1
|
Chen W, An D, Ye S, Li S, Li J, Li B. Fenugreek gum improves the rheological properties of konjac glucomannan in dynamic simulated digestion system and delays its gastric emptying. Int J Biol Macromol 2025; 288:138713. [PMID: 39672438 DOI: 10.1016/j.ijbiomac.2024.138713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The physicochemical properties of konjac glucomannan (KGM) are impaired in the harsh gastrointestinal tract, which may reduce its effectiveness in physiological functions. In this paper, fenugreek gum (FG) with high water holding capacity and stability was used as a gastric protectant for KGM, and the effects of the KGM-FG complexes with different composite ratios on gastric emptying were researched by in vitro dynamic simulated gastric digestion system. The results showed that FG significantly enhanced the delayed gastric emptying properties of KGM. Adding FG reduced the apparent viscosity, flow behavior, and mechanical properties of KGM. The simulated gastric fluid (SGF) decreased the apparent viscosity of the KGM-FG complex and increased the microstructure network density of the KGM-FG complex compared with the water system. FG helped the structure of the KGM-FG complexes become more stable and trapped more water in the stomach. The KGM-FG complex with high viscosity, mechanical modulus, and frictional resistance in a dynamic simulated digestion system increased gastric retention. The KGM-FG complex with a composite ratio 5:5 showed the best performance and a potential satiety-enhancing property. The results provided a theoretical basis for designing satiety food formulations that help control energy intake and body weight.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricutnural University, Ministry of Education, Wuhan 430070, China
| | - Ding An
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricutnural University, Ministry of Education, Wuhan 430070, China
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricutnural University, Ministry of Education, Wuhan 430070, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricutnural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricutnural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricutnural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
2
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
3
|
Gu S, Liu M, Xu R, Han X, Lou Y, Kong Y, Gao Y, Shang S, Song Z, Song J, Li J. Ecofriendly Controlled-Release Insecticide Carrier: pH-/Temperature-Responsive Rosin-Derived Hydrogels for Avermectin Delivery against Mythimna separata (Walker). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10992-11010. [PMID: 38743441 DOI: 10.1021/acs.langmuir.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/16/2024]
Abstract
The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.
Collapse
Affiliation(s)
- Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Mei Liu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yue Kong
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
4
|
Wu C, McClements DJ, Ma B, He Z, Wu F, Zhang Y, Liu X, Wang P. Fabrication of composite hydrogels by sonication-assisted assembly of okara cellulose nanofibers and chitosan: structure and properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3458-3467. [PMID: 38133630 DOI: 10.1002/jsfa.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Okara cellulose is a highly abundant, green, sustainable, and biodegradable polymer with many potential industrial applications. In this study, we fabricated composite hydrogels with okara cellulose nanofibers (CNFs) and chitosan (CH) by hydrating, sonicating, and heating them at 100 °C for 30 min, and then induced their assembly by cooling. The effects of okara CNF (with and without 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) oxidation) and CH concentration on the structure and properties of the hydrogels was examined, including their microstructure, surface properties, rheological properties, and thermal stability. RESULTS Our results indicate that there was an electrostatic attraction between the anionic okara CNF and cationic CH, which facilitated hydrogel formation. The surface, textural, rheological, and thermal stability properties were better for the composite hydrogels than for the single CH ones, as well as for the CNF that had undergone TEMPO oxidation. For the TC-CH hydrogels, the contact angle was 39.5°, the interfacial tension was 69.1 mN m-1 , and the surface tension was 1.44 mN m-1 . CONCLUSION In this study, the novel hydrogels developed may be useful as a soft material in a range of applications in foods, supplements, health care products, cosmetics, and drugs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changling Wu
- Department of Food Science, Zhejiang A&F University, Hangzhou, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou, China
| | | | - Bohui Ma
- Department of Food Science, Zhejiang A&F University, Hangzhou, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou, China
| | - Zhiping He
- Department of Food Science, Zhejiang A&F University, Hangzhou, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou, China
| | - Fenghua Wu
- Department of Food Science, Zhejiang A&F University, Hangzhou, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou, China
| | - Yongzhu Zhang
- Department of Food Science, Zhejiang A&F University, Hangzhou, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou, China
| | - Xingquan Liu
- Department of Food Science, Zhejiang A&F University, Hangzhou, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou, China
| | - Peng Wang
- Department of Food Science, Zhejiang A&F University, Hangzhou, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou, China
| |
Collapse
|
5
|
Li MF, Cui HL, Lou WY. Millettia speciosa Champ cellulose-based hydrogel as a novel delivery system for Lactobacillus paracasei: Its relationship to structure, encapsulation and controlled release. Carbohydr Polym 2023; 316:121034. [PMID: 37321729 DOI: 10.1016/j.carbpol.2023.121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
We report for the first time the usage of Millettia speciosa Champ cellulose (MSCC) and carboxymethylcellulose (MSCCMC) for the fabrication of 3D-network hydrogel as delivery system for probiotics. The structural features, swelling behavior and pH-responsiveness of MSCC-MSCCMC hydrogels and their encapsulation and controlled-release behavior for Lactobacillus paracasei BY2 (L. paracasei BY2) were mainly studied. Structural analyses demonstrated that MSCC-MSCCMC hydrogels with porous and network structures were successfully synthesized through the crosslinking of -OH groups between MSCC and MSCCMC molecules. An increasing concentration of MSCCMC significantly improved the pH-responsiveness and swelling ability of the MSCC-MSCCMC hydrogel toward neutral solvent. Besides, the encapsulation efficiency (50.38-88.91 %) and release (42.88-92.86 %) of L. paracasei BY2 were positively correlated with the concentration of MSCCMC. The higher the encapsulation efficiency was, the higher the release in the target intestine. However, due to the existence of bile salts, controlled-release behavior decreased the survivor rate and physiological state (degrading cholesterol) of encapsulating L. paracasei BY2. Even so, the number of viable cells encapsulated by hydrogels still reached the minimum effective concentration in the target intestine. This study provides an available reference for the practical application of hydrogels fabricated from the cellulose of the Millettia speciosa Champ plant for probiotic delivery.
Collapse
Affiliation(s)
- Meng-Fan Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hua-Ling Cui
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
6
|
Velderrain-Rodríguez G, Fontes-Candia C, López-Rubio A, Martínez-Sanz M, Martín-Belloso O, Salvia-Trujillo L. Polysaccharide-based structured lipid carriers for the delivery of curcumin: An in vitro digestion study. Colloids Surf B Biointerfaces 2023; 227:113349. [PMID: 37207385 DOI: 10.1016/j.colsurfb.2023.113349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2022] [Revised: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
The present work aimed at studying the in vitro digestion fate of κ-carrageenan (KC) or agar (AG) emulsion gels (EG), and KC oil-filled aerogels (OAG) in terms of their structural changes, lipolysis kinetics and curcumin bioaccessibility. On the one hand, both EG and aerogels showed large (70-200 µm) and heterogeneous particles after gastric conditions, indicating the release of bulk oil and gelled material. Nonetheless, this material release in the stomach phase was lower in the case of EG-AG and OAG-KC compared to EG-KC. After small intestinal conditions, EG and oil-filled aerogels presented a wide range of particle sizes probably due to the presence of undigested lipid material, gelled structures, as well as lipid digestion products. For the most part, adding curcumin to the structures' lipid phase did not cause of the structural modifications that occurred at the different in vitro digestion phases. On the other hand, the lipolysis kinetics was different depending on the type of structure. Amongst emulsion-gels, those formulated with κ-carrageenan presented a slower and lower lipolysis kinetics compared to those formulated with agar, which could be attributed to their higher initial hardness. Overall, the addition of curcumin in the lipid phase decreased the lipolysis in all the structures, which evidenced its interference in the lipid digestion process. The curcumin bioaccessibility reached high values (≈ 100 %) for all the studied structures, presenting a high solubility in intestinal fluids. This work unravels the implications of microstructural changes of emulsion-gels and oil-filled aerogels during digestion and their impact on their digestibility and subsequent functionality.
Collapse
Affiliation(s)
- Gustavo Velderrain-Rodríguez
- Department of Food Technology, University of Lleida - Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain; Alianza Latinoamericana De Nutrición Responsable (ALANUR), Inc. 400 E Randolph St Suite 2305 Chicago, IL 60611, USA
| | - Cynthia Fontes-Candia
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Marta Martínez-Sanz
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida - Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Laura Salvia-Trujillo
- Department of Food Technology, University of Lleida - Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
7
|
Popov S, Smirnov V, Khramova D, Paderin N, Chistiakova E, Ptashkin D, Vityazev F. Effect of Hogweed Pectin on Rheological, Mechanical, and Sensory Properties of Apple Pectin Hydrogel. Gels 2023; 9:gels9030225. [PMID: 36975674 PMCID: PMC10048469 DOI: 10.3390/gels9030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This study aims to develop hydrogels from apple pectin (AP) and hogweed pectin (HP) in multiple ratios (4:0; 3:1; 2:2; 1:3; and 0:4) using ionotropic gelling with calcium gluconate. Rheological and textural analyses, electromyography, a sensory analysis, and the digestibility of the hydrogels were determined. Increasing the HP content in the mixed hydrogel increased its strength. The Young’s modulus and tangent after flow point values were higher for mixed hydrogels than for pure AP and HP hydrogels, suggesting a synergistic effect. The HP hydrogel increased the chewing duration, number of chews, and masticatory muscle activity. Pectin hydrogels received the same likeness scores and differed only in regard to perceived hardness and brittleness. The galacturonic acid was found predominantly in the incubation medium after the digestion of the pure AP hydrogel in simulated intestinal (SIF) and colonic (SCF) fluids. Galacturonic acid was slightly released from HP-containing hydrogels during chewing and treatment with simulated gastric fluid (SGF) and SIF, as well as in significant amounts during SCF treatment. Thus, new food hydrogels with new rheological, textural, and sensory properties can be obtained from a mixture of two low-methyl-esterified pectins (LMPs) with different structures.
Collapse
|
8
|
Li J, Zeng C, Huang Q, Zheng MM, Chen J, Ma D. Control release of α-mangostin by a novel dual-polysaccharides delivery system for colitis treatment under simulated gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/08/2023]
|
9
|
Enrichment of 3D-Printed k-Carrageenan Food Gel with Callus Tissue of Narrow-Leaved Lupin Lupinus angustifolius. Gels 2023; 9:gels9010045. [PMID: 36661811 PMCID: PMC9857940 DOI: 10.3390/gels9010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of the study is to develop and evaluate the printability of k-carrageenan inks enriched with callus tissue of lupin (L. angustifolius) and to determine the effect of two lupin calluses (LA14 and LA16) on the texture and digestibility of 3D-printed gel. The results demonstrated that the enriched ink was successfully 3D printed at concentrations of 33 and 50 g/100 mL of LA14 callus and 33 g/100 mL of LA16 callus. The feasibility of 3D printing is extremely reduced at higher concentrations of callus material in the ink. The hardness, cohesiveness, and gumminess of the 3D-printed gel with LA16 callus were weakened compared to the gel with LA14 callus. The results of rheological measurements showed that an increase in the content of LA16 callus interfered with the formation of a k-carrageenan gel network, while LA14 callus strengthened the k-carrageenan gel with increasing concentration. Gel samples at different concentrations of LA14 and LA16 calluses formed a spongy network structure, but the number of pores decreased, and their size increased, when the volume fraction occupied by LA14 and LA16 calluses increased. Simple polysaccharides, galacturonic acid residues, and phenolic compounds (PCs) were released from A-FP gels after sequential in vivo oral and in vitro gastrointestinal digestion. PCs were released predominantly in the simulated intestinal and colonic fluids. Thus, incorporating lupin callus into the hydrocolloid ink for food 3D printing can be a promising approach to developing a gelling material with new mechanical, rheological, and functional properties.
Collapse
|
10
|
Qian S, Liu K, Wang J, Bai F, Gao R, Zeng M, Wu J, Zhao Y, Xu X. Capturing the impact of oral processing behavior and bolus formation on the dynamic sensory perception and composition of steamed sturgeon meat. Food Chem X 2022; 17:100553. [PMID: 36624817 PMCID: PMC9823118 DOI: 10.1016/j.fochx.2022.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The effect of oral processing on flavor release and change in composition of steamed sturgeon meat was investigated. Oral processing caused changes in the concentrations of taste compounds including amino acids, 5'-nucleotides, organic acids, and Na+. Sensory omics demonstrated that the concentrations of 12 volatile compounds increased significantly (p < 0.05) during the initial stage of oral processing. There is no significant difference in microstructure, texture, and particle size of meat bolus. The top fifteen differential lipids which including eight phospholipids in all processed samples significantly (p < 0.05) correlated with the flavor release. A total of 589 differential proteins were detected in three samples with different chewing times (0, 12, and 30 s). Analysis of the correlations between odorants and 19 differential proteins was performed. Enriched pathways including fatty acid degradation, valine, leucine and isoleucine degradation, glycine, serine and threonine metabolism, and arachidonic acid metabolism were associated with flavor release during oral processing. This study aimed to investigate potential links between flavor release and biological processes during oral processing from a proteomics perspective.
Collapse
Affiliation(s)
- Siyu Qian
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Kang Liu
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China,Corresponding authors at: No.5 Yushan Road, Shinan District, Qingdao, Shandong 266003, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China,Corresponding authors at: No.5 Yushan Road, Shinan District, Qingdao, Shandong 266003, China.
| |
Collapse
|
11
|
Popov S, Smirnov V, Paderin N, Khramova D, Chistiakova E, Vityazev F, Golovchenko V. Enrichment of Agar Gel with Antioxidant Pectin from Fireweed: Mechanical and Rheological Properties, Simulated Digestibility, and Oral Processing. Gels 2022; 8:gels8110708. [PMID: 36354617 PMCID: PMC9689380 DOI: 10.3390/gels8110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The aims of the study were to evaluate the influence of pectin isolated from fireweed (FP) on the mechanical and rheological properties of agar (A) gel, to investigate the release of phenolic compounds (PCs) and pectin from A-FP gels at simulated digestion in vitro, and to evaluate the oral processing and sensory properties of A-FP gels. The hardness of A-FP gels decreased gradually with the increase in the concentration of FP added (0.1, 0.4, and 1.6%). The hardness of A-FP1.6 gel was 41% lower than A gel. Rheological tests found A gel was a strong physical gel (storage modulus (G′) >>loss modulus (G″)), and the addition of FP up to 1.6% did not significantly change its G’. The G″ value decreased in A-FP gels compared to A gel. The release of galacturonic acid (GalA) was 3.4 ± 0.5, 0.5 ± 0.2, 2.4 ± 1.0, and 2.2 ± 0.7 mg/mL after digestion of A-FP1.6 gel in the oral in vivo phase (OP) and subsequent incubation in simulated gastric (SGF), intestinal (SIF), and colonic (SCF) fluids in vitro. The incubation medium after OP, SGF, and SIF digestion of A-FP1.6 contained 24−64 μg GAE/mL of PCs, while SCF contained 144 μg GAE/mL, supposing a predominant release of antioxidant activity from the gel in the colon. Chewing to readiness for swallowing A-FP gel required less time and fewer chews with less activity of the masseter and temporalis muscles. A-FP1.6 gel had a lower likeness score for taste and consistency and a similar score for appearance and aroma when compared with A gel. Thus, A-FP gels were weakened compared to A gel and required less time and muscle activity for oral processing. A-FP gel had antioxidant activity due to the PCs associated with pectin, while A gel had no antioxidant activity.
Collapse
|
12
|
Intake of Sugar Substitute Gummy Candies Benefits the Glycemic Response in Healthy Adults: A Prospective Crossover Clinical Trial. Gels 2022; 8:gels8100642. [PMID: 36286143 PMCID: PMC9601933 DOI: 10.3390/gels8100642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Sugar reduction in food has attracted great health concerns worldwide. Gummies have been one of the most popular and highly favored candies due to their chewable properties, simplicity to swallow, and delicious taste. The general perception is that gummies raise blood sugar levels, but the truth is that gummies with the right formula can control glycemic response. The purpose of this study is to investigate the effects of the gummy dosage form and sugar types on the glycemic response control. Maltitol and erythritol as sweetener alternatives were applied in gummy candies (total and partial sugar substitutes gummy, T-SG and P-SG), with sucrose-based gummies used as comparisons (CG). A prospective crossover study was then conducted on 17 healthy adults. The effects of different types of gummies on glycemic response in healthy adults were evaluated on the basis of the participants’ glycemic index (GI) and glycemic load (GL) values. Every three-day interval, participants took CG, P-SG, T-SG, and glucose solution, respectively, and the theoretical glucose conversion content was kept the same in all groups for each trial. Each participant performed four tests with each sample and recorded the changes in blood glucose after food consumption. It was found that all three types of gummies slowed down subjects’ glycemic response when not taken in excess, and the improvement effect was in the trend of T-SG > P-SG > CG. Both P-SG and T-SG were low-GI candies (54.1 and 49.9). CG that was not consumed in excess of 17.2 g had a high GI (81.9) but a low GL (<10). Texture analysis and in vitro digestion were used to explore the effect of gummy matrix on glucose release. T-SG and P-SG retained a higher hardness and were less hydrolyzed to release glucose during digestion compared with CG. Additionally, experiments have revealed that gummies can reverse the poor glucose tolerance in women. In conclusion, gummies are a good carrier for dietary supplements due to their sustained-release characteristic of available carbohydrates and provide healthier options for people in control of glucose homeostasis.
Collapse
|
13
|
Zhu Y, Han Y, Peng S, Chen X, Xie Y, Liang R, Zou L. Hydrogels assembled from hybrid of whey protein amyloid fibrils and gliadin nanoparticles for curcumin loading: Microstructure, tunable viscoelasticity, and stability. Front Nutr 2022; 9:994740. [PMID: 36091248 PMCID: PMC9462383 DOI: 10.3389/fnut.2022.994740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Food grade hydrogel has become an ideal delivery system for bioactive substances and attracted wide attention. Hybrids of whey protein isolate amyloid fibrils (WPF) and gliadin nanoparticles (GNP) were able to assemble into WPF-GNP hydrogel at a low protein concentration of 2 wt%, among which WPF and GNP were fabricated from the hydrolysis of whey protein isolate under 85°C water bath (pH 2.0) and antisolvent precipitation, respectively. Atomic force microscope (AFM) images indicated that the ordered nanofibrillar network of WPF was formed at pH 2.0 with a thickness of about 10 nm. Cryo-SEM suggested that WPF-GNP hydrogel could arrest GNP within the fibrous reticular structure of the partially deformed WPF, while the hybrids of native whey protein isolate (WPI) and GNP (WPI-GNP hybrids) only led to protein aggregates. WPF-GNP hydrogel formed at pH 4.0 (85°C, 3 h, WPF:GNP = 4:1) possessed the largest elastic modulus (G’ = 419 Pa), which far exceeded the elastic modulus of the WPI-GNP hybrids (G’ = 16.3 Pa). The presence of NaCl could enhance the strength of WPF-GNP hydrogel and the largest value was achieved at 100 mM NaCl (∼105 mPa) in the range of 0∼500 mM due to electrostatic screening. Moreover, WPF-GNP hydrogel showed a high encapsulation efficiency for curcumin, 89.76, 89.26, 89.02, 85.87, and 79.24% for pH 2.0, 3.0, 4.0, 5.0, and 6.0, respectively, which suggested that the formed hydrogel possess good potential as a delivery system. WPF-GNP hydrogel also exhibited a good protection effect on the photodegradation stability of the loaded curcumin with the retention of up to 75.18% after hydrogel was exposed to ultraviolet radiation for 7 days. These results suggested that the viscoelasticity of WPF-GNP hydrogel was tunable via pH-, ion-, or composition-adjustment and the hydrogel showed excellent protection on the thermal and photodegradation stability of curcumin.
Collapse
Affiliation(s)
- Yuqing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yalan Han
- Library of Nanchang University, Nanchang, China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Xing Chen,
| | - Youfa Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangzhong Pharmaceutical Co. Ltd., Nanchang, China
- *Correspondence: Xing Chen,
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Kanyuck K, Mills T, Norton I, Norton-Welch A. Release of glucose and maltodextrin DE 2 from gellan gum gels and the impacts of gel structure. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
15
|
Physicochemical and release behaviour of phytochemical compounds based on black jamun pulp extracts-filled alginate hydrogel beads through vibration dripping extrusion. Int J Biol Macromol 2022; 194:715-725. [PMID: 34822825 DOI: 10.1016/j.ijbiomac.2021.11.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
The phytochemical-rich extract obtained from black jamun pulp were encapsulated using vibrating dripping extrusion technique. The utilisation of alginate (AL) with four variations of core-shell material comprising gum Arabic (AL-GA), guar gum (AL-GG), pectin (AL-P) and xanthan gum (AL-X) was engaged to form calcium-alginate based lyophilised jamun extract encapsulated beads. It resulted that among four variations, lyophilised alginate with AL-GG based encapsulated jamun extract filled beads have better physicochemical characteristics and 95% encapsulation efficiency. The results revealed the morphological comparison of each variation. The release behaviour of AL-GG based beads has a higher release of total phenolics (TPC) and total anthocyanin content (TAC). The release kinetics model involving Ritger-Peppas and Higuchi model were applied for release TPC and TAC of all variations of beads. The Ritger-Peppas model was found best suitable in terms of average R2 (0.965) and lowest χ2 (0.0039). The release kinetics study showed that AL-GA based beads followed by AL-GG could also be the best suitable in release behaviour using simulated gastrointestinal fluids at 140-160 min. Overall, results shown the encapsulated Jamun beads have the best agro-industrial efficacy in form of phytochemical compounds based microparticles, holding decent antioxidant potential.
Collapse
|