitin-chitosan and fucoidan, to ensure the best use of fishery discards. Marine-derived bioactive compounds have biological activities, such as antioxidant, anticancer, antidiabetic, anti-inflammatory, and antimicrobial activities. These high-value compounds are used in various industrial sectors, such as the food and cosmetic industries, owing to their unique functional and characteristic structures. This study aimed to determine the gap between misused fishery discards and their effects on the environment and create awareness for the complete valorization of fishery discards, targeting a sustainable world.
Collapse
Affiliation(s)
- Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Rakibul Islam
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Sultana Sadia
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Momota Yeasmin
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea;
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| |
Collapse
|
15
|
Wang W, Wang X, Zhang H, Wang H, Wang L, Zhang N, Yu D. Effects of electric field intensity regulation on protein aggregation behaviour and foaming property of soybean 7S globulin. Int J Biol Macromol 2023; 248:125784. [PMID: 37451384 DOI: 10.1016/j.ijbiomac.2023.125784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
In this study, the aggregation behaviour of soybean 7S globulin after moderate electric field (MEF) treatment was investigated, and the influence of the electric field and temperature field on the structure and foaming property of the aggregates were analysed and compared with conventional water bath (COV). The results showed that MEF treatment enhanced the properties of the aggregates. The properties of the treated aggregates were significantly better than those of native 7S globulin. At an electric field strength of 8 V/cm, the solubility, turbidity, and particle size increased from 95.81 % to 99.37 %, 0.097 to 0.189 and 61.97 nm to 113.21 nm, respectively, and the absolute value of potential decreased from 23.56 mV to 22.12 mV. The SDS-PAGE and size exclusion chromatography (SEC) results showed that the electric field had a positive effect on the aggregate formation of the Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, surface hydrophobicity (H0) and total sulfhydryl (SHT) results indicated that the spatial structure of the protein was changed by MEF treatment. The protein β-sheet content was reduced, and the Try that was originally buried inside the molecule was exposed, resulting in an increase in H0 and a decrease in SHT. The foaming property of the 7S globulin aggregates was improved by MEF treatment.
Collapse
Affiliation(s)
- Weining Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Xue Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Hairong Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Hong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqi Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Na Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Asen ND, Aluko RE. Effect of Heat Treatment on Yellow Field Pea ( Pisum sativum) Protein Concentrate Coupled with Membrane Ultrafiltration on Emulsification Properties of the Isolated >50 kDa Proteins. MEMBRANES 2023; 13:767. [PMID: 37755189 PMCID: PMC10538139 DOI: 10.3390/membranes13090767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
The aim of this paper was to determine the emulsification properties of protein aggregates obtained from heat pretreated yellow field pea protein concentrate (PPC). PPC dispersions were prepared in distilled water (adjusted to pH 3.0, 5.0, 7.0, or 9.0), heated in a water bath (100 °C) for 30 min, centrifuged and the supernatant passed first through a 30 kDa membrane and, then, the first retentate (>30 kDa) through a 50 kDa membrane. The 50 kDa membrane separation yielded a second retentate (>50 kDa proteins), which was isolated for emulsification studies. The near UV circular dichroic spectra of the protein samples showed more unfolded structures at pH 3.0 and 5.0 than at pH 7.0 and 9.0. The presence of small and spherical oil droplets of emulsions stabilized by the >50 kDa proteins at pH 3.0, 7.0, and 9.0 was confirmed by confocal laser scanning microscopy images. Emulsions stabilized at pH 7.0 and 9.0 had a narrower size distribution range than at pH 3.0 and 5.0. A narrow oil droplet size distribution range and lower interfacial protein concentrations of the emulsions stabilized by the >50 kDa proteins were observed at the corresponding pH of the heat treatment when compared to other pH values. Emulsions stabilized by the >50 kDa proteins exhibited a relatively low flocculation and coalescence index, which infers relative stability. The results from this work suggest that heat pretreatment of the PPC led to the formation of new protein aggregates, especially FT9 with enhanced emulsification properties, at some of the test conditions when compared to the unheated PPC.
Collapse
Affiliation(s)
- Nancy D Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Center for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
17
|
Yang Y, Jin H, Jin Y, Jin G, Sheng L. A new insight into the influence of pH on the adsorption at oil-water interface and emulsion stability of egg yolk protein. Int J Biol Macromol 2023; 246:125711. [PMID: 37414321 DOI: 10.1016/j.ijbiomac.2023.125711] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
This study investigated the impact of varied pH treatments on the structural, emulsification, and interfacial adsorption properties of egg yolk. The solubility of egg yolk proteins decreased and then increased in response to pH changes, with a minimum value (41.95 %) observed at pH 5.0. The alkaline condition (pH 9.0) significantly impacted the secondary/tertiary structure of egg yolk, with the yolk solution displaying the lowest surface tension value (15.98 mN/m). Emulsion stability was found to be optimal when egg yolk was used as the stabilizer at pH 9.0, which corresponded to the more flexible diastolic structure, smaller emulsion droplets, increased viscoelasticity, and enhanced resistance to creaming. At pH 9.0, proteins exhibited a maximum solubility (90.79 %) due to their unfolded conformation, yet the protein adsorption content at the oil-water interface showed relatively low (54.21 %). At this time, electrostatic repulsion between the droplets and the spatial site barrier made by proteins that were unable to efficiently adsorb at the oil-water interface kept the emulsion stable. Moreover, it was found that different pH treatments could effectively regulate the relative adsorption contents of various protein subunits at the oil-water interface, and all proteins except livetin displayed good interfacial adsorption capacity at the oil-water interface.
Collapse
Affiliation(s)
- Yaqin Yang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Jin
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Zhang H, Tian Y, Pan S, Zheng L. Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions. Foods 2023; 12:2706. [PMID: 37509797 PMCID: PMC10379661 DOI: 10.3390/foods12142706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the interfacial adsorption and emulsifying performance of glycated β-conglycinin (7S) with D-galactose (Gal) at various times. Results indicated that glycation increased the particle sizes and zeta potentials of glycated 7S by inducing subunit dissociation. Glycation destroyed the tertiary structures and transformed secondary structures from an ordered one to a disordered one, leading to the more flexible structures of glycated 7S compared with untreated 7S. All these results affected the structural unfolding and rearrangement of glycated 7S at the oil/water interface. Therefore, glycated 7S improved interfacial adsorption and formed an interfacial viscoelasticity layer, increasing emulsifying performance to stabilize high internal phase emulsions (HIPE) with self-supportive structures. Furthermore, the solid gel-like network of HIPE stabilized by glycated 7S led to emulsification stability. This result provided new ideas to improve the functional properties of plant proteins by changing the interfacial structure.
Collapse
Affiliation(s)
- Hongjian Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Grain and Oil Science, Qionghai 571400, China
| | - Yan Tian
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianhe Zheng
- Hainan Institute of Grain and Oil Science, Qionghai 571400, China
| |
Collapse
|
19
|
Wu L, Hu J, Nie P, Yin Q, Shao D, Wang C, Luo S, Zhao Y, Zhong X, Zheng Z. The preparation of soy glycinin/sugar beet pectin complex network gels catalyzed by laccase under weakly acidic conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4131-4142. [PMID: 36565301 DOI: 10.1002/jsfa.12408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Traditional soy protein gel products such as tofu, formed from calcium sulfate or magnesium chloride, have poor textural properties and water retention capacity. Soy glycinin (SG) is the main component affecting the gelation of soy protein and can be cross-linked with polysaccharides, such as sugar beet pectin (SBP), and can be modified by changing system factors (e.g., pH) to improve the gel's properties. Soy glycinin/sugar beet pectin (SG/SBP) complex double network gels were prepared under weakly acidic conditions using laccase cross-linking and heat treatment. The structural changes in SG and the properties of complex gels were investigated. RESULTS Soy glycinin exposed more hydrophobic groups and free sulfhydryl groups at pH 5.0. Under the action of laccase cross-linking, SBP could promote the unfolding of SG tertiary structures. The SG/SBP complex gels contained 46.77% β-fold content and had good gelling properties in terms of hardness 290.86 g, adhesiveness 26.87, and springiness 96.70 mm at pH 5.0. The T22 relaxation time had the highest peak, and magnetic resonance imaging (MRI) showed that the gel had even water distribution. Scanning electron microscopy (SEM) and confocal scanning laser microscopy (CLSM) indicated that the SG/SBP complex network structure was uniform, and the pore walls were thicker and contained filamentous structures. CONCLUSION Soy glycinin/ sugar beet pectin complex network gels have good water-holding, rheological, and textural properties at pH 5.0. The properties of soy protein gels can be improved by binding to polysaccharides, with laccase cross-linked, and adjusting the pH of the solution. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Wu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Jing Hu
- School of Basic Courses, Bengbu Medical College, Bengbu, China
| | - Peng Nie
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Qi Yin
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | | | - Chuyan Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
20
|
Inducing the structural interplay of binary pulse protein complex to stimulate the solubilization of chickpea (Cicer arietinum L.) protein isolate. Food Chem 2023; 407:135136. [PMID: 36502729 DOI: 10.1016/j.foodchem.2022.135136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Chickpea protein (CP) is an exceptional nutrient-dense pulse protein prevailing in the development of plant-based foods. However, its relatively low solubility, compared to other legume proteins, hinders the practical uses of CP in food matrix. To resolve this problem, pea protein (PP), another popular pulse protein, was co-assembled with CP to form a binary complex during the alkaline pH-shifting process. Results indicated that the complexed CP exhibited significantly increased solubility to that of the pristine protein (more than 50%), whose aqueous stability was also enhanced against different environmental stresses (pH, salt, heat/frozen treatment, and centrifugation). Structural and morphology analysis confirmed the interplay between unfolded CP and PP during pH shifting, which enabled their resistance to acid-induced structural over-folding. Our experiments that induce the co-assembling of two pulse proteins provide a novel routine and scientific basis for tailoring CP functionalities, as well as the formulation of pulse protein-based products.
Collapse
|
21
|
Qiao X, Liu F, Kong Z, Yang Z, Dai L, Wang Y, Sun Q, McClements DJ, Xu X. Pickering emulsion gel stabilized by pea protein nanoparticle induced by heat-assisted pH-shifting for curcumin delivery. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
22
|
Emulsifying properties and oil–water interface properties of succinylated soy protein isolate: Affected by conformational flexibility of the interfacial protein. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Quinoa protein isolate-gum Arabic coacervates cross-linked with sodium tripolyphosphate: Characterization, environmental stability, and Sichuan pepper essential oil microencapsulation. Food Chem 2023; 404:134536. [DOI: 10.1016/j.foodchem.2022.134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
24
|
Bu G, Zhao C, Wang M, Yu Z, Yang H, Zhu T. The development and properties of nanoemulsions stabilized with glycated soybean protein for carrying β-carotene. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Wang H, Ouyang Z, Cheng Y, Zhu J, Yang Y, Ma L, Zhang Y. Structure maintainability of safflomin/betanin incorporated gelatin-chitooligosaccharide complexes based high internal phase emulsions and its combinational 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Wang B, Wang P, Xu X, Zhou G. Structural transformation of egg white protein particles modified by preheating combined with pH-shifting: Mechanism of enhancing heat stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Regulation mechanism of nanocellulose with different morphologies on the properties of low-oil gelatin emulsions: Interfacial adsorption or network formation? Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Yang S, Lian Z, Wang M, Liao P, Wu H, Cao J, Tong X, Tian T, Wang H, Jiang L. Molecular structural modification of β-conglycinin using pH-shifting with ultrasound to improve emulsifying properties and stability. ULTRASONICS SONOCHEMISTRY 2022; 90:106186. [PMID: 36201932 PMCID: PMC9535325 DOI: 10.1016/j.ultsonch.2022.106186] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 05/07/2023]
Abstract
This present work underlines the effect of pH-shifting at pH 2 and pH 12 individually or combined with ultrasound treatment to modify the molecular structure of β-conglycinin (7S) on its emulsifying properties and stability. Fourier transform infrared (FTIR) spectroscopy and intrinsic fluorescence spectroscopy showed that pH-shifting improves the molecular structure of 7S, while ultrasound further promotes structural changes. In particular, the pH-shifting at pH 12 combined with ultrasound treatment (U-7S-12) resulted in more significant changes than the pH-shifting at pH 2 combined with ultrasound (U-7S-2). U-7S-12 showed a significant reduction in protein particle size from 152 to 34.77 nm and a relatively smooth protein surface compared to 7S. The protein had the highest surface hydrophobicity and flexibility at 81,560.0 and 0.45, respectively, and the free sulfhydryl content from 1.57 to 2.02 μmol/g. In addition, we characterized the emulsions prepared after 7S treatment. The single or combined treatment increased the interfacial protein adsorption of the samples, which showed lower viscosity and shear stress compared to 7S. The U-7S-12 emulsion exhibited the highest emulsifying properties and was more stable than other emulsions under creaming, heating, and freeze-thaw conditions. In summary, the concerted action of pH-shifting and ultrasound can modify the structure, and combined alkaline pH-shifting and ultrasound treatment can further improve the emulsifying properties and stability of 7S.
Collapse
Affiliation(s)
- Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziteng Lian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peilong Liao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Haibo Wu
- College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Jia Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Zhang M, Fan L, Liu Y, Li J. Relationship between protein native conformation and ultrasound efficiency: For improving the physicochemical stability of water–in–oil emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Yang J, Duan Y, Geng F, Cheng C, Wang L, Ye J, Zhang H, Peng D, Deng Q. Ultrasonic-assisted pH shift-induced interfacial remodeling for enhancing the emulsifying and foaming properties of perilla protein isolate. ULTRASONICS SONOCHEMISTRY 2022; 89:106108. [PMID: 35933969 PMCID: PMC9364021 DOI: 10.1016/j.ultsonch.2022.106108] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 05/07/2023]
Abstract
In order to expand the applications of plant protein in food formulations, enhancement of its functionalities is meaningful. Herein, the effects of ultrasonic (20 KHz, 400 W, 20 min)-assisted pH shift (pH 10 and 12) treatment on the structure, interfacial behaviors, as well as the emulsifying and foaming properties of perilla protein isolate (PPI) were investigated. Results showed that the solubility of PPI treated by ultrasonic-assisted pH shift (named UPPI-10/12) exceeded 90 %, which was at least 2 and 1.4 times that of untreated PPI and ultrasound-based PPI. Meanwhile, UPPI-10/12 possessed higher foamability (increasing by at least 1.2 times) and good emulsifying stability. Ultrasonic-assisted pH shift treatment decomposed large PPI aggregates into tiny particles, evident from the dynamic light scattering (DLS) and atomic force microscopy results. Besides, this approach induced a decrease in α-helix of PPI and an increase in β-sheet, which might result in the exposure of the hydrophobic group on the structural surface of PPI, thus leading to the increase of surface hydrophobicity. The smaller size and higher hydrophobicity endowed UPPI-10/12 faster adsorption rate, tighter interfacial structure, and higher elastic modulus at the air- and oil-water interfaces, evident from the cryo-SEM and interfacial dilatational rheological results. Thus, the emulsifying and foaming properties could evidently enhance. This study demonstrated that ultrasonic-assisted pH shift technique was a simple approach to effectively improve the functional performance of PPI.
Collapse
Affiliation(s)
- Jing Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chen Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Lei Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Jieting Ye
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dengfeng Peng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| |
Collapse
|
31
|
Sun S, Li S, Yan H, Zou H, Yu C. The conformation and physico‐chemical properties of pH‐treated golden pompano protein on the oil/water interfacial properties and emulsion stability. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuang Sun
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian 116034 China
| | - Sihui Li
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian 116034 China
| | - Huijia Yan
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian 116034 China
| | - Henan Zou
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian 116034 China
| | - Cuiping Yu
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian 116034 China
- College of Wildlife and Protected Area Northeast Forestry University Harbin 150040 China
| |
Collapse
|
32
|
Jing X, Chen B, Liu T, Cai Y, Zhao Q, Deng X, Zhao M. Formation and stability of Pickering emulsion gels by insoluble soy peptide aggregates through hydrophobic modification. Food Chem 2022; 387:132897. [PMID: 35413552 DOI: 10.1016/j.foodchem.2022.132897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/02/2022] [Accepted: 04/03/2022] [Indexed: 01/11/2023]
Abstract
In this work, a highly stable food-grade Pickering emulsion gels was successfully prepared by hydrophobically modified insoluble soybean peptide aggregates. The relationships between the surface properties of insoluble soybean peptide aggregates and Pickering emulsion gels characteristics were clarified. After modification, the insoluble soybean peptide aggregates with high surface hydrophobicity had small particle size (377 nm), near-neutral wettability (θo/w = 92°) and strong interfacial adsorption capability. These allowed the modified insoluble soybean peptide aggregates to stabilize the oil-water interface and form continuous network surrounding oil droplets, leading to the formation of stable Pickering emulsion gels. Besides, Pickering emulsion gels prepared by insoluble soybean peptide aggregates with higher surface hydrophobicity had smaller droplet size and higher gel strength, and remained stable even after 60 days of storage. The findings suggest a preferable plant protein particle for the preparation of stable Pickering emulsion gels in food industry.
Collapse
Affiliation(s)
- Xuelian Jing
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Bifen Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Xinlun Deng
- Guangdong Wenbang Biotechnology Co Ltd, Zhaoqing 526000, People's Republic of China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
33
|
Liu G, Hu M, Du X, Liao Y, Yan S, Zhang S, Qi B, Li Y. Correlating structure and emulsification of soybean protein isolate: Synergism between low-pH-shifting treatment and ultrasonication improves emulsifying properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Zhang J, Liu Q, Chen Q, Sun F, Liu H, Kong B. Synergistic modification of pea protein structure using high-intensity ultrasound and pH-shifting technology to improve solubility and emulsification. ULTRASONICS SONOCHEMISTRY 2022; 88:106099. [PMID: 35907333 PMCID: PMC9352455 DOI: 10.1016/j.ultsonch.2022.106099] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/01/2023]
Abstract
The most important factors restricting research and application in the food industry are the poor solubility and emulsification of pea protein isolate (PPI). This study investigates the effect of high-intensity ultrasound (HIU, 0-600 W) and pH-shifting treatment, alone or combined, on the structure, solubility, and emulsification of PPI, as well as its potential mechanism. The results revealed that the PPI solubility significantly increases when treated with the combination, corresponding to a decrease in the protein particle size, especially at 500 W of HIU power (p < 0.05). Correspondingly, the emulsion prepared from it was less prone to phase separation during storage. According to the structural analysis, the structural changes caused by protein unfolding (i.e., the exposure of hydrophobic and polar sites and the loss of the α-helix) seemed to be the primary reasons for increased PPI solubility. In addition, confocal laser scanning microscopy indicated that the combination treatment accelerated the adsorption of PPI at the oil/water interface and strengthened the compactness of the interface film. Improved interfacial properties and intermolecular forces played a critical role in the resistance to droplet coalescence in PPI emulsion. In conclusion, ultrasound and pH-shifting treatments have a synergistic effect on improving the solubility and emulsification of PPI.
Collapse
Affiliation(s)
- Jingnan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
35
|
Zhao X, Fan X, Shao X, Cheng M, Wang C, Jiang H, Zhang X, Yuan C. Modifying the physicochemical properties, solubility and foaming capacity of milk proteins by ultrasound-assisted alkaline pH-shifting treatment. ULTRASONICS SONOCHEMISTRY 2022; 88:106089. [PMID: 35809472 PMCID: PMC9272034 DOI: 10.1016/j.ultsonch.2022.106089] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 05/25/2023]
Abstract
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.
Collapse
Affiliation(s)
- Xinqi Zhao
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxue Fan
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoqing Shao
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ming Cheng
- Qingdao Research Institute of Husbandry and Veterinary, Qingdao 266100, China
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoning Zhang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China.
| |
Collapse
|
36
|
Zhang M, Fan L, Liu Y, Huang S, Li J. Effects of proteins on emulsion stability: The role of proteins at the oil-water interface. Food Chem 2022; 397:133726. [PMID: 35908463 DOI: 10.1016/j.foodchem.2022.133726] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
To obtain a stable protein-added emulsion system, researchers have focused on the design of the oil-water interface. This review discussed the updated details of protein adsorption behavior at the oil-water interface. We evaluated methods of monitoring interfacial proteins as well as their strengths and limitations. Based on the effects of structure on protein adsorption, we summarized the contribution of pre-changing methods to adsorption. In addition, the interaction of proteins and other surface-active molecules at the interface had been emphasized. Results showed that protein adsorption is affected by conformation, oil polarity and aqueous environments. The monitoring of interfacial proteins through spectroscopic properties in actual emulsion systems is an emerging trend. Pre-changing could improve the protein adsorption and the purpose of pre-changing of proteins is similar. In the interaction with other surface-active molecules, co-adsorption is desirable. By co-adsorption, the respective advantages can be exploited to obtain a more stable emulsion system.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengquan Huang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510931, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
37
|
Effect of molecular weight on the interfacial and emulsifying characteristics of rice glutelin hydrolysates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Wang C, Wu J, Wang C, Mu C, Ngai T, Lin W. Advances in Pickering emulsions stabilized by protein particles: Toward particle fabrication, interaction and arrangement. Food Res Int 2022; 157:111380. [DOI: 10.1016/j.foodres.2022.111380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
|
39
|
Wang ZJ, Xu JJ, Ji FY, Luo SZ, Li XJ, Mu DD, Jiang ST, Zheng Z. Fabrication and characterization of soy β-conglycinin-dextran-polyphenol nanocomplexes: Improvement on the antioxidant activity and sustained-release property of curcumin. Food Chem 2022; 395:133562. [PMID: 35763923 DOI: 10.1016/j.foodchem.2022.133562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
In this study, glycated soy β-conglycinin (β-CG) stabilized curcumin (Cur) composites were fabricated by a unique reversible self-assembly character of β-conglycinin-dextran conjugates (β-CG-DEX). Intrinsic fluorescence and far-UV CD spectra revealed that glycation did not affect the self-assembly property of β-CG in the pH-shifting treatment. The structure of β-CG-DEX could be unfolded at pH 12.0 and reassembled during acidification (from pH 12.0 to 7.0). Meanwhile, β-CG-DEX-3d, which was incubated at 60 °C for 3 days, exhibited a high loading capacity (123.4 mg/g) for curcumin, which far exceeds that (74.90 mg/g) of β-CG-Cur. Moreover, the reassembled β-CG-DEX-3d-Cur showed eminent antioxidant activity of approximately 1.5 times higher than that of free curcumin. During the simulated gastrointestinal condition, compared with β-CG-Cur, β-CG-DEX-3d-Cur nanoparticles showed a more stable and sustained release of curcumin. Thus, β-CG-DEX has immense potential to become a new delivery carrier for hydrophobic food components by means of a self-assembly strategy.
Collapse
Affiliation(s)
- Zi-Jun Wang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Jing-Jing Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Fu-Yun Ji
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shui-Zhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xing-Jiang Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dong-Dong Mu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shao-Tong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
40
|
Adjusting the interfacial property and emulsifying property of cellulose nanofibrils by ultrasonic treatment combined with gelatin addition. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
A combination of alkaline pH-shifting/acidic pH and thermal treatments improves the solubility and emulsification properties of wheat glutenin. Food Chem 2022; 393:133358. [PMID: 35661594 DOI: 10.1016/j.foodchem.2022.133358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022]
Abstract
Glutenin has limited applicability in food industry due to poor water solubility and emulsifying properties. In this study, the physicochemical properties of glutenin were improved by combined treatments of alkaline pH-shifting or acidic pH with heating. The surface morphology, structure and physicochemical properties were measured during the modification process of glutenin. Results showed that the smaller square clusters and regular tubular fibrils were observed in modified glutenin and the α-helix proportion of the treated glutenin was finally increased to 59.90 ± 0.01%. Compared with untreated glutenin, the combined treatments of pH-shifting with heating as well as fibrillation process increased the solubility of glutenin by 21.3 and 3.5 times, respectively. Moreover, the treated glutenin showed excellent emulsifying stability (EAI: 50.84 ± 0.51 m2g-1) and thermal stability (peak temperature increased from 109.58 to 149.05 °C). This study provides an informative basis for improving the physicochemical and functional properties of glutenin.
Collapse
|
42
|
Dai H, Zhan F, Chen Y, Shen Q, Geng F, Zhang Z, Li B. Improvement of the solubility and emulsification of rice protein isolate by the
pH
shift treatment. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongmin Dai
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Fuchao Zhan
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Yijie Chen
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Qian Shen
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Fang Geng
- College of Food and Biological Engineering Chengdu University No. 2025 Chengluo Avenue Chengdu 610106 China
| | - Ziyang Zhang
- College of Sanquan Xinxiang Medical University Henan 453003 China
| | - Bin Li
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| |
Collapse
|
43
|
Taha A, Casanova F, Šimonis P, Stankevič V, Gomaa MAE, Stirkė A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022; 11:foods11111556. [PMID: 35681305 PMCID: PMC9180040 DOI: 10.3390/foods11111556] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins' structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions.
Collapse
Affiliation(s)
- Ahmed Taha
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (F.C.); (A.S.)
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Voitech Stankevič
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
- Correspondence: (F.C.); (A.S.)
| |
Collapse
|
44
|
Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Adsorption of arabinogalactan-proteins from Acacia gums (senegal and seyal) and its molecular fractions onto latex particles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Calcium-aided fabrication of pea protein hydrogels with filler emulsion particles coated by pH12-shifting and ultrasound treated protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
47
|
Lu J, Xu X, Zhao X. Interfacial rheology of alkali pH-shifted myofibrillar protein at O/W interface and impact of Tween 20 displacement. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Guo Q, Shu X, Su J, Li Q, Tong Z, Yuan F, Mao L, Gao Y. Interfacial properties and antioxidant capacity of pickering emulsions stabilized by high methoxyl pectin-surfactant-pea protein isolate-curcumin complexes: Impact of different types of surfactants. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Interfacial behavior of plant proteins — novel sources and extraction methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Yu Y, Guan Y, Liu J, Hedi W, Yu Y, Zhang T. Molecular structural modification of egg white protein by pH-shifting for improving emulsifying capacity and stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107071] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|