1
|
Oliveira DDS, Gomes GC, Rocha LCS, Rotella Junior P, Aquila G, Bernardes PA, Janda K. Energy and stochastic economic assessment for distributed power generation from Manipueira biogas. ENVIRONMENTAL TECHNOLOGY 2024; 45:1608-1621. [PMID: 36377751 DOI: 10.1080/09593330.2022.2148569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Cassava is a staple food in many countries, and this food source differs from other crops in that its processing generates a highly polluting and toxic residue (manipueira) that requires further treatment. The present study analyzed the economic feasibility of anaerobic digestion of manipueira for producing clean electricity through distributed generation (DG) while simultaneously eliminating toxic compounds. This eliminates the toxic residues. For this, an approach for the sizing of DG plants from manipueira biogas was presented, a non-trivial task which is not widespread in the literature. For two plants with different capacities, a deterministic economic analysis was carried out based on the criteria of Net Present Value, Internal Rate of Return, and Discounted Payback. Finally, the project risk was assessed through a sensitivity and stochastic analysis using Monte Carlo Simulation. The empirical verification was done on Brazilian data. When considering the NPV criterion, the results indicate a feasibility probability of 9.25% and 81.21% for scenarios 01 and 02, respectively. The results show that scale gains were important in reducing the impact of the investment and, at the same time, the larger scale of the project makes the cost of capital more relevant to the result. These findings show the need for subsidies for the investment, in addition to the promotion of specific credit lines that enable small-scale generation, or that can improve results in greater capacity.
Collapse
Affiliation(s)
- Denner Dos Santos Oliveira
- Management Department, Federal Institute of Education, Science and Technology - North of Minas Gerais, Almenara, Brazil
| | - Gabriel Costa Gomes
- Management Department, Federal Institute of Education, Science and Technology - North of Minas Gerais, Almenara, Brazil
| | - Luiz Célio Souza Rocha
- Management Department, Federal Institute of Education, Science and Technology - North of Minas Gerais, Almenara, Brazil
| | - Paulo Rotella Junior
- Department of Production Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - Giancarlo Aquila
- Institute of Production Engineering and Management, Federal University of Itajubá, Itajubá, Brazil
| | - Pedro Alberto Bernardes
- Institute of Production Engineering and Management, Federal University of Itajubá, Itajubá, Brazil
| | - Karel Janda
- Faculty of Finance and Accounting, Prague University of Economics and Business, Prague, Czech Republic
| |
Collapse
|
5
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
6
|
Leksawasdi N, Chaiyaso T, Rachtanapun P, Thanakkasaranee S, Jantrawut P, Ruksiriwanich W, Seesuriyachan P, Phimolsiripol Y, Techapun C, Sommano SR, Ougizawa T, Jantanasakulwong K. Corn starch reactive blending with latex from natural rubber using Na + ions augmented carboxymethyl cellulose as a crosslinking agent. Sci Rep 2021; 11:19250. [PMID: 34584182 PMCID: PMC8479073 DOI: 10.1038/s41598-021-98807-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
A mixture of corn starch and glycerol plasticizer (CSG) was blended with latex natural rubber (LNR) and carboxymethyl cellulose (CMC). The addition of 10 phr of CMC improved the Young's modulus (6.7 MPa), tensile strength (8 MPa), and elongation at break (80%) of the CSG/LNR blend. The morphology of the CSG/LNR/CMC blends showed a uniform distribution of LNR particles (1-3 µm) in the CSG matrix. The addition of CMC enhanced the swelling ability and water droplet contact angle of the blends owing to the swelling properties, interfacial crosslinking, and amphiphilic structure of CMC. Fourier transform infrared spectroscopy confirmed the reaction between the C=C bond of LNR and the carboxyl groups (-COO-) of CMC, in which the Na+ ions in CMC acted as a catalyst. Notably, the mechanical properties of the CSG/LNR/CMC blend were improved owing to the miscibility of CSG/CMC and the CMC/LNR interfacial reaction. The CSG/LNR/CMC biodegradable polymer with high mechanical properties and interfacial tension can be used for packaging, agriculture, and medical applications.
Collapse
Affiliation(s)
- Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Sarinthip Thanakkasaranee
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Charin Techapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Toshiaki Ougizawa
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
| |
Collapse
|