1
|
Su Y, Sun Y, Chang C, Li J, Cai Y, Zhao Q, Huang Z, Xiong W, Gu L, Yang Y. Effect of salting and dehydration treatments on the physicochemical and gel properties of hen and duck egg yolks, plasma and granules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6070-6084. [PMID: 38441435 DOI: 10.1002/jsfa.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Salted hen egg yolks are less oily and less flavorful than salted duck egg yolks. However, hen eggs have a more adequate market supply and have a broader application prospect than duck eggs. In the present study, egg yolks, plasma, and granules were dehydrated by adding 1% NaCl to simulate traditional curing process of salted egg yolk. The changes in the pickling process of hen egg yolks (HEY) and duck egg yolks (DEY) plasma and granules were compared to reveal the gelation mechanism and the underlying causes of quality differences in salted HEY and DEY. Salted HEY can be compared with the changes in DEY during the pickling process to provide a theoretical basis for the quality improvement of salted HEY to salted DEY. RESULTS The results showed that both plasma and granules were involved in gel formation, but exhibited different aggregation behaviors. Based on the intermolecular forces, the HEY proteins achieved aggregation mainly through hydrophobic interactions and DEY proteins mainly through covalent binding. According to spin-spin relaxation time, HEY gels immobilized a large amount of lipid and interacted strongly with lipids. DEY gels showed much free lipid and had weak interaction with lipid. The microstructure showed that HEY proteins were easily unfolded to form a homogeneous three-dimensional gel network structure after salting, whereas heterogeneous aggregates were formed to hinder the gel development in DEY. Changes in protein secondary structure content showed that pickling can promote the transformation of the α-helices to β-sheets structure in HEY gels, whereas more α-helices structure was formed in DEY gels. CONCLUSION The present study has demonstrated that different gelation behaviors of hen and duck egg yolk proteins (especially in plasma) through salting treatment led to the difference in the quality of salted HEY and DEY. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanyuan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yundan Cai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qianwen Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zijian Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wen Xiong
- Hunan Jiapin Jiawei Technology Development Group Co. Ltd, Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Hunan Jiapin Jiawei Technology Development Group Co. Ltd, Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, China
| |
Collapse
|
2
|
Xin X, Qiu W, Xue H, Zhang G, Hu H, Zhao Y, Tu Y. Improving the gel properties of salted egg white/cooked soybean protein isolate composite gels by ultrasound treatment: Study on the gelling properties and structure. ULTRASONICS SONOCHEMISTRY 2023; 97:106442. [PMID: 37244085 DOI: 10.1016/j.ultsonch.2023.106442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
In this study, the effects of ultrasound treatment on the texture, physicochemical properties and protein structure of composite gels prepared by salted egg white (SEW) and cooked soybean protein isolate (CSPI) at different ratios were investigated. With the increased SEW addition, the ζ-potential absolute values, soluble protein content, surface hydrophobicity and swelling ratio of composite gels showed overall declining trends (P < 0.05), while the free sulfhydryl (SH) contents and hardness of exhibited overall increasing trends (P < 0.05). Microstructural results revealed that composite gels exhibited denser structure with the increased SEW addition. After ultrasound treatment, the particle size of composite protein solutions significantly decreased (P < 0.05), and the free SH contents of ultrasound-treated composite gels were lower than that of untreated composite gels. Moreover, ultrasound treatment enhanced the hardness of composite gels, and promoted the conversion of free water into non-flowable water. However, when ultrasonic power exceeded 150 W, the hardness of composite gels could not be further enhanced. FTIR results indicated that ultrasound treatment facilitated the composite protein aggregates to form a more stable gel structure. The improvement of ultrasound treatment on the properties of composite gels was mainly by promoting the dissociation of protein aggregates, and the dissociated protein particles further interacted to form denser aggregates through disulfide bond, thus facilitating the crosslinking and reaggregation of protein aggregates to form denser gel structure. Overall, ultrasound treatment is an effective approach to improve the properties of SEW-CSPI composite gels, which can improve the potential utilization of SEW and SPI in food processing.
Collapse
Affiliation(s)
- Xiaojuan Xin
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Wei Qiu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hui Hu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Yao X, Xu J, Xun Y, Du T, Huang M, Guo J. High gelatinous salted duck egg white protein powder gel: Physicochemical, microstructure and techno-functional properties. Front Nutr 2023; 10:1110786. [PMID: 36819671 PMCID: PMC9935615 DOI: 10.3389/fnut.2023.1110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Salted duck egg is one of the most popular products, and China is one of the major countries consuming salted duck egg products. However, due to the high salt content of salted egg white and low physical and chemical properties such as gel, many factories generally only use salted egg yolk and discard salted duck egg white (SDEW) as a waste liquid when processing. This is not only a waste of resources, but also a pollution to the environment. In this paper, protein powder was prepared from salted egg white. Then xanthan gum (XG) was added to make it co-gel with ovalbumin to achieve the purpose of preparing high gelatinous salted egg white protein powder. The results showed that the optimum conditions of SDEW-XG composite gel were as follows: the xanthan gum content was 0.08% (w/w), the reaction pH was 6.5, and the heating temperature was 100°C. Under these conditions, the gel strength reaches the maximum value. Meanwhile, compared with the protein powder without xanthan gum, the addition of xanthan gum significantly affected the secondary structure of the protein powder of SDEW and improved the water holding capacity of the gel. In conclusion, the addition of xanthan gum can significantly improve the gel quality of SDEW protein powder, which provides a theoretical basis for the quality improvement of salted egg white.
Collapse
Affiliation(s)
- Xinjun Yao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China,*Correspondence: Jicheng Xu, ✉
| | - Yu Xun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Tianyin Du
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Mengqi Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jun Guo
- College of Biology and Food Science, Suzhou University, Suzhou, China,Jun Guo, ✉
| |
Collapse
|
4
|
Zhou B, Zhao J, Rong Y, Li M, Liang H, Li B, Sun J. Foaming and interfacial properties of desalted duck egg white nanogels after weak enzymatical hydrolyzation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Extraction and Characterization of Lysozyme from Salted Duck Egg White. Foods 2022; 11:foods11223567. [PMID: 36429159 PMCID: PMC9689153 DOI: 10.3390/foods11223567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Salted duck egg white (SDEW), as the main by-product in the production process of salted egg yolk, has not been effectively used as a food resource because of its high salt concentration. This study creatively used isoelectric point precipitation, ultrafiltration, and cation exchange to separate and purify lysozyme from SDEW and preliminarily explored the enzymatic properties of lysozyme. The results showed that the relative molecular weight of lysozyme was about 14 KDa, and the specific activity of lysozyme reached 18,300 U/mg. Lysozyme had good stability in the temperature range of 30 °C to 60 °C and pH of 4 to 7. Metal ions, Fe2+, Cu2+, and Zn2+, strongly inhibited lysozyme activity. Different surfactants showed certain inhibition effects on lysozyme from SDEW, among which glycerin had the strongest inhibitory effect. This study aimed to provide a theoretical reference for industrial purification and production of lysozyme from SDEW.
Collapse
|
6
|
Zhou B, Dai Y, Guo D, Zhang J, Liang H, Li B, Sun J, Wu J. Effect of desalted egg white and gelatin mixture system on frozen dough. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Du T, Xu J, Zhu S, Yao X, Guo J, Lv W. Effects of spray drying, freeze drying, and vacuum drying on physicochemical and nutritional properties of protein peptide powder from salted duck egg white. Front Nutr 2022; 9:1026903. [PMID: 36337632 PMCID: PMC9626763 DOI: 10.3389/fnut.2022.1026903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2023] Open
Abstract
Salted duck egg white contains many kinds of high quality protein, but it is often discarded as food factory waste because of high salinity and other reasons. The discarded salted duck egg white not only causes a waste of resources, but also causes environmental pollution. Using salted duck egg white as raw material, this study was completed to investigate the effects of three drying methods including freeze drying, vacuum drying, and spray drying on physicochemical and nutritional properties of protein powder from salted duck egg white. The results showed that the solubility, foaming and foaming stability, emulsification and emulsification stability of the protein peptide of salted duck egg white decreased to different degrees after drying. The scavenging rates of freeze-dried samples for superoxide anion, hydroxyl radical, and 1,1-Diphenyl-2-picrylhydrazyl (DPPH·) reached 48.76, 85.03, and 80.17%, respectively. Freeze drying had higher scavenging rates than vacuum drying and spray drying. The results of electron microscopy showed that freeze-drying had the least effect on the structure of protein peptide powder of salted duck egg white. The purpose of this experiment was to provide theoretical guidance and technical support for industrial drying of salted duck egg white protein solution.
Collapse
Affiliation(s)
- Tianyin Du
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shengnan Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Xinjun Yao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jun Guo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Li X, Chen S, Yao Y, Wu N, Xu M, Zhao Y, Tu Y. The Quality Characteristics Formation and Control of Salted Eggs: A Review. Foods 2022; 11:foods11192949. [PMID: 36230025 PMCID: PMC9564276 DOI: 10.3390/foods11192949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Salted egg, a traditional characteristic processed egg product in China, is popular among consumers at home and abroad. Salted egg quality characteristics formation primarily includes the hydration of egg white, the solidification of egg yolk, the unique color and flavor of salted egg yolk, and the formation of white, fine, and tender egg whites and loose, sandy, and oily egg yolks after pickling and heating. The unique quality characteristics of salted eggs are mostly caused by the infiltration dehydration of salt, the intermolecular interaction of proteins, and the oxidation of lipids. In recent years, to solve the problems of salted eggs having high salinity, long production cycle, and short storage period, the pickling technology for salted egg has been improved and researched, which has played a significant role in promoting the scientific production of salted eggs. This paper summarizes the mechanisms of salted egg quality characteristics formation and factors influencing quality, with a perspective of providing a theoretical basis for the production of high-quality salted eggs.
Collapse
Affiliation(s)
- Xiaoya Li
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
9
|
Zhou B, Li M, Zhao J, Rong Y, Liang H, Li B. Enzymatic hydrolysis re-endows desalted duck egg white nanogel with outstanding foaming properties. Int J Biol Macromol 2022; 221:714-722. [PMID: 36096251 DOI: 10.1016/j.ijbiomac.2022.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Heat-induced gel-assisted desalination could efficiently and inexpensively remove salt from salted egg whites. However, it was at the expense of the excellent foaming properties of egg whites, caused by the denaturation and aggregation of proteins during heating treatment. Hence, in this current work, the enzymatic treatment was used to re-endow duck egg white nanogels (DEWN) with outstanding foaming properties. We found that low levels of hydrolysis (DH = 2.27 %) could dramatically improve the foaming capability (FC), reaching >200 %, which also enhanced the foaming stability (FS). As the hydrolysis time extended, the adsorption and diffusion rate of the supernatant on the interface increased and performed high elasticity. The dilatational rheology and Lissajous plots were explored to investigate the nonlinear dilatational rheological behaviors of the air/water interface stabilized by the hydrolysed samples. Finally, we evaluated the effect of pH on foaming properties and found that the FC could exceed 250 %, and the FS was close to 80 % at pH = 5. These encouraging results showed that simple enzymatic treatment could revive nanogels from their dissatisfied foaming properties. In this work, gel-assisted desalination combined with enzyme treatment significantly promotes the high-quality and high-value utilization of salted egg white.
Collapse
Affiliation(s)
- Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China.
| | - Mengchen Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Jingyun Zhao
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Yujuan Rong
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
10
|
Comprehensive identification and hydrophobic analysis of key proteins affecting foam capacity and stability during the evolution of egg white foam. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Gao J, Shi Q, Ye Y, Wu Y, Chen H, Tong P. Effects of guar gum or xanthan gum addition in conjunction with pasteurization on liquid egg white. Food Chem 2022; 383:132378. [PMID: 35183963 DOI: 10.1016/j.foodchem.2022.132378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/13/2022] [Accepted: 02/05/2022] [Indexed: 11/04/2022]
Abstract
In this study, effects of varying levels of xanthan or guar gum (XG/GG, 0.05%, 0.1%, 0.2%, 0.4% and 0.8%, w/v) on the spatial structure and functional properties of egg white (EW) proteins under different pasteurization conditions of the liquid egg was evaluated. Results showed that XG could bury the aromatic ring residues and reduce the hydrophobicity of protein in EW, whereas GG could only increase the hydrophobicity. With 0.8% GG addition and pasteurization under 60℃/3.5 min, the emulsifying stability of EW was improved by nearly 100%, while with 0.8% XG addition the gel structure of EWwould become porousandloosen under each pasteurization condition. The hardness of EW gels was decreased by 90% when the concentration of XG was 0.4% or 0.8%. According to the results, the concentration of gums and the pasteurization parameters should be considered together when adding gums into the liquid egg products for pasteurization simultaneously.
Collapse
Affiliation(s)
- Jinyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Qiang Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Yu Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Yong Wu
- Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, PR China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
12
|
Wang S, Zhou B, Yang X, Niu L, Li S. Tannic acid enhanced the emulsion stability, rheology and interface characteristics of
Clanis Bilineata Tingtauica Mell
protein stabilised oil‐in‐water emulsion. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuya Wang
- Engineering Research Center of Bio‐process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| | - Xinquan Yang
- School of Life Sciences Guangzhou University Guangzhou 511442 China
| | - Liqiong Niu
- School of Life Sciences Guangzhou University Guangzhou 511442 China
| | - Shugang Li
- Engineering Research Center of Bio‐process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
13
|
Yao X, Xu J, Adhikari B, Lv W, Chen H. Mooncake production waste: Nutritional value and comprehensive utilization of salted duck egg white. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinjun Yao
- College of Biological and Food Engineering Anhui Polytechnic University 241000 Wuhu Anhui China
| | - Jicheng Xu
- College of Biological and Food Engineering Anhui Polytechnic University 241000 Wuhu Anhui China
| | - Benu Adhikari
- School of Science RMIT University Melbourne VIC 3083 Australia
| | - Weiqiao Lv
- College of Engineering China Agricultural University 100083 Beijing China
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
| |
Collapse
|