1
|
Zhang J, Ni Y, Li J, Yan X, Fan L. Effects of starch-tea polyphenol complexes on the structure features of reconstituted doughs and oil absorption of potato crisps. Food Chem 2025; 463:141277. [PMID: 39316907 DOI: 10.1016/j.foodchem.2024.141277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
The structural features of reconstituted doughs play a crucial role in determining the oil uptake properties of fried potato crisps. Wheat starch (WS), corn starch (CS), potato starch (PS), or tapioca starch (TS) and tea polyphenols (TPs) complexes were prepared, and their effects on the physicochemical and structural properties of reconstituted dough and oil uptake of potato crisps were investigated. A denser and consistent network structure was observed in the reconstituted dough produced by PS-TPs and TS-TPs complexes. Thus, the reconstituted dough prepared using PS-TPs and TS-TPs complexes displayed slower water evaporation and less matrix swelling during frying, leading to a denser matrix and limited oil uptake of potato crisps. The potato crisps with PS-TPs and TS-TPs complexes had 20.83 % and 10.15 % lower oil content. Consequently, the starch-TPs complexes can be used to improve the properties of reconstituted doughs and produce fried snacks with lower oil content.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yang Ni
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xiaowei Yan
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi 542899, China.
| | - Liuping Fan
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi 542899, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Ranasinghe M, Stathopoulos C, Sundarakani B, Maqsood S. Valorizing date seeds through ultrasonication to enhance quality attributes of dough and biscuit, Part-1: Effects on dough rheology and physical properties of biscuits. ULTRASONICS SONOCHEMISTRY 2024; 109:107015. [PMID: 39142027 PMCID: PMC11379672 DOI: 10.1016/j.ultsonch.2024.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
In the present study, non-conventional and green technology (ultrasonication) was utilized to recover bioactive compounds from the small, medium and large sized defatted date seed powder (DDSP) particles. Bioactive compounds recovered from DDSP and the remaining fiber-rich residue were incorporated as functional ingredient in the biscuit dough to enhance the functionality and the quality characteristics of the dough and biscuit. The polyphenolic extract and 2.5 %, 5 % and 7.5 % substitution levels of fiber-rich extraction residue were incorporated in formulations followed by investigating the effect on rheological, physical and microstructural properties of dough and biscuit. Loss and storage moduli, G'' and G', respectively, of dough increased with decreasing particle size and increasing substitution level while tan δ decreased with increasing substitution level of fiber-rich extraction residue. The smallest particles at 7.5 % substitution level resulted in the lowest creep strain value in dough. Hardness of the dough and biscuit increased with decreasing particle size and increasing substitution level of the residue. The 7.5 % substitution level of the smallest particle size resulted in the darkest dough and biscuit. Spread ratio and diameter of the biscuit decreased with increasing substitution level of the residue. The smallest diameter of 50.61 mm and spread ratio of 8.36 was observed in the biscuits substituted with the largest particle size with 7.5 % substitution level. Microstructural images of dough and biscuit revealed that the continuity of the gluten network was disrupted by the incorporation of the fiber-rich extraction residue. This study provided valuable insights into extracting bioactive components from date by-products using green ultrasonication technique and utilizing such compounds to improve functional attributes of bakery products, as a sustainable approach for valorizing date by-products.
Collapse
Affiliation(s)
- Meththa Ranasinghe
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Constantinos Stathopoulos
- Food Futures Institute, Murdoch University, Australia; Faculty of Health, University of Canberra, Australia
| | - Balan Sundarakani
- Faculty of Business, University of Wollongong in Dubai, 20183, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
3
|
Pietiäinen S, Lee Y, Jimenez-Quero A, Katina K, Maina NH, Hansson H, Moldin A, Langton M. Feruloylation and Hydrolysis of Arabinoxylan Extracted from Wheat Bran: Effect on Dough Rheology and Microstructure. Foods 2024; 13:2309. [PMID: 39123502 PMCID: PMC11311401 DOI: 10.3390/foods13152309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Feruloylated arabinoxylan (AX) is a potential health-promoting fiber ingredient that can enhance nutritional properties of bread but is also known to affect dough rheology. To determine the role of feruloylation and hydrolysis of wheat bran AX on dough quality and microstructure, hydrolyzed and unhydrolyzed AX fractions with low and high ferulic acid content were produced, and their chemical composition and properties were evaluated. These fractions were then incorporated into wheat dough, and farinograph measurements, large and small deformation measurements and dough microstructure were assessed. AX was found to greatly affect both fraction properties and dough quality, and this effect was modulated by hydrolysis of AX. These results demonstrated how especially unhydrolyzed fiber fractions produced stiff doughs with poor extensibility due to weak gluten network, while hydrolyzed fractions maintained a dough quality closer to control. This suggests that hydrolysis can further improve the baking properties of feruloylated wheat bran AX. However, no clear effects from AX feruloylation on dough properties or microstructure could be detected. Based on this study, feruloylation does not appear to affect dough rheology or microstructure, and feruloylated wheat bran arabinoxylan can be used as a bakery ingredient to potentially enhance the nutritional quality of bread.
Collapse
Affiliation(s)
- Solja Pietiäinen
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden; (K.K.); (H.H.); (M.L.)
- Lantmännen ek för, Sankt Göransgatan 160, 112 17 Stockholm, Sweden;
| | - Youngsun Lee
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (Y.L.); (N.H.M.)
| | - Amparo Jimenez-Quero
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Kati Katina
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden; (K.K.); (H.H.); (M.L.)
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (Y.L.); (N.H.M.)
| | - Ndegwa H. Maina
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (Y.L.); (N.H.M.)
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden; (K.K.); (H.H.); (M.L.)
| | - Annelie Moldin
- Lantmännen ek för, Sankt Göransgatan 160, 112 17 Stockholm, Sweden;
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden; (K.K.); (H.H.); (M.L.)
| |
Collapse
|
4
|
Sempio R, Segura Godoy C, Nyhan L, Sahin AW, Zannini E, Walter J, Arendt EK. Closing the Fibre Gap-The Impact of Combination of Soluble and Insoluble Dietary Fibre on Bread Quality and Health Benefits. Foods 2024; 13:1980. [PMID: 38998486 PMCID: PMC11241219 DOI: 10.3390/foods13131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Dietary fibre (DF) is important for overall health and disease prevention. However, the intake of DF in Westernised countries is below the recommended level, largely due to the excessive consumption of low-fibre foods. Fortifying staple foods, such as bread, with dietary fibre ingredients is one approach to closing the fibre gap in our diet. However, incorporating purified and chemically modified fibre ingredients into food is challenging. This study unveils interactions between soluble-fermentable (arabinoxylan), insoluble-fermentable (resistant starch type IV) and insoluble-unfermentable (cellulose) fibre ingredients and their impact on bread quality using Response Surface Methodology. This resulted in an optimised mixture of these fibre ingredients that can coexist within a bread matrix while maintaining quality characteristics comparable to white wheat bread. The partial replacement of flour with fibre ingredients led to an interference with the gluten network causing a reduction in gluten strength by 12.4% and prolonged gluten network development time by 24.4% compared to the control (no fibre addition). However, the CO2 retention coefficient during dough fermentation was not affected by fibre ingredient inclusion. The fibre content of the white bread was increased by 128%, with only a marginal negative impact on bread quality. Additionally, the fibre-fortified bread showed a lower release of reducing sugars during in vitro starch digestion. This study illustrates the synergy of different types of fibre ingredients in a bread system to advance in closing the fibre gap.
Collapse
Affiliation(s)
- Rebecca Sempio
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Celia Segura Godoy
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Jens Walter
- School of Microbiology, Department of Medicine, University College Cork, T12 Y337 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12YT20 Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
- APC Microbiome Ireland, University College Cork, T12YT20 Cork, Ireland
| |
Collapse
|
5
|
Nishitsuji Y, Whitney K, Hayakawa K, Simsek S. Dynamic changes in ferulic acid and diferulic acids in wheat flour doughs during the breadmaking process. Food Chem 2024; 443:138524. [PMID: 38295571 DOI: 10.1016/j.foodchem.2024.138524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Ferulic acid (FA), a phytochemical concentrated in wheat bran, influences structural characteristics of arabinoxylan (AX) and rheological properties of wheat dough. This study investigates the dynamic changes in FA and diferulic acids, closely associated with AX molecular weight, during the breadmaking process. FA predominantly exists in a tightly bound state within the arabinoxylan matrix, with a substantial increase in free FA content observed during the initial fermentation phase. Furthermore, this research identified four specific wheat-derived diferulic acids: 8-5'-DFA, 5-5'-DFA, 8-O-4'-DFA, and 8-5'-DFA (benzofuran form), tracking their variations throughout breadmaking. The notable upsurge in diferulic acid levels in the early fermentation stages suggests that the cleavage of ferulic acid moieties may not be the primary factor contributing to the reduction in AX molecular weight. Future investigations into the effects of FA and diferulic acids on arabinoxylan and wheat dough properties promise to enhance understanding of the intricacies of the breadmaking process.
Collapse
Affiliation(s)
- Yasuyuki Nishitsuji
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan.
| | - Kristin Whitney
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Senay Simsek
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Yan X, Luo S, Ye J, Liu C. Effect of starch degradation induced by extruded pregelatinization treatment on the quality of gluten-free brown rice bread. Int J Biol Macromol 2024; 272:132764. [PMID: 38821309 DOI: 10.1016/j.ijbiomac.2024.132764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
There is considerable interest in preparing high-quality gluten-free bread. The effect of the molecular structure of extruded pregelatinization starch on the dough's rheological properties and the brown rice bread's quality was investigated. Extruded rice starch (ERS) was prepared with various added moisture contents of 20 % (ERS20), 30 % (ERS30), and 40 % (ERS40), respectively. ERS had smaller molecular weight and more short branched chains as the moisture content decreased. The dough elasticity and deformation resistance were improved with the ERS supplementation and in the order of ERS40 > ERS30 > ERS20 at the same level. Fortification with ERS improved the gluten-free brown rice bread quality. Compared to the control group, breadcrumbs supplemented with ERS20 at the 10 % level showed an increase in cell density from 17.87 cm-2 to 28.32 cm-2, a decrease in mean cell size from 1.22 mm2 to 0.81 mm2, and no significant change in cell area fraction. In addition, the specific volume increased from 1.50 cm3/g to 2.04 cm3/g, the hardness decreased from 14.34 N to 6.28 N, and the springiness increased from 0.56 to 0.74. The addition of extruded pregelatinization starches with smaller molecular weights and higher proportions of short chains is promising for preparing high-quality gluten-free bread.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China.
| |
Collapse
|
7
|
Han TY, Guo XN, Zhu KX. Insights into the mechanisms underlying ethanol-induced changes in the dough mechanical properties and quality characteristics of fresh noodles. Food Chem 2024; 440:138205. [PMID: 38113647 DOI: 10.1016/j.foodchem.2023.138205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
This study investigated the effects of ethanol (0 %∼6%) on the dough mechanical properties and quality characteristics of fresh noodles and elucidated the relationship between the above changes and physicochemical, structural, and molecular properties of gluten. Ethanol reduced the water absorption (from 59.00 % to 52.33 %), stability time (from 8.17 min to 3.33 min) and viscoelasticity of dough, and increased the development time, weakening degree and compliance. Ethanol also decreased the fracture stress of dough sheet, and increased fracture elongation and adhesiveness (from 46.15 g·s to 75.88 g·s). Ethanol decreased the noodles' hardness (from 5347.41 g to 4442.34 g), break force, tensile distance, and water absorption, while cooking loss was increased. SEM and CLSM showed that ethanol destroyed the compactness of internal structure and inhibited the formation of gluten network in noodles. According to the results of SE-HPLC and RP-HPLC, ethanol dissolved part of the gliadin and inhibited the polymerization of protein.
Collapse
Affiliation(s)
- Tian-Yang Han
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China.
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China.
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China.
| |
Collapse
|
8
|
Gao M, Hu Z, Yang Y, Jin Z, Jiao A. Effect of different molecular weight β-glucan hydrated with highland barley protein on the quality and in vitro starch digestibility of whole wheat bread. Int J Biol Macromol 2024; 268:131681. [PMID: 38643913 DOI: 10.1016/j.ijbiomac.2024.131681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and β-glucan. This study investigated the effects of β-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that β-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.
Collapse
Affiliation(s)
- Mengfei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhongbo Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
9
|
Zhang J, Li J, Fan L. Effect of starch granule size on the properties of dough and the oil absorption of fried potato crisps. Int J Biol Macromol 2024; 268:131844. [PMID: 38663708 DOI: 10.1016/j.ijbiomac.2024.131844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Starch is a key element in fried potato crisps, however, the effect of starch granule size on oil absorption of the product have yet to be fully investigated. The study explored the impact of starch granule size on both the dough characteristics and oil absorption in potato crisps. The dough composed of small-sized potato granules showed more compact and uniform network system. Additionally, X-ray Microscope analysis showed that potato crisps prepared with small-sized potato granules had limited matrix expansion and fewer pores, cracks, and voids. The small-sized potato and small-sized wheat starches granule addition crisps displayed a significantly greater average cell thickness (52.05 and 53.44 μm) than other samples, while exhibiting notably lower average porosity (61.37 % and 60.28 %) compared to other samples. Results revealed that potato crisps with medium and small potato granules had 12.91 % and 21.92 % lower oil content than those containing large potato starch. Potato crisps with B-type wheat starch showed 16.36 % less oil absorption than those with A-type wheat starch. Small-sized starches significantly influence the dough structure and contribute to the reduction of oil absorption in fried products. The generated insights may provide monitoring indexes for cultivating potato varieties with low oil absorption.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, 542899, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Chen H, Huang J, Su Y, Fu M, Kan J. Effects of oil and heating on the physicochemical and microstructural properties of gluten-starch dough. Food Chem 2024; 436:137571. [PMID: 37832423 DOI: 10.1016/j.foodchem.2023.137571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Oil has crucial applications for improving the quality of some wheat products during dough formation and heat-processing. Herein, the influence of oil modification and thermal-mechanical treatment on dough prepared mainly with wheat starch and gluten was investigated. Oils with different structures addition reduced the hardness but improved the tensile strength of dough and inhibited starch retrogradation. Oil also reduced the disulfide bond, hydrogen bond and hydrophobic interactions whilst changed the rheology of dough. The X-ray diffraction patterns were characterised by new weak peaks at approximately 12.9°, and 19.8°, indicating that thermal-mechanical treatment promoted the formation of V-type complexes. Oil modification impaired dough short-range ordered structure, but prevented part starch granule crystallinity degradation caused by thermal-mechanical treatment. Scanning electron microscopy revealed oil modification and thermal-mechanical treatment synergistically affected starch-gluten agglomeration. Our findings contributed to elucidate the influence of oil modification and thermal-mechanical treatment on dough functionality.
Collapse
Affiliation(s)
- Huijing Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Jun Huang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Yaoyao Su
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Mingze Fu
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Rao Z, Kou F, Wang Q, Lei X, Zhao J, Ming J. Effect of superfine grinding chestnut powder on the structural and physicochemical properties of wheat dough. Int J Biol Macromol 2024; 259:129257. [PMID: 38191111 DOI: 10.1016/j.ijbiomac.2024.129257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
This study evaluated the influence of chestnut powder, produced using ball mill superfine grinding (BMSG), jet superfine grinding (JSG), and ordinary grinding (OG), on wheat flour properties. Blending wheat flour with chestnut powder resulted in a darker flour blend (3 % decline of L*), with decreased the tap density and increased water holding capacity. Adding appropriate proportion of superfine chestnut powder can bolster the mixed flour's thermal stability (15 % BMSG/JSG) and freeze-thaw stability (10 % BMSG/JSG), while significantly enhancing the anti-aging properties of flour products. The proposition of 5 % superfine BMSG/JSG did not significantly affect the tensile resistance of the dough, and even improve the dough's tensile strength. In addition, the hardness, adhesiveness, springiness and pH of fermentation increased due to the addition of chestnut powder, as supported by the dough texture analyses and fermentation characteristics findings. However, the excessive addition of chestnut powder affected the dough network's structural integrity to some extent. Further study can focus on the influencing mechanism of chestnut powder on gluten formation and related nutritional properties. Overall, this research underscores the potential of utilizing chestnut powder to enhance the nutritional and functional qualities of wheat-based products.
Collapse
Affiliation(s)
- Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fubing Kou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
12
|
Guo Z, Huang J, Mei X, Sui Y, Li S, Zhu Z. Noncovalent Conjugates of Anthocyanins to Wheat Gluten: Unraveling Their Microstructure and Physicochemical Properties. Foods 2024; 13:220. [PMID: 38254520 PMCID: PMC10815003 DOI: 10.3390/foods13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Intake of polyphenol-modified wheat products has the potential to reduce the incidence of chronic diseases. In order to determine the modification effect of polyphenols on wheat gluten protein, the effects of grape skin anthocyanin extract (GSAE, additional amounts of 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, respectively) on the microstructure and physicochemical properties of gluten protein were investigated. The introduction of GSAE improves the maintenance of the gluten network and increases viscoelasticity, as evidenced by rheological and creep recovery tests. The tensile properties of gluten protein were at their peak when the GSAE level was 0.3%. The addition of 0.5% GSAE may raise the denaturation temperature of gluten protein by 6.48 °C-9.02 °C at different heating temperatures, considerably improving its thermal stability. Furthermore, GSAE enhanced the intermolecular hydrogen bond of gluten protein and promoted the conversion of free sulfhydryl groups to disulfide bonds. Meanwhile, the GSAE treatment may also lead to protein aggregation, and the average pore size of gluten samples decreased significantly and the structure became denser, indicating that GSAE improved the stability of the gluten spatial network. The positive effects of GSAE on gluten protein properties suggest the potential of GSAE as a quality enhancer for wheat products.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jian Huang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Mei
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.M.); (Y.S.)
| | - Yong Sui
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.M.); (Y.S.)
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
| | - Zhenzhou Zhu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
13
|
Song J, Jiang L, Qi M, Han F, Li L, Xu M, Li Y, Zhang D, Yu S, Li H. Influence of magnetic field on gluten aggregation behavior and quality characteristics of dough enriched with potato pulp. Int J Biol Macromol 2024; 254:128082. [PMID: 37972838 DOI: 10.1016/j.ijbiomac.2023.128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
This study investigated the effect of varying magnetic field intensities (ranging from 0 to 10 mT) on the quality characteristics of dough with 40 % potato pulp substitution (DPP). The results indicated that the DPP fermented with a 4 mT magnetic field exhibited a significant enhancement in the combination of water and substrate, thereby elevating the viscoelastic properties of DPP through reinforcing the stability of gluten network. Meanwhile, DPP treated with a 4 mT magnetic field exhibited the highest amount of disulfide bonds (11.64 μmol SS/g sample). This is accompanied by a prominent cross-linkage structure, as evidenced by SDS-PAGE and CLSM. Notably, the application of a magnetic field substantially augments the dough's capacity to retain gas during fermentation. In addition, the application of magnetic field significantly increased the wet gluten content (20.85 %, P < 0.05) in DPP, which improved tensile properties and an acceptable color profile. The introduction of a magnetic field induces gluten aggregation, which in turn results in heightened particle size distribution and ζ-potential values. In conclusion, this study emphasize the potential of magnetic field technology as a viable method to enhance the overall quality attributes of dough enriched with potato pulp substitution.
Collapse
Affiliation(s)
- Jialin Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Lijun Jiang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Mingming Qi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Feng Han
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Luxia Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Mei Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Yueming Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Dongliang Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Shifeng Yu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China.
| | - Hongjun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China.
| |
Collapse
|
14
|
Li M, Li L, Sun B, Ma S. Interaction of wheat bran dietary fiber-gluten protein affects dough product: A critical review. Int J Biol Macromol 2024; 255:128199. [PMID: 37979754 DOI: 10.1016/j.ijbiomac.2023.128199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Wheat bran dietary fiber (WBDF) is an emerging food additive used for improving the nutritional value of dough products, albeit its adverse effects cannot be ignored. The dilution effect, mechanical shear effect, competitive water absorption, and steric hindrance of WBDF, as well as the non-covalent binding between WBDF and gluten protein, are considered the key mechanisms underlying the WBDF-gluten protein interaction. However, current studies on the interaction are mostly limited to the impact of the interaction on gluten protein and are rarely focused on the quality of products. Therefore, the effects of the interaction on the structural characteristics and aggregation behavior of gluten protein and multiple involved mechanisms are discussed in this review. On this basis, these changes are systematically related to the gluten network structure, dough properties, and product quality. Mitigation measures corresponding to negative impacts also need to be elaborated to guide and standardize the production and development of dough products containing WBDF.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Li Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Homyuen A, Vanitjinda G, Yingkamhaeng N, Sukyai P. Microcrystalline Cellulose Isolation and Impregnation with Sappan Wood Extracts as Antioxidant Dietary Fiber for Bread Preparation. ACS OMEGA 2023; 8:31100-31111. [PMID: 37663459 PMCID: PMC10468960 DOI: 10.1021/acsomega.3c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Microcrystalline cellulose (MCC) has gained considerable attention as a functional ingredient in bread making. This work demonstrates the isolation of MCC from sugar cane bagasse (SCB) for preparing bread. The effect of MCC on bread attributes and antioxidant activity by impregnation with sappan wood extract (SAP) was evaluated. The highest crystallinity index and suitable size of MCC were achieved at 85 °C under 90 min hydrolysis condition. Increasing MCC/SAP levels in bread showed a significant increase in bread color with decreases in the specific volume and baking loss. There was a positive correlation between bread texture and the MCC/SAP level. The addition of MCC/SAP interfered with the bread hardness. Low MCC/SAP levels have no effect on springiness and cohesiveness; however, 4% MCC/SAP has significantly decreased these attributes, with the highest antioxidant activity and phenolic content. Therefore, MCC can be functionalized with SAP as an antioxidant fiber additive for health benefits in bakery products.
Collapse
Affiliation(s)
- Athitaya Homyuen
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Gawisara Vanitjinda
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Naiyasit Yingkamhaeng
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University
Institute for Advanced Studies, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
16
|
Gutiérrez ÁL, Villanueva M, Rico D, Harasym J, Ronda F, Martín-Diana AB, Caballero PA. Valorisation of Buckwheat By-Product as a Health-Promoting Ingredient Rich in Fibre for the Formulation of Gluten-Free Bread. Foods 2023; 12:2781. [PMID: 37509873 PMCID: PMC10379109 DOI: 10.3390/foods12142781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bread is a widely consumed food that has often been used as a vehicle for functional ingredients such as dietary fibre. Fibre-rich breads have beneficial physiological effects on health, helping to combat chronic pathologies such as cardiovascular disease, diabetes, and certain types of colon cancer. The aim of this study is to evaluate the technological and nutritional effects of the inclusion of buckwheat hull particles (BH) at two addition levels (3 and 6%) and two particle sizes (fine, D50: 62.7 μm; coarse, D50: 307 μm) in a gluten-free (GF) bread formulation. A significant (p < 0.05) increase in the dough elastic modulus (G') was observed for all doughs containing BH, from 712 Pa for a rice-based dough to 1027-3738 Pa for those containing BH. Compared to rice-based breads, those containing BH showed a significant (p < 0.05) increase in total dietary fibre content (from three to five times) and in antioxidant capacity (from 78 to 290 mg TE/100 g dw. in the ORAC test). Breads containing fine BH at a level of 3% had similar sensory properties to the rice-based bread, demonstrating that it is possible to improve the TDF content while maintaining the sensory quality of the GF bread.
Collapse
Affiliation(s)
- Ángel L Gutiérrez
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Marina Villanueva
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Daniel Rico
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| | - Joanna Harasym
- Bio-Ref Lab, Department of Biotechnology and Foods Analysis, Institute of Chemistry and Food Technology, Faculty of Engineering and Economics, Wrocław University of Economics, 53-345 Wrocław, Poland
| | - Felicidad Ronda
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Ana Belén Martín-Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| | - Pedro A Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
17
|
Dircio-Morales MA, Velazquez G, Sifuentes-Nieves I, Flores-Silva PC, Fonseca-Florido HA, Mendez-Montealvo G. Effect of retrograded starch with different amylose content on the rheological properties of stored yogurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2012-2022. [PMID: 37206429 PMCID: PMC10188834 DOI: 10.1007/s13197-023-05735-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
Resistant starch (RS) promotes health benefits; however, when added to foods, it could change the rheological properties. The effect of adding different concentrations (2.5, 5, 7.5, and 10%) of retrograded corn starch with 27% (RNS) or 70% (RHS) amylose content on the properties of yogurt was evaluated through measurements of flow behavior and gel structure. Syneresis and resistant starch content were also assessed. Results were analyzed using multiple regression to describe the effect of starch concentration and storage time on the properties of yogurt added with RNS or RHS. Syneresis was reduced, RNS reinforced the structure increasing the water absorption capacity and the consistency index; meanwhile, RHS provided a yogurt containing up to 10 g of RS in 100 g of sample, allowing obtaining a functional dairy product. Creep-recovery test showed that adding RNS or RHS favored the matrix conformation, and the yogurt samples were able to recover. The final product behaved like a solid material with a firmer and more stable gel structure, resulting in a strengthened gel without weakening the yogurt structure, showing a characteristic like Greek-style or stirred yogurt depending on the type and concentration of retrograded starch. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05735-x.
Collapse
Affiliation(s)
- Marco A. Dircio-Morales
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro Mexico
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila Mexico
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro Mexico
| | - Israel Sifuentes-Nieves
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila Mexico
| | - Pamela C. Flores-Silva
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila Mexico
| | - Heidi A. Fonseca-Florido
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila Mexico
| | - Guadalupe Mendez-Montealvo
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro Mexico
| |
Collapse
|
18
|
Wang L, Tang H, Li Y, Guo Z, Zou L, Li Z, Qiu J. Milling of buckwheat hull to cell-scale: Influences on the behaviors of protein and starch in dough and noodles. Food Chem 2023; 423:136347. [PMID: 37207513 DOI: 10.1016/j.foodchem.2023.136347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Superfine grinding of insoluble dietary fiber (IDF) is a promising method to improve the product quality by regulating the interaction between protein and starch. In this study, the effects of buckwheat-hull IDF powder, at cell-scale (50-10 μm) and tissue-scale (500-100 μm), on the dough rheology and noodle quality were investigated. Results showed that cell-scale IDF with higher exposure of active groups increased the viscoelasticity and deformation resistance of the dough, due to the aggregation of protein-protein and protein-IDF. Compared with the control sample, the addition of tissue-scale or cell-scale IDF significantly increased the starch gelatinization rate (β, C3-C2) and decreased the starch hot-gel stability. Cell-scale IDF increased the rigid structure (β-sheet) of protein, thus improving the noodle texture. The decreased cooking quality of cell-scale IDF-fortified noodles was related to the poor stability of rigid gluten matrix and the weakened interaction between water and macromolecules (starch and protein) during cooking.
Collapse
Affiliation(s)
- Lijuan Wang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Hanqi Tang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yang Li
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zicong Guo
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zaigui Li
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Ju Qiu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
19
|
Tang W, Lin X, Walayat N, Liu J, Zhao P. Dietary fiber modification: structure, physicochemical properties, bioactivities, and application-a review. Crit Rev Food Sci Nutr 2023; 64:7895-7915. [PMID: 36995253 DOI: 10.1080/10408398.2023.2193651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xinyi Lin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
20
|
Xie L, Zhou W, Zhao L, Peng J, Zhou X, Qian X, Lu L. Impact of okara on quality and in vitro starch digestibility of noodles: The view based on physicochemical and structural properties. Int J Biol Macromol 2023; 237:124105. [PMID: 36948342 DOI: 10.1016/j.ijbiomac.2023.124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
The development of cereal foods with slow starch digestibility is important for the general improvement of human health. In this study, the quality properties of noodles with added okara, in vitro starch digestibility, and the underlying mechanisms of the influence of okara on noodles were studied. Low concentrations (5 and 10 %) of okara improved the texture, cooking, and sensory properties of the noodles. Okara decreased the rapidly digestible starch (RDS) content, increased the resistant starch (RS) content, and reduced the predicted glycaemic index (pGI) of noodles. The pasting viscosity, thermal stability, and dynamic rheological results indicated that okara improved the starch crystallite stability of wheat flour and viscoelasticity of dough. Moreover, Fourier transform infrared (FTIR) spectroscopy showed that okara promoted the formation of starch-lipid complexes and improved the short-range structural order of starch. Additionally, microstructure imaging and protein network analysis (PNA) indicated that low addition of okara promoted the compactness of the okara-gluten-starch matrix, thus reducing the contact between starch and hydrolytic enzymes. These results reveal the effect of okara on the quality properties and starch digestibility in a starch-gluten complex system.
Collapse
Affiliation(s)
- Le Xie
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China; Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, Hunan Province, PR China
| | - Wenhua Zhou
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, Hunan Province, PR China; Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, Hunan Province, PR China
| | - Jing Peng
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China
| | - Xiaojie Zhou
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China; Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, Hunan Province, PR China
| | - Xin Qian
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China
| | - Lu Lu
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China.
| |
Collapse
|
21
|
Zhang X, Wang Z, Wang L, Ou X, Huang J, Luan G. Structural support of zein network to rice flour gluten-free dough: Rheological, textural and thermal properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Cao G, Chen X, Hu B, Yang Z, Wang M, Song S, Wang L, Wen C. Effect of ultrasound-assisted resting on the quality of surimi-wheat dough and noodles. ULTRASONICS SONOCHEMISTRY 2023; 94:106322. [PMID: 36774672 PMCID: PMC9945798 DOI: 10.1016/j.ultsonch.2023.106322] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 05/09/2023]
Abstract
In this study, the influence of ultrasound-assisted resting at different power on the rheological properties, water distribution and structural characteristics of dough with 50 % surimi as well as the texture, cooking and microstructure characteristics of the surimi-wheat noodles were investigated. Compared with the fermentation control (FC) noodles, the microstructure, cooking and texture characteristics of noodles (≤24.00 W/L) were significantly (p < 0.05) improved after ultrasonic treating. As the increasing of ultrasonic power, compared to FC, the creep strain, recovery strain, semi-bound water, and free sulfhydryl (SH) contents of surimi-wheat dough decreased at first and then increased significantly (p < 0.05). The α-helix and β-turn content of dough increased at first and then decreased after ultrasonic treatment, while the β-sheet was reversed. The surimi-wheat dough network structure was improved by ultrasonic treatment, with the densest and continuous pore size in 21.33 W/L, but the dough structure was broken and loose (>21.33 W/L), which consisted of the hardness, elasticity, chewiness, resistant and cooked quality of surimi-wheat noodles. This work elucidated the effect of ultrasonic power on the performance of surimi-wheat dough, and the optimal ultrasound power was obtained, thereby improving the nutritional properties and the quality of surimi-wheat noodles.
Collapse
Affiliation(s)
- Geng Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xueting Chen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bingbing Hu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoqian Yang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Man Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Wang
- School of Chemistry and Food Science, Yulin Normal University, Yulin 573000, China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
23
|
Sun X, Wu S, Koksel F, Xie M, Fang Y. Effects of ingredient and processing conditions on the rheological properties of whole wheat flour dough during breadmaking - A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Li X, Wang L, Jiang P, Zhu Y, Zhang W, Li R, Tan B. The effect of wheat bran dietary fibre and raw wheat bran on the flour and dough properties: A comparative study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Dietary carbohydrates: a trade-off between appealing organoleptic and physicochemical properties and ability to control glucose release and weight management. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Use of response surface methodology to investigate the effect of sodium chloride substitution with Salicornia ramosissima powder in common wheat dough and bread. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Cao G, Chen X, Wang N, Tian J, Song S, Wu X, Wang L, Wen C. Effect of konjac glucomannan with different viscosities on the quality of surimi-wheat dough and noodles. Int J Biol Macromol 2022; 221:1228-1237. [PMID: 36087756 DOI: 10.1016/j.ijbiomac.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
It was investigated that the rheology, starch-gluten-surimi network, thermal properties, and water distribution of surimi-wheat dough, and texture characteristics, cooking properties, and microscopic characteristics of the surimi-wheat noodles with konjac glucomannan (KGM) of different viscosities in different concentrations. The results showed that the storage (G'), loss (G″), and complex (G⁎) moduli of dough increased with adding KGM. With the increase of KGM viscosity, the reduction in the free sulfhydryl (SH) content to 0.84 μmol/g and the increase in the free water content to 8.25 % led to significantly improved enthalpy and the microstructure density. The hardness and tensile length of noodles were substantially increased by adding 3 % KGM. In addition, the KGM enhanced the starch-gluten-surimi network and improved the cooking qualities and textural properties of noodles. More importantly, the application of KGM in the wheat flour composite system also showed better performance. Thus, the introduction of KGM into the surimi-wheat dough had a significant effect on the optimization of the macro- and micro-characteristics of dough and noodles.
Collapse
Affiliation(s)
- Geng Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xueting Chen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Nan Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Tian
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Wu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Wang
- School of Chemistry and Food Science, Yulin Normal University, Yulin 573000, China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
28
|
Torbica A, Radosavljević M, Belović M, Djukić N, Marković S. Overview of nature, frequency and technological role of dietary fibre from cereals and pseudocereals from grain to bread. Carbohydr Polym 2022; 290:119470. [DOI: 10.1016/j.carbpol.2022.119470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
29
|
Feng Y, Feng X, Liu S, Zhang H, Wang J. Effects of dietary fiber and ferulic acid on dough characteristics and glutenin macropolymer (GMP) aggregation behavior during dough resting. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient. Biomed Pharmacother 2022; 153:113299. [PMID: 35750010 DOI: 10.1016/j.biopha.2022.113299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases and various other chronic ailments have gradually transformed into public-health issues. Neurodegenerative disorders are a range of progressive neural abnormalities characterized by cellular dysfunctions, neuronal structure, and function loss. Among many chronic disorders, oxidative stress, inflammation, mitochondrial dysregulation, and cellular alterations in the human body are considered the most prevalent diagnostic symptoms. They have a profound impact on patients' health and wellbeing. The disease's poor curability, high healthcare costs, and lethality are the principal reasons for approaching and exploring the conventional treatment's phytotherapeutic alternatives. Ginkgo biloba (Maidenhair tree) is a well-known and widely used herbal plant in the Ginkgoaceae family. Its phytochemical constituents, Flavonoids, and terpenes, have been identified as the primary ingredients of Ginkgo biloba leaf extracts. It has been widely used due to its therapeutic properties, including its neuroprotective, anti-dementia, antioxidant, anti-inflammatory, vasoactive, anti-psychotic, anti-neoplastic, and anti-platelet activity. In recent decades, plenty of Ginkgo-derived substances has been researched and elucidated to have significant therapeutic effects in numerous disease models. This review aims to provide a thorough understanding of the botanical basis for Ginkgo biloba, its usage as herbal medicine, and its pivotal role in functional foods. Additionally, the clinical significance of Ginkgo biloba, as observed in various research works and clinical investigations, is also emphasized, facilitating a better understanding of their molecular basis and application in many chronic diseases.
Collapse
|
31
|
Effect of Ginkgo Biloba Powder on the Physicochemical Properties and Quality Characteristics of Wheat Dough and Fresh Wet Noodles. Foods 2022; 11:foods11050698. [PMID: 35267331 PMCID: PMC8909626 DOI: 10.3390/foods11050698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Effects of ginkgo biloba powder (GBP) on the chemical, physicochemical properties and quality of dough and fresh wet noodles were investigated. Lower contents of gluten and starch, and higher contents of fibre, amylose and flavonoids in GBP than wheat flour, were detected. Water absorption of dough increased and the development time and stability time of dough were decreased with GBP addition. Meanwhile, the pasting properties results showed that the addition of GBP reduced the aging degree of starch and improved the thermal stability of dough. Scanning electron microscopy results showed that addition of GBP smoothed the surface of raw noodles while increasing the hole size of the cooked noodles. With increased GBP addition (0~40%), the chewiness and extensibility of the fresh wet noodles increased significantly (p < 0.05), and the sensory scores changed, ascending from 0~20% substitution, and then descending from 20~40% substitution. The digestibility and estimated glycemic index (eGI) values of the GBP fresh wet noodles decreased significantly (p < 0.05). In general, 20% GBP addition could improve the chewiness, extensibility, taste and nutrition of fresh wet noodles, and decrease the digestibility and eGI values of noodles. Thus, GBP has potential for application in the noodle industry.
Collapse
|