1
|
Yan Y, Fan X, Hua D, Liu X, Li C, Li Z, Bai M, Zhang Y, Liu H. Effects of different enzymatic hydrolysis techniques on volatile flavor compounds and nutritional metabolites of soybean meal yogurt. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1312-1323. [PMID: 39658891 DOI: 10.1002/jsfa.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND This study explores enzymatic hydrolysis as a method of modifying soybean meal (SM). It can reduce the particle size, improve flavor, and convert macromolecules into absorbable nutrients. The purpose is to provide technical information regarding the use of SM. Papain alone, and a combination of papain and acid protease, and a mixture of papain, acid protease, and Lactiplantibacillus plantarum were employed for the enzymatic hydrolysis of SM. RESULTS Sensory evaluation and nutritional and flavor analyses were performed with yogurt produced after SM enzymatic hydrolysis. The enzymatic hydrolysis improved yogurt quality significantly in comparison with non-enzymatically hydrolyzed soybean meal yogurt (SMY) by accelerating the decrease in pH and shortening the duration of fermentation. Enzymatic hydrolysis also reduced beany flavors and bitterness and enhanced the aromatic compound, flavor-related amino acid, and organic acid content, rendering the yogurt more appealing to consumers. Microstructural analysis revealed favorable characteristics that textural and rheological properties of the yogurt produced after enzymatically hydrolyzed SM were improved. CONCLUSION In this study, the biotechnological approach was used to demonstrate the efficacy of enzymatic hydrolysis in improving the quality and value of SM, promoting the efficient application of SM in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaxin Yan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiangrong Fan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Dong Hua
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiaoqing Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Chunling Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zixuan Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Miao Bai
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Yaru Zhang
- Fuxin Drug Inspection Institute Co. Ltd., Fuxin, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
2
|
Wang Y, Zhao J, Wang X, Feng Y, Jiang J, Bi J. Innovative insights into the enzymatic hydrolysis of salmon milt: Structural and functional analysis influenced by protease type and enzymolysis time. Food Chem 2025; 463:141154. [PMID: 39270489 DOI: 10.1016/j.foodchem.2024.141154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In this study, hydrolysates were obtained from salmon milts using four proteases (neutrase, papain, trypsin and novozym 11028). The effects of protease type and enzymolysis time (30, 60, 90, and 120 min) on the structural characteristics and functional properties of the hydrolysates were assessed. The fluorescence intensity of all hydrolysates increased as the extension of enzymolysis time, accompanied by an increase in solubility, emulsifying and foaming ability. Trypsin-hydrolysates showed the highest protein recovery and degree of hydrolysis (DH). The electrophoresis indicated that papain-hydrolysates contained more aggregates (>60 kDa), which was confirmed by larger particle size and lower DH. Neutrase-hydrolysate exhibited the smallest particle size and the highest emulsifying and foaming ability, while the highest emulsifying stability appeared in papain-hydrolysates. Neutrase-hydrolysate displayed the strongest antioxidant potential while papain-hydrolysate possessed the weakest. Results demonstrated that the salmon milt protein hydrolysates can be utilized as nutraceutical and functional food ingredients.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, United States
| | - Xiaowen Wang
- Xinjiang Zeacen Nutrition Institute, Changji Agricultural Science and Technology Park, Changji, Xinjiang 831101, China
| | - Yiming Feng
- Virginia Seafood AREC & Department of Biological Systems Engineering, 15 Rudd Ln, Hampton, VA 23669, United States
| | - Jiang Jiang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
3
|
Xu Y, Wang S, Xin L, Zhang L, Yang L, Wang P, Liu H. Exploring the influence of different enzymes on soy hull polysaccharide emulsion stabilization: A study on interfacial behavior and structural changes. Food Chem 2025; 463:141147. [PMID: 39260175 DOI: 10.1016/j.foodchem.2024.141147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The interfacial behavior of soy hull polysaccharide (SHP) at the oil-water interface and the stabilization mechanism of high internal phase emulsion (HIPE) with three enzymes (α-amylase, trypsin and papain) were investigated. The diameter of the α-amylase-treated emulsion was the minimum at 40 min, indicating that the carbohydrate portions of SHP form a thick layer on the surface of the droplet to prevent aggregation. Moreover, Raman spectroscopy revealed significantly higher levels of disordered content of SHP emulsion treated with α-amylase at 60 min, potentially affecting the directional movement of SHP molecules in the emulsion. Conversely, the content of β-sheet and β-turn was lower than trypsin and papain, possibly due to ion-dipole interaction between the polar group residues within SHP and ions, or protonation with H+.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China..
| | - Liwen Xin
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Lanxin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| |
Collapse
|
4
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Xu Y, Wang S, Xin L, Zhang L, Liu H. Interfacial mechanisms, environmental influences, and applications of polysaccharide-based emulsions: A review. Int J Biol Macromol 2024; 293:139420. [PMID: 39746414 DOI: 10.1016/j.ijbiomac.2024.139420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
To develop stable polysaccharide-based emulsions, many studies have focused on the interfacial behavior of adsorbed polysaccharides. This review first discussed the mechanism of polysaccharides self-assembly at the oil-water interface. It can be concluded that polysaccharides can form a thick and strong interfacial membrane that stabilizes emulsions through steric hindrance and electrostatic interactions. In particular, we also investigated the influence of various conditions (i.e., mechanical stress, heating, pH, enzymatic treatment, and ionic strength) on the architecture and properties of polysaccharide-based emulsions. Additionally, the interactions of polysaccharides with other molecules in the emulsion system were summarized, revealing that co-adsorption further changes their properties. Furthermore, current approaches for monitoring the behavior of adsorbed polysaccharides at the oil/water interface were reviewed, highlighting their advantages and limitations. Lastly, we emphasized the potential of polysaccharides for producing environmental-friendly emulsions in the food industry.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Liwen Xin
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Lanxin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
6
|
Yin C, Zhang X, Xu B, Zhao Q, Zhang S, Li Y. Effect of limited hydrolysis on the structure and gel properties of soybean isolate proteins: A comparative study of papain or/and trypsin. Int J Biol Macromol 2024; 282:137398. [PMID: 39521233 DOI: 10.1016/j.ijbiomac.2024.137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Plant protein's gelation is crucial in various food applications, and hydrolysis may enhance their gelation properties. In this study, we prepared soybean protein isolate hydrolysates (SPIH) using trypsin and/or papain, and found significant improvement in the solubility and gelling properties. These proteases broken down the peptide bonds and caused the exposure of hydrophobic groups as well as the unfolding of protein. Low molecular weight (<35 kDa) SPIHs were generated by the two-step enzymatic hydrolysis, showing significant improvements in storage modulus (G'), loss modulus (G″), viscosity, strength, and water-holding capacity (WHC). Among, PT-10 exhibited the highest WHC (61.72 ± 0.36 %), gel strength (4.67 ± 0.12 g), and network cross-linking density (0.33 ± 0.01 mol/m3), while its solubility was also significantly increased up to 254 %. According to the results of gel molecular force interactions, disulfide bonds, hydrophobic interactions and hydrogen bonds involved in the gel network formation. These findings reveal that the appropriate hydrolysis modification may improve SPI gel's properties and expand its application in gel foods.
Collapse
Affiliation(s)
- Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bolin Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Pang L, Liu M, Chen C, Huang Z, Liu S, Man C, Jiang Y, Zhang W, Yang X. Effects of ultrasound pretreatment on the structure, IgE binding capacity, functional properties and bioactivity of whey protein hydrolysates via multispectroscopy and peptidomics revealed. ULTRASONICS SONOCHEMISTRY 2024; 110:107025. [PMID: 39163694 PMCID: PMC11381472 DOI: 10.1016/j.ultsonch.2024.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024]
Abstract
Whey protein is an important food ingredient, but it is also considered a major food allergen. The aim of this study was to investigate the effect of ultrasound pretreatment on the structure, IgE binding capacity, functional properties and biological activity of whey protein isolate (WPI) hydrolysates (WPH), including WPI hydrolyzed by a combination of enzymes from Bromelain and ProteAXH (BA-WPI) and WPI hydrolyzed by a combination of enzymes from Papain W-40 and ProteAXH (PA-WPI). The IgE binding capacity of BA-WPI and PA-WPI was reduced to 40.28% and 30.17%, respectively, due to disruption/exposure/shielding of conformational and linear epitopes. The IgE binding capacity of sonicated WPI was increased, but ultrasound pretreatment further reduced the IgE binding capacity of the hydrolysates to 32.89% and 28.04%. This is due to the fact that ultrasound pretreatment leads to conformational changes including increased α-helix and β-sheet structure, exposure of aromatic amino acids, surface hydrophobicity, and increased sulfhydryl content, which increases the accessibility of allergenic epitopes to WPI by the enzyme. Multispectral and LC-MS/MS results further indicated that ultrasound pretreatment altered the conformational and primary structural changes of the hydrolysates. The thermograms showed that ultrasound pretreatment mainly altered the epitope spectra of β-lactoglobulin hydrolysates, while it had less effect on the epitope spectra of α-lactalbumin hydrolysates. Additionally, ultrasound pretreatment significantly improved the foaming properties, antioxidant activity, and α-glucosidase inhibition of the hydrolysates without impairing the solubility and emulsification properties of the hydrolysates. Therefore, ultrasound pretreatment is a feasible method to reduce the allergenicity of WPH and to improve their functional properties and bioactivity. Notably, ultrasonic pretreatment improved the effectiveness and efficiency of WPI hydrolysis, which is a feasible method to produce high-quality protein feedstock in a green, efficient, and economical way.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ming Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shiyu Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Shan G, Cui M, Wang X, Liang X, Xu Z, Zhang Y, Sui X. Fabrication of enhanced aerogel template oleogels with enzyme-hydrolyzed soy protein isolate and covalent cross-linking. Int J Biol Macromol 2024; 275:133674. [PMID: 38971290 DOI: 10.1016/j.ijbiomac.2024.133674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In recent years, the utilization of aerogel templates in oleogels to replace animal fats has garnered considerable attention due to health concerns. This study employed a "fiber-particle core-shell nanostructure model" to combine sodium carboxymethylcellulose (CMCNa) and soy protein isolate (SPI) or SPI hydrolysate (SPIH), and freeze-dried to form aerogel template, which was then dipped into oil to induce oleogels. The results showed that adding SPIH significantly improved the physicochemical properties of oleogels. The results of ζ-potential, FTIR, and rheology demonstrated a stronger binding of SPIH to CMC-Na compared to SPI. The CMC-Na-SPIH aerogels exhibited a coarser surface and denser network structure in contrast to CMC-Na-SPI aerogels, with an oil holding capacity (OHC) of up to 84.6 % and oil absorption capacity (OAC) of 47.4 g/g. The mechanical strength of oleogels was further enhanced through chemical crosslinking. Both CMC-Na-SPI and CMC-Na-SPIH oleogels displayed excellent elasticity and reversible compressibility, with CMC-Na-SPIH oleogels demonstrating superior mechanical strength. Additionally, CMC-Na-SPIH oleogels exhibited enhanced slow release of antimicrobial substances and antioxidant properties. Increasing the content of SPI/SPIH significantly improved the mechanical strength, antioxidant capacity, and OHC of the oleogels. This research presents a straightforward and promising approach to enhance the performance of aerogel template oleogels.
Collapse
Affiliation(s)
- Guancheng Shan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Cui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoshuai Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Zhu B, Yang J, Dou J, Ning Y, Qi B, Li Y. Comparison of the physical stability, microstructure and protein-lipid co-oxidation of O/W emulsions stabilized by l-arginine/l-lysine-modified soy protein hydrolysate. Food Chem 2024; 447:138901. [PMID: 38458131 DOI: 10.1016/j.foodchem.2024.138901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
This work investigated the physical stability, microstructure, and oxidative stability of the emulsions prepared by soy protein hydrolysate (SPH) after modification with different concentrations of l-arginine and l-lysine. l-Arginine and l-lysine significantly increased the absolute zeta potential values, and decreased droplet sizes of the emulsions, thereby improving the physical stability of the emulsions. Meanwhile, l-arginine and l-lysine markedly decreased the apparent viscosity of the emulsions. The measurement of interfacial protein adsorption percentage showed that l-arginine (≤0.5 %) promoted the adsorption of SPH at the oil-water interface, whereas l-lysine (≤1%) reduced the adsorption of SPH at the oil-water interface. In addition, l-arginine and l-lysine (≤0.5 %) could retard lipid and protein oxidation. Correlation analysis indicated that the improvement in the physical stability of the emulsions by l-arginine and l-lysine also enhanced the oxidative stability of the emulsions. In summary, l-arginine and l-lysine could be effective modifiers for the protein-based emulsion systems.
Collapse
Affiliation(s)
- Bin Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jinjie Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingjing Dou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yijie Ning
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
10
|
Li X, Chen S, Shao J, Bai M, Zhang Z, Song P, Jiang S, Li J. From waste to strength: Tailor-made enzyme activation design transformation of denatured soy meal into high-performance all-biomass adhesive. Int J Biol Macromol 2024; 273:133054. [PMID: 38862054 DOI: 10.1016/j.ijbiomac.2024.133054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Given the severe protein denaturation and self-aggregation during the high-temperature desolubilization, denatured soy meal (DSM) is limited by its low reactivity, high viscosity, and poor water solubility. Preparing low-cost and high-performance adhesives with DSM as the key feedstock is still challenging. Herein, this study reveals a double-enzyme co-activation method targeting DSM with the glycosidic bonds in protein-carbohydrate complexes and partial amide bonds in protein, increasing the protein dispersion index from 10.2 % to 75.1 % improves the reactivity of DSM. The green crosslinker transglutaminase (TGase) constructs a robust adhesive isopeptide bond network with high water-resistant bonding strength comparable to chemical crosslinkers. The adhesive has demonstrated high dry/wet shear strength (2.56 and 0.93 MPa) for plywood. After molecular recombination by enzyme strategy, the adhesive had the proper viscosity, high reactivity, and strong water resistance. This research showcases a novel perspective on developing a DSM-based adhesive and blazes new avenues for changes in protein structural function and adhesive performance.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shiqing Chen
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiawei Shao
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mingyang Bai
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhicheng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pingan Song
- Centre for Future Materials, School of Agriculture and Environmental Science, University of Southern Queensland, Springfield 4300, Australia
| | - Shuaicheng Jiang
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ren S, Du Y, Zhang J, Zhao K, Guo Z, Wang Z. Commercial Production of Highly Rehydrated Soy Protein Powder by the Treatment of Soy Lecithin Modification Combined with Alcalase Hydrolysis. Foods 2024; 13:1800. [PMID: 38928742 PMCID: PMC11203182 DOI: 10.3390/foods13121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The low rehydration properties of commercial soy protein powder (SPI), a major plant-based food ingredient, have limited the development of plant-based foods. The present study proposes a treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the rehydration of soy protein powder, as well as other processing properties (emulsification, viscosity). The results show that the soy protein-soy lecithin complex powder, which is hydrolyzed for 30 min (SPH-SL-30), has the smallest particle size, the smallest zeta potential, the highest surface hydrophobicity, and a uniform microstructure. In addition, the value of the ratio of the α-helical structure/β-folded structure was the smallest in the SPH-SL-30. After measuring the rehydration properties, emulsification properties, and viscosity, it was found that the SPH-SL-30 has the shortest wetting time of 3.04 min, the shortest dispersion time of 12.29 s, the highest solubility of 93.17%, the highest emulsifying activity of 32.42 m2/g, the highest emulsifying stability of 98.33 min, and the lowest viscosity of 0.98 pa.s. This indicates that the treatment of soy lecithin modification combined with Alcalase hydrolysis destroys the structure of soy protein, changes its physicochemical properties, and improves its functional properties. In this study, soy protein was modified by the treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the processing characteristics of soy protein powders and to provide a theoretical basis for its high-value utilization in the plant-based food field.
Collapse
Affiliation(s)
- Shuanghe Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| | - Yahui Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| | - Jiayu Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| | - Kuangyu Zhao
- Fang Zheng Comprehensive Product Quality Inspection and Testing Center, Fangzheng County, Harbin 150800, China;
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| |
Collapse
|
13
|
Zhao T, Sun H, Ji S, Yang B, Wang Z, Liu Y, Chen C, Lu B. The Effect of Whey Protein Isolate Hydrolysate on Digestive Properties of Phytosterol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12738-12751. [PMID: 38788151 DOI: 10.1021/acs.jafc.4c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Phytosterol (PS) is a steroid, and its bioavailability can be enhanced by interacting with protein in the C-24 hydroxyl group. The interaction between sterols and amino acid residues in proteins can be enhanced by enzymatic hydrolysis. Phytosterol and whey insulation hydrolysates (WPH1-4) fabricated by the Alcalase enzyme at different enzymatic hydrolysis times were selected as delivery systems to simulate sterol C-24 hydroxyl group interaction with protein. Increasing hydrolysis time can promote the production of β-Lg, which raises the ratio of β-turn in the secondary structure and promotes the formation of interaction between WPH and PS. The correlation coefficient between hydrogen bonds and encapsulation efficiency (EE) and bioaccessibility is 0.91 and 0.88 (P < 0.05), respectively, indicating that hydrogen bonds of two components significantly influenced the combination by concealing the hydrophobic amino acids and some residues, which improved PS EE and bioavailability by 3.03 and 2.84 times after PS was combined with the WPI hydrolysate. These findings are expected to enhance the absorption of PS and other macromolecules by protein enzymatic hydrolysis to broaden their applications for food.
Collapse
Affiliation(s)
- Tian Zhao
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Haihui Sun
- Yichun Dahaigui Life Science Co., Ltd., Yichun 336000, China
| | - Shengyang Ji
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Bowen Yang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Zhangtie Wang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
14
|
Patil ND, Bains A, Sridhar K, Bhaswant M, Kaur S, Tripathi M, Lanterbecq D, Chawla P, Sharma M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods 2024; 13:1398. [PMID: 38731769 PMCID: PMC11083271 DOI: 10.3390/foods13091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education Deemed to be University, Coimbatore 641021, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | | |
Collapse
|
15
|
Li Z, Zhong X, Luan C, Wen N, Shi C, Lin X, Zhao C, Zhang Y, Luo L, Zhang L, Wu Y, Yang J. Fabrication of high-preformance emulsifier from conjugating maltodextrin onto myofibrillar protein peptide with microwave- ultrasound synergy. ULTRASONICS SONOCHEMISTRY 2024; 104:106818. [PMID: 38452710 PMCID: PMC10924053 DOI: 10.1016/j.ultsonch.2024.106818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
In this study, we systematically investigated the emulsifying capabilities of myofibrillar protein (MP)- and MP peptide (MPP)-based conjugates synthesized through intensification techniques: water bath (WB), microwave, ultrasound, and the combined ultrasound-microwave (UM) methods. Compared with WB, microwave, and ultrasound treatments, the combined UM treatment greatly promoted the glycation reaction because ultrasound and microwave mutually reinforced modification effects. The resultant conjugate structure tended to unfold with more flexible conformation and homogeneous morphology. Moreover, the emulsifying properties of conjugates developed with single and combined ultrasound-assisted glycation displayed substantial improvement, and pre-hydrolysis further enhanced these performances, as observed in the Principal Component Analysis as well. Remarkably, MPP grafted by maltodextrin with the assistance of a combined UM field produced the smallest and most uniform emulsion system, positioning it as the most efficient emulsifier among all the fabricated glycoconjugates. Our study highlighted the potential of synergistically applying ultrasound and microwave techniques to develop a well-performance glycation with an ideal conjugate structure, in which they would be associated into a strong film that provided the robust physical barrier, creaming stability, heat retention, and oxidation resistance. These findings offered a basis for better utilizing complex ultrasonic technology to develop novel and improved MP-based food products.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xiaomei Zhong
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Cuirong Luan
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Nanhua Wen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chuanyang Shi
- Department of Nutrition and Food Studies, Steinhardt School of Culture, Education, and Human Development, New York University, NY, United States
| | - Xiaoyu Lin
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chao Zhao
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Yang Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Lianyu Luo
- Fujian Flavorbio Technology Co., LTD, Fuzhou, China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yijing Wu
- Institute of Oceanography, Minjiang University, Fuzhou, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China.
| | - Jie Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China.
| |
Collapse
|
16
|
Dai Y, Li H, Liu X, Wu Q, Ping Y, Chen Z, Zhao B. Effect of enzymolysis combined with Maillard reaction treatment on functional and structural properties of gluten protein. Int J Biol Macromol 2024; 257:128591. [PMID: 38052287 DOI: 10.1016/j.ijbiomac.2023.128591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 μmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.
Collapse
Affiliation(s)
- Ya Dai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, China.
| | - Xinhui Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qingfeng Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
17
|
Li Z, Lin L, Fu G, Guo Z, Zhang C. Insight on the emulsifying mechanisms of low-salt type emulsions stabilized by Maillard conjugates: Myofibrillar protein peptide-dextrin with different degrees of hydrolysis. Food Chem 2024; 433:137151. [PMID: 37661502 DOI: 10.1016/j.foodchem.2023.137151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
In this study, we investigated the emulsifying properties and stabilisation mechanisms of low-salt type emulsions stabilised by MP-base conjugates prepared via the Maillard reaction between DX and MP peptides (MPP). Mild hydrolysis by Alcalase promoted a well-controlled Maillard reaction in dry conditions. Combining hydrolysis and Maillard reaction caused the dissociation and unfolding of highly aggregated MP structures; the ordered secondary structure was lost and the hydrophobic residue was exposed. The MPP-DX conjugates greatly improved the emulsifying ability and stability in the low-salt system; the resulting emulsion exhibited a small droplet size and homogeneous microstructure with desirable storage stability. Further, the glycation products were found to effectively suppress gravity-induced creaming. The MPP-DX glycoconjugate developed with 5% DG, exhibiting strongest flocculation and creaming stability, was determined as the optimal emulsifying agent for low-salt type emulsions. These findings provide a theoretical basis for developing low-salt meat products and/or emulsion-based foods.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Lin
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Gaofeng Fu
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chen Zhang
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
18
|
Zhu Q, Chen H, Chen W, Zhang M, Zhong Q, Chen Z, Pei J, Chen W. Effects of glycation method on the emulsifying performance and interfacial behavior of coconut globulins-fucoidan complexes. Food Chem 2024; 430:137033. [PMID: 37542968 DOI: 10.1016/j.foodchem.2023.137033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Coconut globulins (CG) possesses potential as an emulsifier but has not been utilized well. In this study, the emulsifying performance of glycated CG-fucoidan (CGF) complexes, and the relationship between emulsifying stability and interfacial behavior were investigated. The results showed that the grafting of fucoidan increased the molecular weight of CG, and decreased the zeta potential and fluorescence intensity. With the higher glycosylation degree, the fucoidan modified CG exhibited better emulsifying stability and higher viscosity. Moreover, the result of adsorption kinetics revealed that elasticity was the main property of the interface layer. Compared to CG, CGF complexes with high degree of glycosylation had thicker interfacial layer on the oil-water interface. A thicker elastic interfacial layer may be beneficial to the emulsion stability, owing to the strong interaction of electrostatic repulsion and steric hindrance between oil droplets. These findings may provide useful information for glycated CGF complexes as emulsifiers in functional food.
Collapse
Affiliation(s)
- Qianqian Zhu
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Haiming Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Weijun Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Ming Zhang
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Qiuping Zhong
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Zixin Chen
- Wenchang Zaineng Industrial Co., Ltd., Dongjiao Town, Wenchang 571300, PR China
| | - Jianfei Pei
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Wenxue Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| |
Collapse
|
19
|
Meng Q, Xu M, Chen L, Xu S, Li J, Li Y, Fan L, Shi G, Ding Z. Emulsion for stabilizing β-carotene and curcumin prepared directly using a continuous phase of polysaccharide-rich Schizophyllum commune fermentation broth. Int J Biol Macromol 2024; 254:127730. [PMID: 38287588 DOI: 10.1016/j.ijbiomac.2023.127730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of β-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of β-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Chen C, Murray BS, Ettelaie R. Surface adsorption properties of peptides produced by non-optimum pH pepsinolysis of proteins: A combined experimental and self-consistent-field calculation study. J Colloid Interface Sci 2023; 652:405-417. [PMID: 37604052 DOI: 10.1016/j.jcis.2023.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
HYPOTHESIS Partial hydrolysis of large molecular weight (Mw), highly aggregated plant proteins is frequently used to improve their solubility. However, if this hydrolysis is extensive, random or nonselective, it is unlikely to improve functional properties such as surface activity, emulsion, or foam-stabilising capacity. EXPERIMENTS AND SIMULATION Soy protein isolate (SPI) was hydrolysed by pepsin under optimal (pH 2.1) and non-optimal (pH 4.7) conditions. The surface activity and emulsion stabilising capacity of the resultant peptides were measured and compared. The colloidal interactions between a pair of emulsion droplets were modelled via Self-Consistent-Field Calculations (SCFC). FINDINGS Hydrolysis at pH 2.1 and 4.7 resulted in a considerable increase in measured surface activity compared to the native (non-hydrolysed) SPI, but the hydrolysate from pH 2.1 was not as good an emulsion stabiliser as the hydrolysate (particularly the fraction Mw > 10 kDa) at pH 4.7. Furthermore, peptide analysis of the latter suggested it was dominated by a fragment of one of the major soy proteins β-conglycinin, with Mw ≈ 25 kDa. SCFC calculations confirmed that interactions mediated by adsorbed layers of this peptide point to it being an excellent emulsion stabiliser.
Collapse
Affiliation(s)
- Cuizhen Chen
- Food Colloids & Bioprocessing Group, School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Brent S Murray
- Food Colloids & Bioprocessing Group, School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Rammile Ettelaie
- Food Colloids & Bioprocessing Group, School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
21
|
Kong Y, Toh NP, Wu Y, Huang D. Trypsin-treated chickpea protein hydrolysate enhances the cytoaffinity of microbeads for cultured meat application. Food Res Int 2023; 173:113299. [PMID: 37803690 DOI: 10.1016/j.foodres.2023.113299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Cultured meat is believed to be a promising alternative to conventional meat production that can reduce environmental impacts, animal suffering, and food safety risks. However, one of the major challenges in producing cultured meat is to provide suitable microcarriers that can support cell attachment, proliferation, and differentiation. In this study, we developed novel microcarriers based on chickpea protein hydrolysates functionalized with trypsin. These microcarriers exhibited superior cytoaffinity and proliferation for various types of cultured cells, including C2C12, porcine myoblasts, chicken satellite cells, and 3T3-L1. Moreover, these microcarriers enabled cell differentiation into muscle or fat cells under appropriate conditions. We propose that trypsin treatment enhances the cytoaffinity of chickpea protein hydrolysates by exposing lysine and arginine residues that can interact with cell surface receptors. Our results suggest that chickpea protein hydrolysate functionalized microcarrier is a promising substrate for cultured meat production with cost-effectiveness and scalability.
Collapse
Affiliation(s)
- Yan Kong
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, 117542, Singapore
| | - Nien Ping Toh
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, 117542, Singapore
| | - Yuyao Wu
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, 117542, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
22
|
Ding Y, Zengin A, Cheng W, Wang L, Ettelaie R. Emulsifying properties of plant-derived polypeptide and their conjugates: a self-consistent-field calculation study of the impact of hydrolysis. SOFT MATTER 2023; 19:7443-7458. [PMID: 37747041 DOI: 10.1039/d3sm00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
By considering the hydrolysates of soy protein produced by trypsin as an example, the emulsion stabilizing properties of plant-based protein fragments have been investigated theoretically. We apply Self-Consistent-Field (SCF) calculations to determine the colloidal interactions induced between a pair of droplets stabilized by adsorbed layers of various soy protein fragments. The study is extended to conjugates of such polypeptides, formed by covalent bonding with a suitable hydrophilic sidechain (e.g. a polysaccharide). Our results show that the relatively longer fragments, with a greater number of hydrophobic amino acids, will display a stronger degree of adsorption affinity compared to the smaller hydrolysates, even where the latter may have a higher overall ratio of hydrophobic residues. This suggested that the degree of protein hydrolysis should be carefully controlled and limited to modest values to avoid the generation of a large number of short polypeptides, while still sufficient to improve solubility. While the emulsion stabilizing performance of a protein fragment type is strongly dependent on the conformation it adopts on the interface, we find this to be less critical for the conjugated polypeptides. However, we argue that with increasing degree of hydrolysis, many small fragments will not have the chance to form bonds with polysaccharides. It is demonstrated that the abundance of these unreacted polypeptides in the system severely reduces the efficiency of the conjugated longer protein fragments, preventing their presence on the surface of the droplets through competitive adsorption process.
Collapse
Affiliation(s)
- Yue Ding
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Adem Zengin
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan Sakarya, Turkey
| | - Weiwei Cheng
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
| | - Libo Wang
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
23
|
Fuciños C, Rodríguez-Sanz A, García-Caamaño E, Gerbino E, Torrado A, Gómez-Zavaglia A, Rúa ML. Microfluidics potential for developing food-grade microstructures through emulsification processes and their application. Food Res Int 2023; 172:113086. [PMID: 37689862 DOI: 10.1016/j.foodres.2023.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 09/11/2023]
Abstract
The food sector continues to face challenges in developing techniques to increase the bioavailability of bioactive chemicals. Utilising microstructures capable of encapsulating diverse compounds has been proposed as a technological solution for their transport both in food and into the gastrointestinal tract. The present review discusses the primary elements that influence the emulsification process in microfluidic systems to form different microstructures for food applications. In microfluidic systems, reactions occur within small reaction channels (1-1000 μm), using small amounts of samples and reactants, ca. 102-103 times less than conventional assays. This geometry provides several advantages for emulsion and encapsulating structure production, like less waste generation, lower cost and gentle assays. Also, from a food application perspective, it allows the decrease in particle dispersion, resulting in a highly repeatable and efficient synthesis method that also improves the palatability of the food products into which the encapsulates are incorporated. However, it also entails some particular requirements. It is important to obtain a low Reynolds number (Re < approx. 250) for greater precision in droplet formation. Also, microfluidics requires fluid viscosity typically between 0.3 and 1400 mPa s at 20 °C. So, it is a challenge to find food-grade fluids that can operate at the micro-scale of these systems. Microfluidic systems can be used to synthesise different food-grade microstructures: microemulsions, solid lipid microparticles, microgels, or self-assembled structures like liposomes, niosomes, or polymersomes. Besides, microfluidics is particularly useful for accurately encapsulating bacterial cells to control their delivery and release on the action site. However, despite the significant advancement in these systems' development over the past several years, developing and implementing these systems on an industrial scale remains challenging for the food industry.
Collapse
Affiliation(s)
- Clara Fuciños
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain.
| | - Andrea Rodríguez-Sanz
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esther García-Caamaño
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina
| | - Ana Torrado
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina.
| | - María L Rúa
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| |
Collapse
|
24
|
Gao TT, Liu JX, Gao X, Zhang GQ, Tang XZ. Stability and Digestive Properties of a Dual-Protein Emulsion System Based on Soy Protein Isolate and Whey Protein Isolate. Foods 2023; 12:2247. [PMID: 37297491 PMCID: PMC10252216 DOI: 10.3390/foods12112247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The stability and digestive properties of a dual-protein emulsion consisting of soy protein isolate (SPI) and whey protein isolate (WPI) have been systematically studied. The results showed that the particle size and viscosity of the dual-protein emulsion system decreased continuously with the increase in WPI, and this might be related to the large amount of electric charge on the surface of the emulsion droplets. Dual-protein emulsions with ratios of 3:7 and 5:5 showed the highest emulsion activity, while emulsion stability increased with the increase in WPI. The thicker adsorption layer formed at the interface might have contributed to this phenomenon. After in-vitro-simulated digestion, the emulsion droplet particle size increased substantially due to the weakened electrostatic repulsion on the droplet surface, especially for the intestinal digestion phase. Meanwhile, WPI accelerated the release of free fatty acids in the digestion process, which played a positive role in the nutritional value of the dual-protein emulsion. In accelerated oxidation experiments, WPI also improved the antioxidant properties of the dual-protein emulsion system. This study will provide a new insight and necessary theoretical basis for the preparation of dual-protein emulsions.
Collapse
Affiliation(s)
- Ting-Ting Gao
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Jing-Xue Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xin Gao
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Guo-Qi Zhang
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xiao-Zhi Tang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
25
|
Structural characterization, interfacial and emulsifying properties of soy protein hydrolysate-tannic acid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
High hydrostatic pressure (HHP) as a green technology opens up a new possibility for the fabrication of electrospun nanofibers: Part I- improvement of soy protein isolate properties by HHP. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
Irfan S, Murtaza MA, Mueen ud Din G, Hafiz I, Murtaza MS, Rafique S, Ameer K, Abrar M, Mohamed Ahmed IA. Physicochemical, microbial, and functional attributes of processed Cheddar cheese fortified with olive oil-whey protein isolate emulsion. Food Sci Nutr 2023; 11:1247-1256. [PMID: 36911832 PMCID: PMC10003027 DOI: 10.1002/fsn3.3159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Olive (Olea europaea L.) has triacylglycerols, phenolics, and other antioxidants in its composition playing significant roles in maintaining health and reducing the onset of diseases. This study aimed to analyze the quality, antioxidant, textural profile, and sensory properties of processed Cheddar cheese fortified with 0%, 5%, 10%, 15%, and 20% (v/w) olive oil-whey protein isolate emulsion during 60 days of storage period. The results showed that processed cheese had significantly higher (p < .05) antioxidant activity, and total phenolic and flavonoids contents, whereas nonsignificant increase (p > .05) in moisture and acidity while decreasing tendencies in pH, fat, protein, and ash contents. Sensory analysis showed that processed Cheddar cheese with 5% emulsion had higher taste, aroma, texture/appearance, overall acceptability scores, and hardness. Conclusively, results indicated that olive oil-whey protein isolate emulsion could be beneficial for manufacturing and commercializing processed cheeses, analogs, or spreads with improved nutritional value and sensory characteristics.
Collapse
Affiliation(s)
- Shafeeqa Irfan
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
- Department of Food Science and TechnologyUniversity of Management and TechnologyLahorePakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Ghulam Mueen ud Din
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Iram Hafiz
- Institute of ChemistryUniversity of SargodhaSargodhaPakistan
| | - Mian Shamas Murtaza
- Department of Food Science and TechnologyMNS University of AgricultureMultanPakistan
| | - Sobia Rafique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Abrar
- Post Harvest Research Centre, Ayub Agricultural Research Institute38000FaisalabadPakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
- Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
28
|
Wang Y, Li Z, Li H, Selomulya C. Effect of hydrolysis on the emulsification and antioxidant properties of plant-sourced proteins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Yu C, Zheng L, Cai Y, Zhao Q, Zhao M. Desirable characteristics of casein peptides with simultaneously enhanced emulsion forming ability and antioxidative capacity in O/W emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Zhao X, Zheng H, Sun Y, Zhang M, Geng M, Li Y, Teng F. Effect of enzymatic hydrolysis conditions on structure of soy protein isolate/gum arabic complex and stability of oil-in-water emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4830-4842. [PMID: 35229290 DOI: 10.1002/jsfa.11846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The emulsifying, antioxidant and foaming properties of soy protein isolate hydrolysates (SPH) can be improved by the addition of gum arabic (GA). We investigated the effects of different hydrolysis conditions on the complexation of SPH and GA, and the effects of the complex on the properties of emulsions. RESULTS Fluorescence spectroscopy showed that the addition of GA had a stronger effect on bromelain and pepsin hydrolysates than trypsin hydrolysate, and therefore had a higher binding constant (KA ) and a larger number of binding sites (n). The addition of GA could also improve protein solubility and emulsifying ability. The emulsions prepared with complexes, especially the complex of GA and SPH obtained by pepsin hydrolysis for 3 h, had a high absolute charge value, uniform particle size distribution, stable morphology, and good storage stability. After storage, the emulsification index (CI) of the emulsion only increased to 23.08%; its 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity was 24.37 ± 1.22% and its 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+ ) free radical scavenging activity was largely retained. CONCLUSION During long-term storage, pepsin-treated protein (especially protein treated for 3 h) and GA can form a stable emulsion with antioxidant properties. This work provides new ideas for the development of natural and safe emulsifiers that have antioxidant properties and can be stored long-term and used in the food industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoming Zhao
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuanda Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Meng Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mengjie Geng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Peptide/protein hydrolysate and their derivatives: Their role as emulsifying agents for enhancement physical and oxidative stability of emulsions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Chen D, Rocha-Mendoza D, Shan S, Smith Z, García-Cano I, Prost J, Jimenez-Flores R, Campanella O. Characterization and Cellular Uptake of Peptides Derived from In Vitro Digestion of Meat Analogues Produced by a Sustainable Extrusion Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8124-8133. [PMID: 35730749 DOI: 10.1021/acs.jafc.2c01711] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Whether proteins in meat analogues (MAs) have the ability to provide equivalent nutrition as those in animal meat remains unknown. Herein, a MA was produced by high-moisture extrusion using soy and wheat proteins. The physicochemical properties, in vitro digestion, and cellular uptake of the released peptides were systematically compared between the MA and the chicken breast (CB). The MA showed a higher hardness but a lower degree of texturization than the CB. After simulated digestion, soluble peptides in the MA had a higher molecular weight and higher hydrophobicity. No observable cytotoxicity or inflammatory response to Caco-2 cells was found for both MA and CB digests. The former exhibited less permeability of peptides across Caco-2 cells. Liquid chromatography with tandem mass spectrometry found that the identified peptides in MA and CB digests contained 7-30 and 7-20 amino acid residues, respectively, and they became shorter after cellular transportation. The amino acid composition showed fewer essential and non-essential amino acids in the MA permeate than in the CB permeate.
Collapse
Affiliation(s)
- Da Chen
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Diana Rocha-Mendoza
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shengyue Shan
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary Smith
- Department of Civil, Environmental and Geodetic Environmental Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Israel García-Cano
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Julie Prost
- Clextral Inc., Tampa, Florida 33626, United States
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Osvaldo Campanella
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
34
|
Shahbazi M, Jäger H, Ettelaie R. Dual-Grafting of Microcrystalline Cellulose by Tea Polyphenols and Cationic ε-Polylysine to Tailor a Structured Antimicrobial Soy-Based Emulsion for 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21392-21405. [PMID: 35476424 PMCID: PMC9100494 DOI: 10.1021/acsami.1c19430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/12/2022] [Indexed: 06/02/2023]
Abstract
An imperative processing way to produce 3D printed structures with enhanced multifunctional properties is printing inks in the form of a gel-like colloidal emulsion. The surface-modified microcrystalline cellulose (MCC) is an excipient of outstanding merit as a particulate emulsifier to manufacture a stable Pickering emulsion gel. The tuning of the MCC structure by cationic antimicrobial compounds, such as ε-polylysine (ε-PL), can offer a surface activity with an antimicrobial effect. However, the MCC/ε-PL lacks the appropriate emulsifying ability due to the development of electrostatic complexes. To overcome this challenge, (i) a surface-active MCC conjugate was synthesized by a sustainable dual-grafting technique (ii) to produce a highly stable therapeutic soy-based Pickering emulsion gel (iii) for potential application in 3D printing. In this regard, the tea polyphenols were initially introduced into MCC by the free-radical grafting method to decrease the charge density of anionic MCC. Then, the antioxidative MCC-g-tea polyphenols were reacted by ε-PL to produce a dual-grafted therapeutic MCC conjugate (micro-biosurfactant), stabilizing the soy-based emulsion system. The results indicated that the dual-grafted micro-biosurfactant formed a viscoelastic and thixotropic soy-based emulsion gel with reduced droplet size and long-term stability. Besides, there was an improvement in the interfacial adsorption features of soy-protein particles after micro-biosurfactant incorporation, where the interfacial pressure and surface dilatational viscoelastic moduli were enhanced. Consequently, it was revealed that the therapeutic Pickering emulsion gel was more suitable to manufacture a well-defined 3D architecture with high resolution and retained permanent deformation after unloading (i.e., a recoverable matrix). This work established that the modification of the MCC backbone by tea polyphenols and ε-PL advances its bioactive properties and emulsifying performance, which finally obtains a soy-based 3D printed structure with noteworthy mechanical strength.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute
of Food Technology, University of Natural
Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Henry Jäger
- Institute
of Food Technology, University of Natural
Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Rammile Ettelaie
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
35
|
Kim W, Wang Y, Selomulya C. Impact of sodium alginate on binary whey/pea protein-stabilised emulsions. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Zhang S, Yin F, Zheng L, Zheng X, Yang Y, Xiao D, Ai B, Sheng Z. Steam‐exploded camellia (
Camellia oleifera
Abel.) seed protein improves the stability of camellia seed oil emulsions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shanying Zhang
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
- College of Food Science and Engineering Hainan University Haikou 570228 China
| | - Fengman Yin
- College of Life Sciences Hainan University Haikou 570228 China
| | - Lili Zheng
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Xiaoyan Zheng
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Yang Yang
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Dao Xiao
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Binling Ai
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Zhanwu Sheng
- Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| |
Collapse
|
37
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
38
|
Wang S, Liu X, Zhao G, Li Y, Yang L, Zhu L, Liu H. Protease-induced soy protein isolate (SPI) characteristics and structure evolution on the oil–water interface of emulsion. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Gruppi A, Dermiki M, Spigno G, FitzGerald RJ. Impact of Enzymatic Hydrolysis and Heat Inactivation on the Physicochemical Properties of Milk Protein Hydrolysates. Foods 2022; 11:foods11040516. [PMID: 35205992 PMCID: PMC8871203 DOI: 10.3390/foods11040516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
This study determined the physicochemical properties (apparent viscosity (ηapp), turbidity (A550nm), particle size and molecular mass distribution) of hydrolysates generated from whey protein concentrate (WPC), milk protein concentrate (MPC) and sodium caseinate (NaCN), following incubation with Debitrase HYW20™ and Prolyve™ at 50 °C, pH 7.0 for 1 and 4 h, before and after heat inactivation (80 °C for 10 min). The degree of hydrolysis (DH) increased with incubation time, giving values of 6.56%, 8.17% and 9.48%, following 1 h hydrolysis of WPC, MPC and NaCN with Debitrase HYW20™, and 12.04%, 15.74% and 17.78%, respectively, following 4 h incubation. These DHs were significantly higher compared to those obtained following 4 h incubation with Prolyve™. Hydrolysis with Debitrase HYW20™ gave >40% of peptides with molecular masses < 1 kDa for all substrates, which was higher than the value obtained following hydrolysis with Prolyve™. The effect of hydrolysis on the physicochemical properties was substrate dependent, since ηapp decreased in WPC and NaCN hydrolysates, particle size decreased for all the substrates, with aggregate formation for MPC, and turbidity decreased in WPC and MPC hydrolysates, while it increased in NaCN hydrolysates. The physical properties of the hydrolysates were influenced by the enzyme thermal inactivation step in a DH-dependent manner, with no significant effect on turbidity and viscosity for hydrolysates at higher DHs.
Collapse
Affiliation(s)
- Alice Gruppi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.D.); (R.J.F.)
| | - Maria Dermiki
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.D.); (R.J.F.)
- Faculty of Science, Institute of Technology Sligo, F91 YW50 Sligo, Ireland
| | - Giorgia Spigno
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
- Correspondence:
| | - Richard J. FitzGerald
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.D.); (R.J.F.)
| |
Collapse
|
40
|
Emulsifying and emulsion stabilizing properties of hydrolysates of high-density lipoprotein from egg yolk. Food Chem 2022; 369:130891. [PMID: 34507089 DOI: 10.1016/j.foodchem.2021.130891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoprotein (HDL) was extracted from hen eggs and enzymatic hydrolysates were formed by neutral protease, trypsin and alkaline protease, which were named as EHN, EHT and EHA, respectively. The solubility of hydrolysates was significantly higher than that of HDL, especially that of EHA significantly increased from 7.69% to 27.54% when it was hydrolyzed for 1.5 h. The emulsifying properties of EHT, EHA and EHN exhibited an increase trend as a function of hydrolysis time and reached the peak values at 3.5, 1.5 and 3.5 h, respectively. This improvement was attributed to the generation of soluble peptides fragments and the exposure of ionizable residues. At different pH, temperatures and ionic strengths, the stability of emulsions stabilized by hydrolysates was higher than that of HDL, especially for emulsions prepared by EHT. These findings might indicate feasible guidance to broaden the application of HDL and enzymatic hydrolysates in emulsions.
Collapse
|
41
|
Zhao H, Wang S, Zhao G, Li Y, Liu X, Yang L, Zhu L, Liu H. Fabrication and emulsifying properties of non-covalent complexes between soy protein isolate fibrils and soy soluble polysaccharides. Food Funct 2022; 13:386-397. [PMID: 34908089 DOI: 10.1039/d1fo01604k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-covalent complexes (SPIF/SSPS) of soy protein isolate fibrils (SPIF) and soy soluble polysaccharides (SSPS) were fabricated and used to stabilize oil-in-water (O/W) emulsions. FT-IR spectroscopy and zeta potential results demonstrated that the interactions between SPIF and SSPS mainly include hydrogen bonding and electrostatic interactions. The presence of SSPS decreased the particle size and surface hydrophobicity of SPIF, resulting in a decrease and redshift of the fluorescence intensity. During the interfacial adsorption process, SPIF/SSPS complexes had lower diffusion and penetration rates compared with pure SPIF because of their hydrophilic region, but the molecular reorganization rate increased. Emulsions stabilized with the SPIF/SSPS complex at 5 : 5 (i.e., 1 : 1) ratio had both an excellent emulsifying activity index (EAI) of 26.17 m2 g-1 and an excellent emulsifying stability index (ESI) of 93.01%, as well as the smallest emulsion droplet particle size of 1.74 μm. Meanwhile, no flocculation was observed in this emulsion which is attributed to the sufficient steric stabilization provided by the hydrophilic SSPS. After three weeks of storage, there was no phase separation observed in the emulsions stabilized by SPIF/SSPS complexes in 5 : 4 and 5 : 5 ratios and the Turbiscan stability indices were 17.86 and 15.14, respectively, much lower than the other emulsion formulations tested.
Collapse
Affiliation(s)
- Hekai Zhao
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin 150000, China
| | - Guilan Zhao
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Yangyang Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Xiulin Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Lijie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|
42
|
A Study on the Skin Whitening Activity of Digesta from Edible Bird's Nest: A Mucin Glycoprotein. Gels 2021; 8:gels8010024. [PMID: 35049559 PMCID: PMC8774831 DOI: 10.3390/gels8010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Edible bird’s nest (EBN) is an unusual mucin glycoprotein. In China, it is popular among consumers due to its skin whitening activity. However, the relationship between protein, sialic acid, and the whitening activity of EBN after digestion is still unclear. In the present work, the whitening activity (antioxidant activity and tyrosinase inhibitory activity) of digested EBN were studied by HepG2 and B16 cell models. The dissolution rate of protein and sialic acid was 49.59% and 46.45% after the simulated digestion, respectively. The contents of free sialic acid and glycan sialic acid in EBN digesta were 17.82% and 12.24%, respectively. HepG2 cell experiment showed that the digested EBN had significant antioxidant activity, with EC50 of 1.84 mg/mL, and had a protective effect on H2O2-induced oxidative damage cells. The results of H2O2-induced oxidative damage showed that the cell survival rate increased from 40% to 57.37% when the concentration of digested EBN was 1 mg/mL. The results of the B16 cell experiment showed that the digested EBN had a significant inhibitory effect on tyrosinase activity, and the EC50 value of tyrosinase activity was 7.22 mg/mL. Cell experiments showed that free sialic acid had stronger antioxidant activity and tyrosinase inhibitory activity than glycan sialic acid. The contribution rate analysis showed that protein component was the main antioxidant component in digestive products, and the contribution rate was 85.87%; free sialic acid was the main component that inhibited tyrosinase activity, accounting for 63.43%. The products of the complete digestion of EBN are suitable for the development of a new generation of whitening health products.
Collapse
|
43
|
Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106967] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Du Q, Wang S, Lyu F, Liu J, Ding Y. The interfacial covalent bonding of whey protein hydrolysate and pectin under high temperature sterilization: Effect on emulsion stability. Colloids Surf B Biointerfaces 2021; 206:111936. [PMID: 34214839 DOI: 10.1016/j.colsurfb.2021.111936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
In this study, the effect of high-pressure steam sterilization (121 °C for 15 min) on whey protein hydrolysate-pectin solutions and emulsions was studied. The interaction and emulsification characteristics of pectin and whey protein concentrate (WPC) were evaluated from the solution system to the emulsion system. Enzymatic hydrolysis of WPC (WPH, 2 % and 8 % degree of hydrolysis) increased the covalent binding with pectin, which reduced the heat-induced aggregation of protein and improved emulsification. The thermodynamic incompatibility between WPC and pectin was not conducive to the covalent bonding under high temperature sterilization and produced serious aggregates, which also made a rapid increase in particle size (up to ∼3 μm), compared to WPH-pectin emulsion (∼ 400 nm). In addition, if emulsion was stirred during the sterilization, the creaming and protein aggregation could be avoided. By comparing low methoxy pectin (LMP) and high methoxy pectin (HMP), it was found that the whey protein-HMP complex had better emulsification stability, and the steric stabilization played a more important role in emulsion stability than the electrostatic repulsion. The changes of whey protein and pectin at the oil-water interface of the emulsion during the sterilization process may provide a reference for the sterilized bioactive ingredient delivery system.
Collapse
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China
| | - Shunyu Wang
- Liziyuan Food Limited Liability Company, Zhejiang, 321031, PR China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China.
| |
Collapse
|
45
|
Naik RR, Wang Y, Selomulya C. Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products. Crit Rev Food Sci Nutr 2021; 62:7036-7061. [PMID: 33849344 DOI: 10.1080/10408398.2021.1910139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plant-derived protein research has gained attention in recent years due to the rise of health concerns, allergenicity, trends toward vegan diet, food safety, and sustainability; but the lower techno-functional attributes of plant proteins compared to those of animals still remain a challenge for their utilization. Maillard conjugation is a protein side-chain modification reaction which is spontaneous, and do not require additional chemical additive to initiate the reaction. The glycoconjugates formed during the reaction significantly improves the thermal stability and pH sensitivity of proteins. The modification of plant-derived protein using Maillard conjugation requires a comprehensive understanding of the influence of process conditions on the conjugation process. These factors can be used to establish a correlation with different functional and bioactive characteristics, to potentially adapt this approach for selective functionality enhancement and nutraceutical development. This review covers recent advances in plant-derived protein modification using Maillard conjugation, including different pretreatments to modify the functionality and bioactivity of plant proteins and their potential uses in practice. An overview of different properties of conjugates and MRPs, including food safety aspects, is given.
Collapse
Affiliation(s)
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW, Australia
| | | |
Collapse
|