1
|
Wang N, Zheng D, He J, Liu X, Liu T. Preparation and characterization of a thymol nanoemulsion-loaded multifunctional sustained-release corn straw cellulose nanocrystal/acetylated starch-based aerogel and its application in chilled meat preservation. Carbohydr Polym 2025; 348:122758. [PMID: 39562054 DOI: 10.1016/j.carbpol.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 09/14/2024] [Indexed: 11/21/2024]
Abstract
Chilled meat is prone to microbial contamination during storage, resulting in a shortened shelf life. This study developed multifunctional biodegradable aerogel with water absorption, antibacterial, and sustained release properties as a preservation pad for meat, using corn straw cellulose nanocrystals (CSCNCs) and acetylated starch (AS) as the structural skeleton and thymol (TMO) nanoemulsions as antimicrobials. The effects of different mass ratios of CSCNCs/AS on the morphology, structure, physical properties, and release behavior of aerogels were systematically analyzed. Additionally, their antibacterial properties, biocompatibility, and biodegradability were investigated. The results showed that the aerogels with CSCNC/AS mass ratio of 1:5 had a tailored structure for loading TMO nanoemulsions, as well as excellent water absorption, mechanical properties, and thermal stability. Due to strong hydrogen bonding and a porous structure, the TMO in the aerogels was continuously and uniformly released into high-water-activity and fatty food simulants, mainly controlled by Fickian diffusion. Furthermore, it exhibited superior antibacterial properties and biocompatibility. The application of aerogels for chilled beef preservation extended the shelf life from 8 days to approximately 12 days, which was superior to commercially available preservation pads. Notably, the aerogels exhibited superior biodegradability in soil. Therefore, the prepared aerogel preservation pads showed great potential in preserving chilled meat.
Collapse
Affiliation(s)
- Nan Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Technological Innovations for Grain Deep-processing and High-effeciency Utilization of By-products of Jilin Province, Changchun 130118, China
| | - Dongyang Zheng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Jialu He
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Xiaolong Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China.
| |
Collapse
|
2
|
Shah M, Hameed A, Kashif M, Majeed N, Muhammad J, Shah N, Rehan T, Khan A, Uddin J, Khan A, Kashtoh H. Advances in agar-based composites: A comprehensive review. Carbohydr Polym 2024; 346:122619. [PMID: 39245496 DOI: 10.1016/j.carbpol.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.
Collapse
Affiliation(s)
- Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Muhammad Kashif
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan.
| | - Touseef Rehan
- department of Biochemistry, Women University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, 616 Birkat Al Mauz, Nizwa, Sultanate of Oman; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
3
|
Sýkora J, Komendová R. Field determination of trace concentrations of hazardous metals in waters by portable EDXRF. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1226. [PMID: 39567376 DOI: 10.1007/s10661-024-13412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
A new effective method has been developed for field determination of trace concentrations of cadmium, arsenic, zinc, copper, nickel, chromium, and lead in waters (e.g., surface and wastewater) using an energy dispersive X-ray fluorescence (EDXRF) analyzer. Trace concentrations cannot be determined by EDXRF without preconcentration. Agar was used for the preconcentration of these potentially toxic elements (PTE). Metals are trapped in the three-dimensional network of agar gel. Subsequent swelling of the gel leads to more effective preconcentration. The swollen gels with PTE were analyzed by a portable energy dispersive X-ray fluorescence analyzer Delta Professional X (pXRF). The preconcentration factors for each PTE were determined. With pXRF, the detection limits were 7, 5, 6, 7, 9, 47, and 22 µg/L for Cr, Ni, Cu, Zn, As, Cd, and Pb, respectively. A reference material was used to assess the methodology performance, and it has a very good agreement. The optimized and verified methodology was tested in practice at the special chemical unit of the Fire Rescue Service of the Czech Republic. PTE were determined by pXRF in a mobile chemical laboratory in field analysis. The measured values were compared with those determined via inductively coupled plasma mass spectrometry (ICP-MS) and were in good agreement. Our method was applied to real wastewater samples collected during after a fire of accumulation batteries of domestic photovoltaic power plants, allowing accurate real-time estimation of PTE concentrations. Obtaining reliable data during an ecological accident has a very important role in minimizing the subsequent environmental impact of the accident.
Collapse
Affiliation(s)
- Jiří Sýkora
- Faculty of Chemistry, Brno University of Technology (BUT), Purkyňova 464/118, 612 00, Brno, Czech Republic.
| | - Renata Komendová
- Faculty of Chemistry, Brno University of Technology (BUT), Purkyňova 464/118, 612 00, Brno, Czech Republic
| |
Collapse
|
4
|
Milovanovic S, Markovic D, Jankovic-Castvan I, Lukic I. Cornstarch aerogels with thymol, citronellol, carvacrol, and eugenol prepared by supercritical CO 2- assisted techniques for potential biomedical applications. Carbohydr Polym 2024; 331:121874. [PMID: 38388060 DOI: 10.1016/j.carbpol.2024.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
This study focuses on the development of bioactive materials using environmentally friendly techniques, renewable, biocompatible, and biodegradable polysaccharide, as well as natural bioactive compounds (NBCs) found in plant extracts. First, cornstarch aerogels with a porosity of 86 % and a specific surface area of 225 m2/g were produced via supercritical CO2- assisted drying. Further, thymol, citronellol, carvacrol, and eugenol were incorporated into the aerogels by supercritical CO2- assisted impregnation, which allowed variation in loadings of NBCs (12.8-17.6 %). Interaction between cornstarch aerogels and NBCs determined impregnation rate, pore wall thickness (in the range 18-95 nm), liquid absorption capacity (from 265 to 569 %), dehydration mass loss, and release in phosphate-buffered saline. Controlled release of NBCs was maintained over a 3-day period. Moreover, impregnated aerogels showed a significant antioxidant effect with the highest value for DPPH radical inhibition of 25.5 % determined for the aerogels impregnated with eugenol. Notable antimicrobial activity against tested Gram-negative bacteria, Gram-positive bacteria, and fungi was also observed, being the highest for thymol-loaded aerogel with the diameter of the inhibition zones of up to 37.5 mm. This work shows a promising green approach for the production of bioactive two-component starch-based materials for potential applications in skin infection treatment.
Collapse
Affiliation(s)
- Stoja Milovanovic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.
| | - Darka Markovic
- University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ivona Jankovic-Castvan
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivana Lukic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
5
|
Alavi F, Ciftci ON. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation. Int J Biol Macromol 2024; 264:129945. [PMID: 38311127 DOI: 10.1016/j.ijbiomac.2024.129945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The high porosity and specific surface area of aerogels offer an ideal platform for loading bioactive molecules. In the present study, the microstructure of the bio-based starch aerogels was modulated by the incorporation of chitosan. The starch hydrogel precursors were prepared from high amylose corn starch in the presence of 0, 0.50, and 0.75 wt% chitosan. Afterward, a green single-step simultaneous aerogel formation-curcumin deposition method was applied to impregnate curcumin into the aerogels through supercritical carbon dioxide (SC-CO2) drying technology. Composite starch/chitosan aerogels showed a more open porous structure and lighter weight than the neat starch counterpart. Confocal microscopy and fluorescence spectroscopy analysis confirmed curcumin molecules' attachment to the aerogels' hydrophobic cavities. The impregnation capacity was 24-27 mg curcumin per gram of aerogel depending on the composition of the aerogels. The loading of curcumin in the aerogels significantly enhanced the bioaccessibility of curcumin in the simulated gastrointestinal fluid by almost 30-fold when compared to the unloaded curcumin. Furthermore, the bioaccessibility of the curcumin loaded in starch-chitosan composite aerogels was higher than that in neat starch aerogels. While unloaded curcumin showed an undetectable intestinal Caco-2 cell transportation, curcumin-loaded aerogels revealed a cumulative curcumin passing of 0.15-0.23 μg/mL.
Collapse
Affiliation(s)
- Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA.
| |
Collapse
|
6
|
Xiao M, Tan M, Peng C, Jiang F, Wu K, Liu N, Li D, Yao X. Soft and flexible polyvinyl alcohol/pullulan aerogels with fast and high water absorption capacity for facial mask substrates. Int J Biol Macromol 2024; 264:130469. [PMID: 38458007 DOI: 10.1016/j.ijbiomac.2024.130469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Facial mask substrates commonly used in skincare are often considered unhealthy and environmentally unfriendly due to their composition of premoistened nonwovens containing various preservatives. This study aims to address this issue by developing a preservative-free degradable aerogel made from polyvinyl alcohol (PVA)/pullulan (PUL) using a unidirectional freeze-drying method. The aerogels had ordered three-dimensional porous structures and exhibited desirable mechanical properties. They were soft and flexible in both dry and wet states, and their Young's moduli were comparable to that of human skin. The aerogels had high porosity, ranging from 93.0 % to 95.1 %, and exhibited a high water absorption rate and water absorption capacity (ranging from 7.5 g/g to 10.1 g/g). After 30 min of water evaporation, the aerogels showed excellent moisture retention, ranging from 88 % to 93 %. Additionally, the PVA/PUL aerogel efficiently loaded and released active ingredients, such as rapidly releasing ascorbic acid (> 90 % within 30 min). These findings suggest that the PVA/PUL aerogel has potential as a material for facial mask substrates.
Collapse
Affiliation(s)
- Man Xiao
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China.
| | - Mo Tan
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Chun Peng
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Kao Wu
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Falua KJ, Babaei-Ghazvini A, Acharya B. Comparative study of the structure and mechanical properties of starch aerogels fabricated from air-classified and isolated pulse starches. Int J Biol Macromol 2024; 257:128478. [PMID: 38029915 DOI: 10.1016/j.ijbiomac.2023.128478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Significant amounts of starch and protein are generated as co-products during fractionation of pulse seeds. While pulse proteins (PP) have garnered a lot of interest in numerous applications, little attention is shown to pulse starch (PS). The creation of novel materials such as bioplastics could revolutionize the use of pulse starches. In this study, we investigated the prospects of air-classified and isolated pea, lentil, and faba bean starches as a precursor for fabricating pulse starch bioaerogels (PSBs) via freeze-drying technique. The results evidenced ultra-low densities (<0.1 m2/g), mesopore sizes (2-50 μm), high porosities (∼99 %), low surface areas (SBET = ∼4-18 m2/g) for all the aerogels. The adsorption isotherm showed typical Type II and III profiles, while the thermogravimetric analysis showed more weight loss (74.39-78.12 %) in aerogels mostly developed from isolated starches. Microstructural studies showed a unique distribution of pores within the developed aerogels. FTIR and XPS studies confirmed the presence of an amide (I, II, III) at different absorption bands range (∼1600-1200 cm-1) and functional groups (carboxylic group and the amide group), respectively. All the PSBs became stiffer with a corresponding increase in load, and a reversible deformation in the linear region was identified at <5 % strain. Comparatively, saturated PSBs from air-classified starch at a relative humidity of 95 % showed a drastic reduction in their compressive moduli (CM), while PSBs from isolated starch experienced markedly high CM. Moisture saturation was achieved at 72 h for all the samples. This study provides crucial information that could spark a keen interest in the use of non-conventional starch for the creation of novel and sustainable biobased products with expanded applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
8
|
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023; 10:27. [PMID: 38247750 PMCID: PMC10815338 DOI: 10.3390/gels10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This review explores the field of hybrid materials in the context of bio-based aerogels for the development of sustainable packaging solutions. Increasing global concern over environmental degradation and the growing demand for environmentally friendly alternatives to conventional packaging materials have led to a growing interest in the synthesis and application of bio-based aerogels. These aerogels, which are derived from renewable resources such as biopolymers and biomass, have unique properties such as a lightweight structure, excellent thermal insulation, and biodegradability. The manuscript addresses the innovative integration of bio-based aerogels with various other materials such as nanoparticles, polymers, and additives to improve their mechanical, barrier, and functional properties for packaging applications. It critically analyzes recent advances in hybridization strategies and highlights their impact on the overall performance and sustainability of packaging materials. In addition, the article identifies the key challenges and future prospects associated with the development and commercialization of hybrid bio-based aerogel packaging materials. The synthesis of this knowledge is intended to contribute to ongoing efforts to create environmentally friendly alternatives that address the current problems associated with conventional packaging while promoting a deeper understanding of the potential of hybrid materials for sustainable packaging solutions.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Silva FT, Fonseca LM, Bruni GP, Crizel RL, Oliveira EG, Zavareze EDR, Dias ARG. Absorbent bioactive aerogels based on germinated wheat starch and grape skin extract. Int J Biol Macromol 2023; 249:126108. [PMID: 37536415 DOI: 10.1016/j.ijbiomac.2023.126108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
This study aimed to produce water-absorbent bioactive aerogels using biodegradable raw materials, wheat starch and poly ethylene oxide (PEO), and derived from agro-industrial residues (grape skin) obtained in the wine industry. The aerogels were produced using germinated wheat starch (GWS), with and without PEO, and incorporating grape skin extract (GSE) at concentrations of 5 and 10 % (w/w). The GSE was evaluated for total and individual phenolic compounds, anthocyanins, and antioxidant activity. The starch aerogels were characterized for morphology, density, porosity, functional groups by FT-IR, relative crystallinity and diffraction pattern, water absorption capacity, antioxidant activity, and in vitro release profile of phenolic compounds in food simulant medium. The total phenolic compounds in GSE was 226.25 ± 0.01 mg equivalent of gallic acid/g GSE. The aerogels showed low density and high porosity. All aerogels demonstrated high water absorption capacity (581.4 to 997.5 %). The antioxidant activity of the aerogels increased with increasing GSE concentration and the addition of PEO. The aerogels could release GSE gradually for up to 120 days in the hydrophilic simulant medium and 240 h for the hydrophobic medium. Starch-based aerogels with GSE showed potential to be applied as exudate absorbers with antioxidant activity to develop active food packaging.
Collapse
Affiliation(s)
- Francine Tavares Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Graziella Pinheiro Bruni
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Rosane Lopes Crizel
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | | | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
10
|
Mirmoeini SS, Hosseini SH, Javid AL, Koutamehr ME, Sharafi H, Molaei R, Moradi M. Essential oil-loaded starch/cellulose aerogel: Preparation, characterization and application in cheese packaging. Int J Biol Macromol 2023; 244:125356. [PMID: 37321442 DOI: 10.1016/j.ijbiomac.2023.125356] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Novel antimicrobial emitting aerogels based on starch/cellulose/Thymus daenensis Celak essential oil (SC-TDEO) were developed and optimized for antimicrobial packaging of Koopeh cheese. An aerogel formulation containing cellulose (1 %; extracted from sunflower stalks) and starch (5 %) in a 1:1 ratio was selected for in vitro antimicrobial assay and subsequent cheese application. The minimum inhibitory dose (MID) of TDEO in the vapor phase against Escherichia coli O157:H7 was determined by loading various concentrations of TDEO onto the aerogel, and an MID of 256 μL/Lheadspace was recorded. Aerogels containing TDEO at 25 × MID and 50 × MID were then developed and used for cheese packaging. During a 21-day storage period, cheeses treated with SC-TDEO50 MID aerogel exhibited a significant 3-log reduction in psychrophile counts and a 1-log reduction in yeast-mold counts. Moreover, significant changes in the population of E. coli O157:H7 were observed in cheese samples. After 7 and 14 days of storage with SC-TDEO25 MID and SC-TDEO50 MID aerogels, the initial bacterial count became undetectable, respectively. Sensory evaluations indicated that the samples treated with SC-TDEO25 MID and SC-TDEO50 aerogels received higher scores compared to the control group. These findings demonstrate the potential of the fabricated aerogel to develop antimicrobial packaging suitable for cheese applications.
Collapse
Affiliation(s)
- Seyedeh Sahar Mirmoeini
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Seyede Hanieh Hosseini
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Anita Lotfi Javid
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Mahmoud Esmaeili Koutamehr
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | | | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| |
Collapse
|
11
|
Sun C, Wei Z, Xue C, Yang L. Development, application and future trends of starch-based delivery systems for nutraceuticals: A review. Carbohydr Polym 2023; 308:120675. [PMID: 36813348 DOI: 10.1016/j.carbpol.2023.120675] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
As a natural biopolymer, starch is ideally adapted as an encapsulant material for nutraceutical delivery systems due to its unique nature of extensive sources, versatility and high biocompatibility. This review offers an outline of recent advances in the development of starch-based delivery systems. The structure and functional properties of starch in encapsulating and delivering bioactive ingredients are first introduced. Structural modification of starch improves the functionalities and extends the applications of starch in novel delivery systems. Then, various nutraceutical delivery systems are systematically summarized, which include porous starch, starch particle, amylose inclusion complex, cyclodextrin, gel, edible film and emulsion. Next, the delivery process of nutraceuticals is discussed in two parts: digestion and release. Intestinal digestion plays an important role during the whole digestion process of starch-based delivery systems. Moreover, controlled release of bioactives can be achieved by porous starch, starch-bioactive complexation and core-shell structure. Finally, the challenges of the existing starch-based delivery systems are deliberated, and the directions for future research are pointed out. Composite delivery carriers, co-delivery, intelligent delivery, delivery in real food systems, and reuse of agricultural wastes may be the research trends for starch-based delivery systems in the future.
Collapse
Affiliation(s)
- Chang Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
12
|
Basak S, Singhal RS. The potential of supercritical drying as a “green” method for the production of food-grade bioaerogels: A comprehensive critical review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Alavi F, Ciftci ON. Effect of starch type and chitosan supplementation on physicochemical properties, morphology, and oil structuring capacity of composite starch bioaerogels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Superlight macroporous aerogels produced from cold-set egg white protein hydrogels show superior oil structuring capacity. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Guo X, Zhao H, Qiang X, Ouyang C, Wang Z, Huang D. Facile construction of agar-based fire-resistant aerogels: A synergistic strategy via in situ generations of magnesium hydroxide and cross-linked Ca-alginate. Int J Biol Macromol 2023; 227:297-306. [PMID: 36549030 DOI: 10.1016/j.ijbiomac.2022.12.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Biomass-based aerogel materials have many advantages, such as low thermal conductivity and non-toxicity. These materials are environmentally friendly and have broad development potential in the fields of packaging, cushioning and green building insulation. However, defects, such as low mechanical strength and poor fire safety, greatly limit the application of these materials. In this work, the agar/polyvinyl alcohol composite aerogel modified by the magnesium hydroxide (MH)/sodium alginate (SA) composite flame retardant system was developed by using a freeze-dried technology and the strategy of in-situ generation of MH and crosslinking of SA. The results showed that the MH/SA dramatically enhanced the mechanical and thermal stability of the composites. The compression modulus of AP-M35S15 was 2.37 MPa, which was 152.13 % higher than that of AP-M50. The limiting oxygen index value of AP-M35S15 was 34.1 % and reached V-0 level in the vertical burning test, which was better than those of the samples with a single MH effect. The cone calorimetric test showed that the MH/SA composite flame retardant system performed better in extending the ignition time, slowing down the heat release rate and reducing the total heat release and had a more complete dense carbon structure after burning.
Collapse
Affiliation(s)
- Xin Guo
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Hong Zhao
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Xiaohu Qiang
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Chengwei Ouyang
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Zhehui Wang
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Dajian Huang
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| |
Collapse
|
16
|
Fabrication of self-antibacterial chitosan/oxidized starch polyelectrolyte complex sponges for controlled delivery of curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Shi S, Jiang Y, Ji Q, Xing Y, Ma X, Xia Y. Multi‐crosslinked
, ecofriendly
flame‐retardant starch‐based
composite aerogels with high
compression‐resistance. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shaokun Shi
- College of Chemistry and Chemical Engineering Qingdao University Qingdao PR China
| | - Yingying Jiang
- College of Chemistry and Chemical Engineering Qingdao University Qingdao PR China
| | - Quan Ji
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology Institute of Marine Biobased Materials, Qingdao University Qingdao PR China
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering Qingdao University Qingdao PR China
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering Qingdao University Qingdao PR China
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology Institute of Marine Biobased Materials, Qingdao University Qingdao PR China
| | - Yanzhi Xia
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology Institute of Marine Biobased Materials, Qingdao University Qingdao PR China
| |
Collapse
|
18
|
Selvasekaran P, Chidambaram R. Bioaerogels as food materials: A state-of-the-art on production and application in micronutrient fortification and active packaging of foods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Role of supercritical CO2 impregnation variables on β-carotene loading into corn starch aerogel particles. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Chen L, Niu X, Fan X, Liu Y, Yang J, Xu X, Zhou G, Zhu B, Ullah N, Feng X. Highly absorbent antibacterial chitosan-based aerogels for shelf-life extension of fresh pork. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Increasing agar content improves the sol-gel and mechanical features of starch/agar binary system. Carbohydr Polym 2022; 278:118906. [PMID: 34973727 DOI: 10.1016/j.carbpol.2021.118906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022]
Abstract
Starch/agar systems are highly potential for versatile applications such as packaging and biomedical materials. Here, how combined factors affect the features of a starch/agar binary system were explored. An increase of starch amylose/amylopectin ratio from 0/100 to 50/50 increased the sol-gel transition temperature and gel hardness of the aqueous starch/agar mixture. An increased agar content (mainly from 30% to 70%) allowed increases in both the tensile strength (reaching 50-60 MPa) and elongation at break of the starch/agar binary films. This phenomenon should be related to the strengthened crystalline structure and the weakened hydrogen bonding between starch chains (reflected by infrared spectroscopy). Furthermore, a higher relative humidity (from 30% to 70%) allowed enhanced chain interactions and probably nanoscale molecular order but weakened the crystalline structure, leading to reduced tensile strength and increased elongation at break. This work could facilitate the design of starch/agar binary systems with improved sol-gel and mechanical performance.
Collapse
|
22
|
Abdullah, Zou Y, Farooq S, Walayat N, Zhang H, Faieta M, Pittia P, Huang Q. Bio-aerogels: Fabrication, properties and food applications. Crit Rev Food Sci Nutr 2022; 63:6687-6709. [PMID: 35156465 DOI: 10.1080/10408398.2022.2037504] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Traditional inorganic aerogels sustainability, biodegradability, and environmental safety concerns have driven researchers to find their safe green alternatives. Recently, interest in the application of bio-aerogels has rapidly increased in the food industry due to their unique characteristics such as high specific surface area and porosity, ultralow density, tunable pore size and morphology, and superior properties (physicochemical, mechanical, and functional). Bio-aerogels, a special category of highly porous unique materials, fabricated by the sol-gel method followed by drying processes, comprising three-dimensional networks of interconnected biopolymers (e.g., polysaccharides and proteins) with numerous air-filled pores. The production of bio-aerogels begins with the formation of a homogeneously dispersed precursor solution, followed by gelation and wet gel drying procedures by employing special drying techniques including atmospheric-, freeze-, and supercritical drying. Due to their special properties, bio-aerogels have emerged as sustainable biomaterial for many industrial applications, i.e., encapsulation and controlled delivery, active packaging, heavy metals separation, water and air filtration, oleogels, and biosensors. Bio-aerogels are low-cost, biocompatible, and biodegradable sustainable material that can be used in improving the processing, storage, transportation, and bioavailability of food additives, functional ingredients, and bioactive substances for their health benefits with enhanced shelf-life.
Collapse
Affiliation(s)
- Abdullah
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Science, South China Agricultural University, Guangzhou, China
| | - YuCheng Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Marco Faieta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
23
|
Yu J, Jin Y, Liu G, Hua F, Lv Y. Pickering emulsion templated strategy in composite aerogels with hierarchical porous structure improves thermal insulation and diphenylamine adsorption. J Appl Polym Sci 2022. [DOI: 10.1002/app.52130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiangang Yu
- College of Chemical and Material Engineering Quzhou University Quzhou China
| | - Yi Jin
- College of Chemical and Material Engineering Quzhou University Quzhou China
| | - Guoqing Liu
- College of Chemical and Material Engineering Quzhou University Quzhou China
| | - Feiguo Hua
- Research and Development Center Zhejiang Jinjiahao Green Nanomaterial CO., Ltd. Quzhou China
| | - Yanwen Lv
- College of Chemical and Material Engineering Quzhou University Quzhou China
| |
Collapse
|
24
|
Wei D, Liu X, Lv S, Liu L, Wu L, Li Z, Hou Y. Fabrication, Structure, Performance, and Application of Graphene-Based Composite Aerogel. MATERIALS 2021; 15:ma15010299. [PMID: 35009444 PMCID: PMC8746295 DOI: 10.3390/ma15010299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
Graphene-based composite aerogel (GCA) refers to a solid porous substance formed by graphene or its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO), with inorganic materials and polymers. Because GCA has super-high adsorption, separation, electrical properties, and sensitivity, it has great potential for application in super-strong adsorption and separation materials, long-life fast-charging batteries, and flexible sensing materials. GCA has become a research hotspot, and many research papers and achievements have emerged in recent years. Therefore, the fabrication, structure, performance, and application prospects of GCA are summarized and discussed in this review. Meanwhile, the existing problems and development trends of GCA are also introduced so that more will know about it and be interested in researching it.
Collapse
Affiliation(s)
| | - Xiang Liu
- Correspondence: (X.L.); (S.L.); Tel.: +86-298-616-8291 (X.L.)
| | - Shenghua Lv
- Correspondence: (X.L.); (S.L.); Tel.: +86-298-616-8291 (X.L.)
| | | | | | | | | |
Collapse
|
25
|
Wu W, Wu Y, Lin Y, Shao P. Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi. Food Chem 2021; 374:131763. [PMID: 34896953 DOI: 10.1016/j.foodchem.2021.131763] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
Citrus pectin was used as a precursor and cellulose nanofibers as a reinforcing agent, a mixed aerogel with enhanced structural properties was prepared. Pickering emulsion was a template for aerogel formation, embedding thymol. Its potential application in humidity regulating packaging has been investigated. Results showed that emulsion gel containing cellulose nanofibers has slightly larger droplet diameter, better viscoelasticity and emulsification. Composite aerogel has larger pore size and thinner pore wall. Additionally, its tensile and compressive properties have been significantly improved. Moisture absorption was close to 100% of its own weight, thymol was released slowly. Compared with Escherichia coli, aerogel has better resistance to Staphylococcus aureus. When applied on fresh Agaricus bisporus. It was found that relative humidity in package can be stabilized at about 97%. Hardness, color, total phenol content, cell membrane integrity and total antioxidant capacity of Agaricus bisporus were maintained and fresh-keeping period was extended to 5 days.
Collapse
Affiliation(s)
- Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Yingying Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| |
Collapse
|
26
|
Qiang X, Guo X, Su H, Zhao H, Ouyang C, Huang D. In situ nanoarchitectonics of magnesium hydroxide particles for property regulation of carboxymethyl cellulose/poly(vinyl alcohol) aerogels. RSC Adv 2021; 11:35197-35204. [PMID: 35493185 PMCID: PMC9043012 DOI: 10.1039/d1ra06556d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Carboxymethyl cellulose (CMC)-based aerogels with low density, low thermal conductivity, and biodegradability are promising candidates for environmentally friendly heat-insulating materials. However, the application of CMC-based aerogels as insulation materials in building exterior walls is limited by the high water sensitivity, poor mechanical properties and high flammability of these aerogels. In this work, a simple hydration method was used to generate magnesium hydroxide (MH) directly from CMC/polyvinyl alcohol (PVA) mixed sol with active MgO obtained by calcined magnesite as the raw material. A series of composite aerogels with different MH contents were prepared through the freeze-drying method. Scanning electron microscopy showed that nanoflower-like MH was successfully synthesised in situ in the 3D porous polymer aerogel matrix. Compared with the mechanical properties and water resistance of the original CMC/PVA composite aerogels, those of the composite aerogels were significantly improved. In addition, the flame retardancy of the CMC/PVA composite aerogels was greatly enhanced by the introduction of MH into the polymer matrix, and the limiting oxygen index reached 35.5% when the MH loading was 60%.
Collapse
Affiliation(s)
- Xiaohu Qiang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Xin Guo
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Hongxi Su
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Hong Zhao
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Chengwei Ouyang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Dajian Huang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| |
Collapse
|
27
|
Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Muhammad A, Lee D, Shin Y, Park J. Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook. Polymers (Basel) 2021; 13:1347. [PMID: 33924110 PMCID: PMC8074296 DOI: 10.3390/polym13081347] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Porous polysaccharides have recently attracted attention due to their porosity, abundance, and excellent properties such as sustainability and biocompatibility, thereby resulting in their numerous applications. Recent years have seen a rise in the number of studies on the utilization of polysaccharides such as cellulose, chitosan, chitin, and starch as aerogels due to their unique performance for the fabrication of porous structures. The present review explores recent progress in porous polysaccharides, particularly cellulose and chitosan, including their synthesis, application, and future outlook. Since the synthetic process is an important aspect of aerogel formation, particularly during the drying step, the process is reviewed in some detail, and a comparison is drawn between the supercritical CO2 and freeze drying processes in order to understand the aerogel formation of porous polysaccharides. Finally, the current applications of polysaccharide aerogels in drug delivery, wastewater, wound dressing, and air filtration are explored, and the limitations and outlook of the porous aerogels are discussed with respect to their future commercialization.
Collapse
Affiliation(s)
| | | | | | - Juhyun Park
- Department of Intelligent Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea; (A.M.); (D.L.); (Y.S.)
| |
Collapse
|
29
|
Gelling Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Yahya EB, Jummaat F, Amirul AA, Adnan AS, Olaiya NG, Abdullah CK, Rizal S, Mohamad Haafiz MK, Khalil HPSA. A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics (Basel) 2020; 9:E648. [PMID: 32998197 PMCID: PMC7601537 DOI: 10.3390/antibiotics9100648] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023] Open
Abstract
A biopolymer-based aerogel has been developed to become one of the most potentially utilized materials in different biomedical applications. The biopolymer-based aerogel has unique physical, chemical, and mechanical properties and these properties are used in tissue engineering, biosensing, diagnostic, medical implant and drug delivery applications. Biocompatible and non-toxic biopolymers such as chitosan, cellulose and alginates have been used to deliver antibiotics, plants extract, essential oils and metallic nanoparticles. Antibacterial aerogels have been used in superficial and chronic wound healing as dressing sheets. This review critically analyses the utilization of biopolymer-based aerogels in antibacterial delivery. The analysis shows the relationship between their properties and their applications in the wound healing process. Furthermore, highlights of the potentials, challenges and proposition of the application of biopolymer-based aerogels is explored.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - Fauziah Jummaat
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor 40100, Malaysia;
| | - A. A. Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - A. S. Adnan
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor 40100, Malaysia;
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - M. K. Mohamad Haafiz
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| |
Collapse
|