1
|
Pan Y, Zhang X, Yan Q, Li J, Kouame KJEP, Li X, Liu L, Zong X, Si K, Liu X, Yu M. Sphingomyelin-enriched milk phospholipids offer superior benefits in improving the physicochemical properties, microstructure, and surface characteristics of infant formula. Food Chem 2025; 463:141549. [PMID: 39395349 DOI: 10.1016/j.foodchem.2024.141549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Phospholipids from different sources have varying chemical compositions, but how they contribute to different properties of infant formula is unclear. In this study, four types of phospholipids, milk phospholipids (MPLs), soybean phospholipids (SBPLs), sunflower phospholipids (SFPLs), and egg yolk phospholipids (EYPLs), were added to infant formula to investigate their physicochemical properties, microstructure, and surface characteristics. MPLs uniquely offer high sphingomyelin and saturated fatty acid levels. The MPL-based emulsion had the smallest particle size (334.50 nm), lowest stability constant (0.30), and highest viscosity among all groups tested. Furthermore, the abundance of sphingomyelin in MPLs allowed for a denser interfacial film and the complete phospholipid-coated structure of lipid droplets in infant formula emulsion. This consequently improved the microstructure and fat encapsulation of the powder, leading to significantly lower surface fat content in the MPL group. Therefore, the proper selection of phospholipids is crucial for modulating the stability and surface characteristics of infant formula.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xueying Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Qingquan Yan
- Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Jiayu Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Xuexing Zong
- Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Kuolin Si
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Xiaoyan Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Mengna Yu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| |
Collapse
|
2
|
Yadav M, Mallappa RH, Ambatipudi K. Human milk fat globule delivers entrapped probiotics to the infant's gut and acts synergistically to ameliorate oxidative and pathogenic stress. Food Chem 2025; 462:141030. [PMID: 39241685 DOI: 10.1016/j.foodchem.2024.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, Indian Council of Agriculture Research-National Dairy Research Institute, Karnal 132001, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
3
|
Sun Y, Roos YH, Miao S. Modifying physicochemical properties, rheology, and creaming stability of milk fat globule and membrane through ultrasound treatment. ULTRASONICS SONOCHEMISTRY 2024; 111:107058. [PMID: 39277928 PMCID: PMC11417592 DOI: 10.1016/j.ultsonch.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
The healthy benefits of milk fat globules and membrane (MFGs/MFGM) ingredients are increasingly recognized in the dairy industry. In this research, we examined the effects of ultrasonic treatment on the physicochemical and rheological properties, as well as the emulsions stability of MFGs/MFGM derived from bovine raw milk. Fresh milk was subjected to sonication at frequencies of 20 kHz and 40 kHz, either individually or simultaneously, for durations of 5 min or 15 min, using work/rest cycles of 5 s on and 3 s off. Bovine milk, without any treatment, served as the control. Regardless of the intensity difference, ultrasonic treatment for 5 min resulted in more pronounced changes in the regions of Amide Ⅱ (1600-1500 cm-1), Amide Ⅲ (1500-1200 cm-1), and fingerprint region (1200-1900 cm-1) compared to both the 15 min treatments and control MFGs/MFGM. Principal component analysis (PCA) conducted on the entire spectra, as well as in the regions of Amide Ⅰ, Amide Ⅱ, and the fingerprint spectra, clustered the 5 min treatment distinctly from the control and MFGs/MFGM ultrasonically treated for 15 min. MFGs/MFGM samples following 20 kHz and 40 kHz synchronous treatment for 15 min exhibited lower absorbance bands at 1727-1726 cm-1, whereas a higher content at 1740 cm-1 was observed compared to control MFGs/MFGM. Additionally, a more significant reduction in the intramolecular β-sheet content in 20 + 40 kHz/ 15 min treatment was observed. According to the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) patterns, a diminished intensity of Periodic Acid Schiff 6/7 (PAS 6/7) bands was observed across all the MFGs/MFGM. Ultrasonic treatment retained more caseins while reducing the β -LG levels compared to the controls, enhancing the stability of MFGs/MFGM, except in MFGs/ MFGM subjected to 20 and 40 kHz simultaneously treated for 15 min. The irregular sphericity of fat globules was noted particularly in MFGs/MFGM treated at 20 kHz independently or in combination with 40 kHz for 15 min. According to the confocal laser scanning microscopy (CLSM), ultrasonic treatment facilitated the binding of caseins or whey proteins to the MFGs surface and induced flocculation of membrane proteins. Hierarchical cluster analysis (HCA) heat map further underscored the impact of ultrasonic treatments on the structural and compositional changes, as well as rheology and emulsions stability, of MFGs/MFGM.
Collapse
Affiliation(s)
- Yanjun Sun
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Yrjö H Roos
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; China-Ireland International Cooperation Centre for Food Material Sciences and Structure Design, Fujian Agriculture and Forestry University, China.
| |
Collapse
|
4
|
Verveld W, de Wolf JR, Legtenberg CG, Knop T, Bosschaart N. Human milk fat globule size distributions: Comparison between laser diffraction and 3D confocal laser scanning microscopy. Food Res Int 2024; 198:115282. [PMID: 39643364 DOI: 10.1016/j.foodres.2024.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Milk fat globules (MFGs) in human milk provide energy to breastfed infants and support infant development. Accurate measurements of MFG size distributions are important to better understand MFG function and origin, as well as the influence of MFG size on milk composition analysis methods. Nevertheless, commonly used laser diffraction systems have never been thoroughly validated for size distribution measurements in human milk. Here, we introduce a new method for determining the size distribution of milk fat globules in human milk, using 3D confocal laser scanning microscopy (CLSM) in combination with fluorescent labeling of MFGs. We validate and compare 3D CLSM to laser diffraction (Mastersizer 2000, Malvern Panalytical), using polystyrene microsphere size standards. Next, we apply both methods to evaluate MFG size distributions in human milk. We show that 3D CLSM can be used to obtain more accurate size distributions between 500 nm and 10 μm compared to laser diffraction. Importantly, MFG size distributions obtained with 3D CLSM contain no secondary population around 1 μm, in contrast to laser diffraction measurements. This suggests that the bimodal MFG distribution obtained by laser diffraction can be an artifact of the built-in fitting algorithm, instead of an actual feature of human milk. This work demonstrates that care should be taken when interpreting size distributions of MFGs measured with laser diffraction and that 3D CLSM is an accurate alternative for measuring size distributions in lactation and dairy research.
Collapse
Affiliation(s)
- Wietske Verveld
- Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| | - Johanna R de Wolf
- Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Chris G Legtenberg
- Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Tom Knop
- Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Nienke Bosschaart
- Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| |
Collapse
|
5
|
Zhu H, Fauconnier ML, Zhang H, Xu X, Wang X, Zhang Y, Guo R, Zhang W, Zhang S, Wang Y, Pang X, Lv J. A Comparative Study on the Composition and Structure of Human Milk Phospholipids and its Natural Resources: Based on a Similarity Evaluation Model. Food Chem 2024; 460:140556. [PMID: 39089024 DOI: 10.1016/j.foodchem.2024.140556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Human milk phospholipids (HMPLs) play an indispensable role in the neurodevelopment and growth of infants. In this study, a total of 37 phospholipid fatty acid (PLFA) species and 139 phospholipid molecular species were detected from human milk and other natural phospholipid sources (including 5 animal-derived species and 2 plant species). Moreover, a similarity evaluation model for HMPLs was established, including phospholipid classes, PLFAs, and phospholipid molecular species, to evaluate their natural substitutes. The closest scores for HMPL substitute in these three dimensions was 0.89, 0.72, and 0.77, which belonged to mare milk, goat milk, and camel milk, respectively. The highest comprehensive similarity score was obtained by camel milk at 0.75, while the lowest score was observed in soybean phospholipid (0.22). Therefore, these results not only monitored the stereochemical structure of HMPLs and their substitutes, but also further provided new insights for the development of infant formulae.
Collapse
Affiliation(s)
- Huiquan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux, 5030, Belgium; National Center of Technology Innovation for Dairy, Hohhot 010100, China
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux, 5030, Belgium
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Xiaodan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yumeng Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruihua Guo
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Wenyuan Zhang
- Research Group of Postharvest Technology, State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of AgriculturalSciences, Beijing 100081, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunna Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Center of Technology Innovation for Dairy, Hohhot 010100, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Zhao P, Yang X, Gan J, Renes I, Abrahamse E, Bartke N, Wei W, Wang X. In Vitro Lipid Digestion of Milk Formula with Different Lipid Droplets: A Study on the Gastric Digestion Emulsion Structure and Lipid Release Pattern. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24736-24748. [PMID: 39466726 PMCID: PMC11544712 DOI: 10.1021/acs.jafc.4c05114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
In this study, the digestive properties of milk formulas (two concept milk formulas L1 and L2 with D4,3 ∼5 μm and a control milk formula S1 with D4,3 ∼0.5 μm) were evaluated using a dynamic digestion model simulating the infant gastrointestinal tract. The results showed that L1 and L2 had a lower lipolysis degree compared to S1 during gastric digestion and no significant difference at the end of the digestion process. Triacylglycerol lipolysis products were highly related to the lipid sources of milk formulas. At the end of digestion, glycerophospholipids in milk formulas were hydrolyzed to lysophospholipids (∼60-80%), while sphingomyelins were barely hydrolyzed. Concept milk formulas showed a complete spherical structure with a mean size of 3-5 μm during gastric digestion, while the control formula had large aggregates consisting of small lipid droplets. This study reveals that the structure of lipid droplets moderates the gastric digestion emulsion structure and further influences the digestive properties of milk formulas.
Collapse
Affiliation(s)
- Pu Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Collaborative
Innovation Center of Food Safety and Quality Control in Jiangsu Province,
School of Food Science and Technology, Jiangnan
University, Wuxi 214122, China
| | - Xue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Collaborative
Innovation Center of Food Safety and Quality Control in Jiangsu Province,
School of Food Science and Technology, Jiangnan
University, Wuxi 214122, China
| | - Junai Gan
- Life
Science, Danone Open Science Research Center, Shanghai 201204, China
- Danone-Jiangnan University Lipidomics & Health Innovation
Center, Wuxi 214122, China
| | - Ingrid Renes
- Danone Research
& Innovation, Uppsalalaan
12, Utrecht, CT 3584, The Netherlands
| | - Evan Abrahamse
- Danone Research
& Innovation, Uppsalalaan
12, Utrecht, CT 3584, The Netherlands
| | - Nana Bartke
- Danone Research
& Innovation, Uppsalalaan
12, Utrecht, CT 3584, The Netherlands
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Collaborative
Innovation Center of Food Safety and Quality Control in Jiangsu Province,
School of Food Science and Technology, Jiangnan
University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Collaborative
Innovation Center of Food Safety and Quality Control in Jiangsu Province,
School of Food Science and Technology, Jiangnan
University, Wuxi 214122, China
| |
Collapse
|
7
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
8
|
Gharbi N, Stone D, Fittipaldi N, Unger S, O'Connor DL, Pouliot Y, Doyen A. Application of pressure homogenization on whole human milk pasteurized by high hydrostatic pressure: Effect on protein aggregates in milk fat globule membrane and skim milk phases. Food Chem 2024; 455:139863. [PMID: 38823140 DOI: 10.1016/j.foodchem.2024.139863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
This study explored the impact of homogenization (at pressures of 16, 30, and 45 MPa) on both raw and high hydrostatic pressure (HHP)-treated human milk (HM). It focused on protein compositions and binding forces of soluble and insoluble fractions for both milk fat globule membrane (MFGM) and skim milk. Mild homogenization of HHP-treated milk increased lactoferrin (LF) levels in the insoluble fractions of both MFGM and skim milk, due to insoluble aggregation through hydrophobic interactions. Intense homogenization of HHP-treated milk decreased the LF level in the MFGM fractions due to the LF desorption from the MFGM, which increased LF level in the insoluble skim milk fraction. Homogenized-HHP treated milk showed noticeably higher casein (CN) level at the MFGM compared to homogenized-raw milk, attributed to HHP effect on CN micelles. Overall, the combined use of HHP and shear-homogenization should be avoided as it increased the biological proteins in insoluble fractions.
Collapse
Affiliation(s)
- Negar Gharbi
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Debbie Stone
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada
| | - Nahuel Fittipaldi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada; Public Health Ontario, Toronto, Ontario, Canada
| | - Sharon Unger
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Canada,; Department of Pediatrics, University of Toronto, Toronto, Canada; Department of Pediatrics, Sinai Health, Toronto, Canada
| | - Deborah L O'Connor
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Canada,; Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatrics, Sinai Health, Toronto, Canada
| | - Yves Pouliot
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Alain Doyen
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada.
| |
Collapse
|
9
|
Christensen C, Kok CR, Harris CL, Moore N, Wampler JL, Zhuang W, Wu SS, Hutkins R, Izard J, Auchtung JM. Microbiota, metabolic profiles and immune biomarkers in infants receiving formula with added bovine milk fat globule membrane: a randomized, controlled trial. Front Nutr 2024; 11:1465174. [PMID: 39444571 PMCID: PMC11497130 DOI: 10.3389/fnut.2024.1465174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Few studies have evaluated the effects of milk fat globule membrane (MFGM) on microbiota and immune markers in early infant nutrition. Methods In this double-blind randomized study, infants (7-18 days of age) received either bovine milk-based infant formula (Control) or similar formula with an added source (5 g/L) of bovine MFGM (INV-MFGM) for 60 days. A reference group received mother's own human milk over the same period (HM). Oral and stool samples were collected (Baseline and Day 60) to evaluate microbiota, immune markers, and metabolites. Results At Day 60, stool bacterial diversity and richness were higher in formula groups vs HM, as were Bifidobacterium bifidum and B. catenulatum abundance. Compared to HM, stool pH was higher in Control, while acetate, propionate, isovalerate, and total short- and branched-chain fatty acids were higher in INV-MFGM. Butyrate and lactate increased for INV-MFGM from baseline to Day 60. No group differences in oral microbiota or immune markers (α- and β-defensin, calprotectin, or sIgA) were detected, although sIgA increased over time in all study groups. Added bovine MFGM in infant formula modulated stool microbiota and short- and branched-chain fatty acids compared to human milk; changes were modest relative to control formula. Discussion Overall, distinct patterns of stool metabolites and microbiota development were observed based on early nutrition. Clinical trial registration ClinicalTrials.gov, identifier NCT04059666.
Collapse
Affiliation(s)
- Chloe Christensen
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| | - Car Reen Kok
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
- Complex Biosystems, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Cheryl L. Harris
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Nancy Moore
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Jennifer L. Wampler
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Weihong Zhuang
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Steven S. Wu
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| | - Jacques Izard
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Frederick F. Paustian Inflammatory Bowel Disease Center, University of Nebraska Medical Center, Omaha, NE, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennifer M. Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
10
|
Tao Y, Wang Q, Xiao M, Li H, Wang H, Mao Z, Zhang L, Zhou X, Yang H, Qing S. Gestational Diabetes Mellitus-Induced Milk Fat Globule Membrane Protein Changes of Human Mature Milk Based on TMT Proteomic Analysis. J Dairy Sci 2024:S0022-0302(24)01072-5. [PMID: 39154721 DOI: 10.3168/jds.2024-25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Breastfeeding by mothers with gestational diabetes mellitus (GDM) has been shown to reduce maternal insulin demands and diminish the risks of diabetes in infants, leading to improved long-term health outcomes. Milk fat globule membrane (MFGM) proteins play a crucial role in influencing the immunity and cognitive development of infants. Understanding the alterations in MFGM proteins in breastmilk from mothers with GDM is essential for enhancing their self-efficacy and increase breastfeeding rates. The objective of this study is to investigate and compare MFGM proteins in milk from mothers with GDM and without based on tandem mass tag (TMT) labeling and liquid chromatography tandem mass spectrometry (LC-MS) techniques. A total of 5402 proteins were identified, including 4 upregulated proteins and 24 downregulated proteins. These significantly altered proteins were found to be associated with human diseases, cellular processes, and metabolism pathways. Additionally, the oxidative phosphorylation pathway emerged as the predominant pathway through Gene Set Enrichment Analysis (GSEA) involving all genes.
Collapse
Affiliation(s)
- Ye Tao
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Qingcheng Wang
- Laboratory of Medicine-Food Homology Innovation and Achievement Transformation, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, 311110, China
| | - Min Xiao
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Haihong Li
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Haifeng Wang
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.; Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, 311106, Zhejiang, China.
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Lai Zhang
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - XiaoLi Zhou
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China.
| | - Shen Qing
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.; Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, 311106, Zhejiang, China; Laboratory of Medicine-Food Homology Innovation and Achievement Transformation, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, 311110, China..
| |
Collapse
|
11
|
Wang Y, Wu J, Zhang H, Yang X, Gu R, Liu Y, Wu R. Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39106211 DOI: 10.1080/10408398.2024.2387763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Milk fat globule membrane (MFGM) is a three-layer membrane-like structure encasing natural milk fat globules (MFGs). MFGM holds promise as a nutritional supplement because of the numerous physiological functions of its constituent protein. This review summarizes and compares the differences in MFGM protein composition across various species, including bovines, goats, camels, mares, and donkeys, and different lactation periods, such as colostrum and mature milk, as assessed by techniques such as proteomics and mass spectrometry. We also discuss the health benefits of MFGM proteins throughout life. MFGM proteins promote intestinal development, neurodevelopment, and glucose and lipid metabolism by upregulating tight junction protein expression, brain function-related genes, and glucose and fatty acid biosynthesis processes. We focus on the mechanisms underlying these beneficial effects of MFGM proteins. MFGM proteins activate key substances in in signaling pathways, such as the phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, and myosin light chain kinase signaling pathways. Overall, the consumption of MFGM proteins plays an essential role in conferring health benefits, some of which are important throughout the mammalian life cycle.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| | - Xujin Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, P.R. China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| |
Collapse
|
12
|
Pan Y, Liu Y, Zhao J, Cui L, Li X, Liu L, Kouame KJEP, Wang Z, Tan X, Jiang Y, Gao C. Simulated in vitro infant digestion and lipidomic analysis to explore how the milk fat globule membrane modulates fat digestion. Food Chem 2024; 447:139008. [PMID: 38513488 DOI: 10.1016/j.foodchem.2024.139008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
We hypothesized that the addition of milk fat globule membranes (MFGMs) to infant formula would improve its lipolysis, making it more similar to human milk (HM) and superior to commercial infant formula (CIF) in fat digestion. Therefore, we prepared two model infant formulas (MIFs) by adding MFGMs to dairy ingredients in different ways and compared their fat digestion behavior with those of HM and CIF. MFGMs were added alone (MIF1) and with other milk-based materials (MIF2) before homogenization. The addition of MFGMs reduced the flocculation of lipids and proteins in the gastric phase and promoted lipolysis in the intestine phase. The amount of free fatty acids released followed the order of HM > MIF1 > CIF ≥ MIF2. After digestion, the number of different glyceride species between each sample and HM reached 64 (MIF1), 73 (MIF2), 67 (CIF1), and 72 (CIF2). In conclusion, the fat digestion of MIF1 had the highest similarity with HM.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jiayi Zhao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Liqin Cui
- Heilongjiang Beingmate Dairy Co., Ltd., 151400 Suihua, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Zhong Wang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xin Tan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yanxi Jiang
- Beingmate Group Co., Ltd., 311113 Hangzhou, China
| | - Chao Gao
- Heilongjiang Beingmate Dairy Co., Ltd., 151400 Suihua, China
| |
Collapse
|
13
|
Sun Y, Liu J, Pi X, Jiang S, Cheng J, Guo M. Comparison of lipidome profiles in human milk from Chinese Han and Korean ethnic groups based on high-throughput lipidomic techniques. J Dairy Sci 2024; 107:4205-4215. [PMID: 38428489 DOI: 10.3168/jds.2023-23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
The composition of milk lipids varies across different ethnic sources. The lipidome profiles of Chinese Han human milk (HHM) and Chinese Korean human milk (KHM) were investigated in this study. A total of 741 lipids were identified in HHM and KHM. Twenty-eight differentially expressed lipids (DEL) were screened between the 2 milk groups; among these, 6 triacylglycerols (TG), 13 diacylglycerols (DG), 7 free fatty acids (FFA), and 1 monoglyceride (MG) were upregulated in KHM. Carnitine (CAR) was upregulated in HHM. Most DEL showed a single peak distribution in both groups. The correlations, related pathways and diseases of these DEL were further analyzed. The results demonstrated that DG, MG, and FFA showed highly positive correlations with each other (r > 0.8). The most enriched Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.jp/kegg/) and Human Metabolome Database (http://www.hmdb.ca) pathways were inositol phosphate metabolism, and α-linolenic acid and linolenic acid metabolism, respectively. Major depressive disorder-related FFA (20:5) and FFA (22:6) were more abundant in KHM, whereas HHM showed more obesity-related CAR. These data potentially provide lipidome information regarding human milk from different ethnicities in China.
Collapse
Affiliation(s)
- Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiafei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | | | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
14
|
Jin D, Yu X, Wang Q, Chen X, Xiao M, Wang H, Cui Y, Lu W, Ge L, Yao Y, Zhou X, Wu J, Jian S, Yang H, Tao Y, Shen Q. A study of the effect of hypothyroidism during pregnancy on human milk quality based on rheological properties. J Dairy Sci 2024; 107:3400-3412. [PMID: 38135045 DOI: 10.3168/jds.2023-23900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Hypothyroidism has been found to have an effect on the nutritional composition of human milk during pregnancy. This study aims to explore the combined influence of rheological properties, macronutrient content, particle size, and the zeta potential of milk fat globules, as well as the composition of milk fat globule membrane (MFGM) proteins on the quality of human milk in gestational hypothyroidism. The study revealed that human milk from the group with hypothyroidism during pregnancy (AHM) was less viscoelastic and stable when compared with normal pregnancy group human milk (NHM). Furthermore, the particle size and macronutrient content of NHM were found to be larger than that of AHM. In contrast, the zeta potential of AHM was greater than that of NHM. The sodium dodecyl sulfate-PAGE results disclosed that the composition of MFGM proteins in these 2 groups were generally the same, but the content of AHM was lower than that of NHM. In conclusion, this study confirms that hypothyroidism during pregnancy can have a significant effect on the quality of human milk.
Collapse
Affiliation(s)
- Danping Jin
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xinyue Yu
- Alberta Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingcheng Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China
| | - Xi Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Xiao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Haifeng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ying Yao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Xiaoli Zhou
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Jiahui Wu
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shikai Jian
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China.
| | - Ye Tao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Qing Shen
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
15
|
Li Y, Guo H, Yang X, Yang X, Zhang H, Wang P, Song J, Wang L, Zhang W, Wen P. Pseudo-targeted lipidomics insights into lipid discrepancies between yak colostrum and mature milk based on UHPLC-Qtrap-MS. Food Chem 2024; 442:138462. [PMID: 38245985 DOI: 10.1016/j.foodchem.2024.138462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Yak milk is essential to maintain the normal physiological functions of herders in Tibetan areas of China. However, the lipid components of yak colostrum (YC) and mature milk (YM) have not been systematically studied. We employed a quantitative lipidomics to comprehensively describe the alterations in the milk lipid profile of lactating yaks. Herein, totally 851 lipids from 28 lipid subclasses in YC and YM were identified and screened for 43 significantly different lipids (SDLs; variable importance in projection > 1, fold change < 0.5 or > 2 with P < 0.05), with cholesterol ester (CE, 16:0) and triacylglycerol (TAG, 54:6 (20:5), 50:1 (16:0), 56:6 (20:5)) were the potential lipid biomarkers. Fourteen SDLs were modulated downwards, and 29 SDLs were modulated upwards in YM. Moreover, by analyzing lipid metabolic pathways in these SDLs, glycerophospholipid metabolism was the most critical. Our results furnish integral lipid details for evaluating yak milk's nutritional quality.
Collapse
Affiliation(s)
- Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Huiyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Yang
- Gansu Institute of Business and Technology, Lanzhou 730010, China
| | - Hao Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Juan Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Longlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
16
|
Li Z, Liu A, Cao Y, Zhou H, Shen Q, Wu S, Luo J. Milk fat globule membrane proteins are crucial in regulating lipid digestion during simulated in vitro infant gastrointestinal digestion. J Dairy Sci 2024:S0022-0302(24)00859-2. [PMID: 38825138 DOI: 10.3168/jds.2024-24707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/11/2024] [Indexed: 06/04/2024]
Abstract
Products of lipolysis released during digestion positively affect the metabolism of newborns. In contrast to the 3-layer biological membranes covering human milk (HM) fat, the lipid droplets in infant milk formula (IMF) are covered by a single membrane composed of casein and whey proteins. To reduce the differences in lipid structure between IMF and HM, studies have used milk fat globule membrane (MFGM) components such as milk polar lipids (MPL) to prepare emulsions mimicking HM fat globules However, few studies have elucidated the effect of membrane proteins (MP) on lipid digestion in infants. In this study, 3 kinds of emulsions were prepared: One with MPL as the interfaced of lipid droplets (RE-1), one with membrane protein concentrate (MPC) (RE-2) as the interface of lipid droplets, and one with both MPL and MPC (1:2) as the co-interface of lipid droplets (RE-3). The interfacial coverage of the emulsions was confirmed by measuring the contents of MPL and MPC at the lipid droplet interface, and by confocal laser scanning microscopy analyzed. By controlling the homogenization intensity, the specific surface area of lipid droplets was controlled at the same level among the 3 emulsions. The stability constants of the emulsions varied, and RE-1 was the most stable. During simulated in vitro infant gastrointestinal digestion, the amount of free fatty acids (FFA) released from the lipid droplets was significantly higher from those with MPC at the interface (RE-2, RE-3) than from that with MPL at the interface (RE-1). The amount of FFA released at the end of intestinal digestion of RE-1, RE-2, and RE-3 was 255.00 ± 3.54 µmol,328.75 ± 5.30 µmol, 298.50 ± 9.19 µmol, respectively. Compared with the lipid droplets in RE-2, those with MPL at the interface (RE-1, RE-3) released more unsaturated fatty acids (USFAs) during digestion. The emulsifying activity index was highest in RE-3 (MPL and MPC co-interface). The presence of MPL at the emulsion interface increased the release of USFAs, while the presence of MPC increased the release of FFA. These results show that both MPL and MP are indispensable in the construction of MFGM. Understanding their effects on digestion can provide new strategies for the development of infant foods.
Collapse
Affiliation(s)
- Zhixi Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Ajie Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Yu Cao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Hui Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Shan Wu
- Research and Development Center, Xi'an Yinqiao Dairy Technology Co., Ltd., Xi'an, Shaanxi, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China.
| |
Collapse
|
17
|
Liao G, Wang T, Li X, Gu J, Jia Q, Wang Z, Li H, Qian Y, Qiu J. Comparison of the Lipid Composition of Milk Fat Globules in Goat ( Capra hircus) Milk during Different Lactations and Human Milk. Foods 2024; 13:1618. [PMID: 38890847 PMCID: PMC11171730 DOI: 10.3390/foods13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Goat milk is considered the optimal substitute for human milk and is characterized by variations in the lipid composition of its fat globules across lactation phases. Therefore, the objective of this study was to thoroughly analyze the differences between goat milk during different lactations and human milk, aiming to offer scientific guidance for the production of functional dairy products. Compared with transitional and mature milk, the findings indicated that the total membrane protein content in goat colostrum exhibited greater similarity to that found in human milk. Additionally, goat milk exhibited higher milk fat globule size, as well as a higher total lipid and protein content than human milk. A total of 1461 lipid molecules across 61 subclasses were identified in goat milk and human milk. The contents of glycerides and glycerophospholipids were higher in goat colostrum, whereas sphingolipids and fatty acids were more abundant in human milk. Meanwhile, the compositions of lipid subclasses were inconsistent. There were 584 differentially expressed lipids identified between human and goat milk, including 47 subclasses that were primarily involved in the metabolism of glycerophospholipids, sphingolipids, and triglycerides. In summary, for both the membrane protein and the lipid composition, there were differences between the milk of different goat lactations and human milk.
Collapse
Affiliation(s)
- Guangqin Liao
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Tiancai Wang
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Xiabing Li
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Jingyi Gu
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Qi Jia
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Zishuang Wang
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Houru Li
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610065, China
| | - Yongzhong Qian
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Jing Qiu
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| |
Collapse
|
18
|
Li B, Chen Q, Mu L, Liu S, Xiang F, Yang L, Duan S, Li F, Man-Yau Szeto I. Milk fat globule membrane regulates the physicochemical properties and surface composition of infant formula powders by improving the stability of the emulsion. Food Chem 2024; 440:137522. [PMID: 38128430 DOI: 10.1016/j.foodchem.2023.137522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 12/23/2023]
Abstract
The milk fat globules in infant formula (IF) are encapsulated by a component known as milk fat globule membrane (MFGM). However, it is currently unclear whether the improved emulsion stability of MFGM can have a profound effect on the finished IF. Therefore, this study investigated the effects of MFGM on the particle size, stability, rheology, and microstructure of emulsions prepared by dairy ingredients via wet mixing. Further, IF were processed using such emulsions, the physicochemical properties, surface composition of the powders were examined. The results showed that MFGM reduced the particle size of the emulsion, increased the viscosity, and improved the microstructure of the MFGM. Furthermore, MFGM reduced the moisture content of the powder, increased the glass transition temperature, and reduced the presence of surface fat. In conclusion, the addition of MFGM enhance the finished powder stability by improving the emulsion stability prepared during IF manufacturing.
Collapse
Affiliation(s)
- Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Longkai Mu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sibo Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fangqin Xiang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Liu Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
| | - Fang Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China.
| |
Collapse
|
19
|
Ma Q, Zhou T, Wang Z, Zhao Y, Li X, Liu L, Zhang X, Kouame KJEP, Chen S. Ultrasound modification on milk fat globule membrane and soy lecithin to improve the physicochemical properties, microstructure and stability of mimicking human milk fat emulsions. ULTRASONICS SONOCHEMISTRY 2024; 105:106873. [PMID: 38608436 PMCID: PMC11024657 DOI: 10.1016/j.ultsonch.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.
Collapse
Affiliation(s)
- Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Tao Zhou
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Zhong Wang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Yanjie Zhao
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; National Center of Technology Innovation for Dairy, 010010 Hohhot, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Shuo Chen
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
20
|
Ozturk G, Paviani B, Rai R, Robinson RC, Durham SD, Baller MI, Wang A, Nitin N, Barile D. Investigating Milk Fat Globule Structure, Size, and Functionality after Thermal Processing and Homogenization of Human Milk. Foods 2024; 13:1242. [PMID: 38672914 PMCID: PMC11049580 DOI: 10.3390/foods13081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk provides bioactive compounds such as milk fat globules (MFGs), which promote brain development, modulate the immune system, and hold antimicrobial properties. To ensure microbiological safety, donor milk banks apply heat treatments. This study compares the effects of heat treatments and homogenization on MFG's physicochemical properties, bioactivity, and bioavailability. Vat pasteurization (Vat-PT), retort (RTR), and ultra-high temperature (UHT) were performed with or without homogenization. UHT, RTR, and homogenization increased the colloidal dispersion of globules, as indicated by increased zeta potential. The RTR treatment completely inactivated xanthine oxidase activity (a marker of MFG bioactivity), whereas UHT reduced its activity by 93%. Interestingly, Vat-PT resulted in less damage, with 28% activity retention. Sialic acid, an important compound for brain health, was unaffected by processing. Importantly, homogenization increased the in vitro lipolysis of MFG, suggesting that this treatment could increase the digestibility of MFG. In terms of color, homogenization led to higher L* values, indicating increased whiteness due to finer dispersion of the fat and casein micelles (and thus greater light scattering), whereas UHT and RTR increased b* values associated with Maillard reactions. This study highlights the nuanced effects of processing conditions on MFG properties, emphasizing the retention of native characteristics in Vat-PT-treated human milk.
Collapse
Affiliation(s)
- Gulustan Ozturk
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Rewa Rai
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Sierra D. Durham
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Mara I. Baller
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA; (B.P.); (R.R.); (R.C.R.); (S.D.D.); (M.I.B.); (A.W.); (N.N.)
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
21
|
Sun Y, Roos YH, Miao S. Comparative study of interfacial properties and thermal behaviour of milk fat globules and membrane prepared from ultrasonicated bovine milk. ULTRASONICS SONOCHEMISTRY 2024; 102:106755. [PMID: 38219547 PMCID: PMC10825641 DOI: 10.1016/j.ultsonch.2024.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Milk fat globules or milk fat globule membranes (MFGs/MFGM) have been added to the infant formula to fortify the phospholipids and narrow the nutritional gap from breast milk. The main aim of this study was to profile the interfacial and thermal properties of MFGs/MFGM prepared from ultrasonicated bovine milk. Bovine milk was sonicated at ultrasonic intensities of 20 kHz and 40 kHz independently or synchronously with the duration time of 0 min (control), 5 min, 10 min, and 15 min (work/rest cycles = 5 s: 3 s). Ultrasonic treatments at 20 kHz/ 5 min and 20 + 40 kHz/ 5 min improved the volume density (%) of smaller particles (1-10 µm) while significantly decreasing the surface hydrophobicity (H0) (p < 0.05). 40 kHz/5 min samples showed significantly higher ζ- potential than the other samples (p < 0.05), which might be because more negative charges were detected. In comparison with control samples, ultrasonic treatments decreased the interfacial tension (π) between the air and MFGs/MFGM liquid phase. 20 kHz ultra-sonicated treatments decreased the diffusion rate (k diff) of MFGs/MFGM interfacial compositions significantly as the duration prolonged from 5 min to 15 min (p < 0.05) but did not affect the adsorption or penetration rate (k a) (p > 0.05). X-ray diffraction (XRD) results showed that α-crystal peaks only existed in control and ultrasonicated 5 min samples but disappeared in all 15 min samples. According to the different scanning calorimetry (DSC), one or two new exothermic events (in the range of 17.29 - 18.81 ℃ and 22.14 - 25.21 ℃) appeared after ultrasonic treatments, which, however, were not found in control samples. Ultrasonic treatments resulted in the low-melting fractions (LMF) (TM1) peaks undetectable in MFGs/MFGM samples in which only peaks of medium-melting fractions (MMF) (TM2) and high-melting fractions (HMF) (TM3) were detected. Compared with the control, both enthalpies of crystallisation (ΔHC) and melting (ΔHM) decreased in ultrasonicated samples. In conclusion, ultrasonic treatment affects the interfacial and thermal properties of MFGs/MFGM.
Collapse
Affiliation(s)
- Yanjun Sun
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Yrjö H Roos
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; China-Ireland International Cooperation Centre for Food Material Sciences and Structure Design, Fujian Agriculture and Forestry University, China.
| |
Collapse
|
22
|
Gharbi N, Stone D, Fittipaldi N, Unger S, O'Connor DL, Pouliot Y, Doyen A. Characterization of protein aggregates in cream and skimmed human milk after heat and high-pressure pasteurization treatments. Food Chem 2023; 429:136749. [PMID: 37454618 DOI: 10.1016/j.foodchem.2023.136749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Preservation processes applied to ensure microbial safety of human milk (HM) can modify the native structure of proteins and their bioactivities. Consequently, this study evaluated the effect of pasteurization methods (Holder pasteurization, high-temperature short-time (HTST), and high hydrostatic pressure (HHP)) of whole human milk (HM) on protein aggregates in skim milk and cream fractions. For heat-treated whole milk, insoluble protein aggregates at milk fat globule membrane (MFGM) were formed by disulfide and non-covalent bonds, but insoluble skim milk protein aggregates were only stabilized by non-covalent interactions. Contrary to heat treatment, the insolubilization of main proteins at the MFGM of HHP-treated HM was only through non-covalent interactions rather than disulfide bonds. Moreover, only heat treatment induced the insoluble aggregation of ⍺-lactalbumin. Overall, compared to heat treatment, HHP produced a milder effect on protein aggregation, validating the use of this process to better preserve the native state of HM bioactive proteins.
Collapse
Affiliation(s)
- Negar Gharbi
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Debbie Stone
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada
| | - Nahuel Fittipaldi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada; Public Health Ontario, Toronto, Ontario, Canada
| | - Sharon Unger
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Canada,; Department of Pediatrics, University of Toronto, Toronto, Canada; Department of Pediatrics, Sinai Health, Toronto, Canada
| | - Deborah L O'Connor
- Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Canada,; Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatrics, Sinai Health, Toronto, Canada
| | - Yves Pouliot
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Alain Doyen
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada.
| |
Collapse
|
23
|
Ma Q, Zhang X, Li X, Liu L, Liu S, Hao D, Bora AFM, Kouame KJEP, Xu Y, Liu W, Li J. Novel trends and challenges in fat modification of next-generation infant formula: Considering the structure of milk fat globules to improve lipid digestion and metabolism of infants. Food Res Int 2023; 174:113574. [PMID: 37986523 DOI: 10.1016/j.foodres.2023.113574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Differences in the composition and structure of lipid droplets in infant formula (IF) and human milk (HM) can affect the fat digestion of infants, leading to high risk of metabolic diseases during later stages of growth. Recently, interest in simulating HM fat (HMF) has gradually increased due to its beneficial functions for infants. Much research focuses on the simulation of fatty acids and triacylglycerols. Enzymatic combined with new technologies such as carbodiimide coupling immobilization enzymes, solvent-free synthesis, and microbial fermentation can improve the yield of simulated HMF. Furthermore, fat modification in next-generation IF requires attention to the impact on the structure and function of milk fat globules (MFG). This review also summarizes the latest reports on MFG structure simulation, mainly related to the addition method and sequence of membrane components, and other milk processing steps. Although some of the simulated HMF technologies and products have been applied to currently commercially available IF, the cost is still high. Furthermore, understanding the fat decomposition of simulated HMF during digestion and assessing its nutritional effects on infants later in life is also a huge challenge. New process development and more clinical studies are needed to construct and evaluate simulated HMF in the future.
Collapse
Affiliation(s)
- Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Donghai Hao
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Yanling Xu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Wenli Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, Harbin 150010, China
| |
Collapse
|
24
|
Wang Y, Guo M, Ren F, Wang P, Li H, Li H, Li Y, Luo J, Yu J. A novel strategy to construct stable fat globules with all major milk fat globule membrane proteins to mimic breast milk fat emulsions at the protein level. Food Res Int 2023; 173:113351. [PMID: 37803655 DOI: 10.1016/j.foodres.2023.113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Milk fat globule membrane (MFGM) proteins have several biological functions and maintain the fat globule structure. However, the major MFGM protein compositions in simulated human milk emulsions are different from those in human milk due to the composition loss in the isolation process of MFGM materials. To overcome this limitation, we developed a novel strategy, namely, the solution enriched with MFGM was homogenized with cream separated from the milk rich in large-sized fat globules. The results of physicochemical properties and the interfacial protein coverage of the emulsions showed that the emulsions prepared by the new method had a smaller particle size, higher stability, and more interfacial protein coverage when the ratio of fat to protein was 1:3. In addition, proteome differences in interfacial proteins between the new emulsions and simulated infant formula emulsions were investigated, and the results revealed that the interface of the emulsions prepared by the new method contained all major MFGM proteins and unique GO annotations and KEGG pathways. However, only four MFGM proteins (XO, ADPH, PAS 6/7) were quantified at the interface of the emulsions prepared by the common method. Furthermore, the protein number and the total relative abundance of major MFGM proteins were approximately 2-fold and 475-fold higher at the interface of the emulsions prepared by the new method compared to the common method. Overall, the study modulated the interfacial protein composition of fat globules by screening the sources of lipid and homogenization methods and revealed its potential effect on processing stability and biological properties.
Collapse
Affiliation(s)
- Yi Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Mengyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Hongjuan Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Jie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
25
|
Liu Q, Qiao W, Liu Y, Liu Y, Zhao J, Fan X, Li Z, Hou J, Liu Y, Chen J, Yang K, Yu X, Lin L, Jin Y, Chen L. Effects of lipids from multiple sources on glyceride composition, concentration, and structure of infant formulas benchmarked to human milk. Heliyon 2023; 9:e21611. [PMID: 38027638 PMCID: PMC10654232 DOI: 10.1016/j.heliyon.2023.e21611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The important parameters affecting the nutritional properties of lipids were analyzed and compared between human milk (HM), infant formulas (IFs), mammalian milk, and substitute fat, including molecular species, fatty acid composition, glyceride content, and important structural triacylglycerols (TAGs). The molecular species of triacylglycerols with functional fatty acids were significantly different between HM and IFs, and their contents in HM were significantly higher than those in IFs. Accordingly, the evaluation scores of fatty acid composition and glyceride content in IFs were less than 50 compared to HM. Although the introduction of vegetable oils effectively improved the unsaturation of IF lipid, the excessive addition of TAGs rich in oleic and linoleic acid resulted in an imbalance of TAG composition and structure. Only 36.84 % of IFs were supplemented with structured lipids, but those still lacked sn-2 palmitate TAGs. The adoption of multiple lipids and novel processing technologies is required for novel IFs to match the composition, content, positional structure and spherical membrane structure of HM as closely as possible.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaofei Fan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ziqi Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Jingyao Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Li Lin
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yue Jin
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| |
Collapse
|
26
|
Schipper L, Bartke N, Marintcheva-Petrova M, Schoen S, Vandenplas Y, Hokken-Koelega ACS. Infant formula containing large, milk phospholipid-coated lipid droplets and dairy lipids affects cognitive performance at school age. Front Nutr 2023; 10:1215199. [PMID: 37731397 PMCID: PMC10508340 DOI: 10.3389/fnut.2023.1215199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Background Breastfeeding has been positively associated with infant and child neurocognitive development and function. Contributing to this effect may be differences between human milk and infant formula in the milk lipid composition and milk fat globule structure. Objective To evaluate the effects of an infant formula mimicking human milk lipid composition and milk fat globule structure on childhood cognitive performance. Methods In a randomized, controlled trial, healthy term infants received until 4 months of age either a Standard infant formula (n = 108) or a Concept infant formula (n = 115) with large, milk phospholipid coated lipid droplets and containing dairy lipids. A breastfed reference group (n = 88) was included. Erythrocyte fatty acid composition was determined at 3 months of age. Neurocognitive function was assessed as exploratory follow-up outcome at 3, 4, and 5 years of age using the Flanker test, Dimensional Change Card Sort (DCCS) test and Picture Sequence Memory test from the National Institutes of Health Toolbox Cognition Battery. Mann-Whitney U test and Fisher exact test were used to compare groups. Results Erythrocyte omega-6 to -3 long-chain polyunsaturated fatty acid ratio appeared to be lower in the Concept compared to the Standard group (P = 0.025). At age 5, only the Concept group was comparable to the Breastfed group in the highest reached levels on the Flanker test, and the DCCS computed score was higher in the Concept compared to the Standard group (P = 0.021). Conclusion These outcomes suggest that exposure to an infant formula mimicking human milk lipid composition and milk fat globule structure positively affects child neurocognitive development. Underlying mechanisms may include a different omega-3 fatty acid status during the first months of life. Clinical trial registration https://onderzoekmetmensen.nl/en/trial/28614, identifier NTR3683 and NTR5538.
Collapse
Affiliation(s)
| | - Nana Bartke
- Danone Nutricia Research, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
27
|
Liu Y, Liu Y, Liu Q, Zhao J, Qiao W, Liu B, Yang B, Chen L. Comparison of phospholipid composition and microstructure of milk fat globules contained in human milk and infant formulae. Food Chem 2023; 415:135762. [PMID: 36870206 DOI: 10.1016/j.foodchem.2023.135762] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Phospholipids play key roles in infant nutrition and cognitive development. It is hypothesized that infant formula (IF) has lower phospholipid species, content and milk fat globule (MFG) structural integrity than human milk (HM). Herein, we performed qualitative and quantitative analyses of phospholipids in six classes of IF and HM using ultra-performance liquid chromatography with mass spectrometry. The contents of phosphatidylethanolamine (15.81 ± 7.20 mg/L) and sphingomyelin (35.84 ± 15.56 mg/L) in IF were significantly lower than those in HM (30.74 ± 17.38 mg/L, 45.53 ± 16.04 mg/L, respectively). Among the six IF classes, cow's milk-based IF had the highest number of phospholipid species, and IF containing milk fat globular membrane had the highest phospholipid content. The size, zeta potential, and amount of MFGs in IF were significantly lower than those in HM. These results may prove useful for designing better IF that mimic HM.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Bin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Baoyu Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
28
|
Comparison of glycerophospholipid and sphingolipid in mature milk from different sampled regions in the Chinese human milk project (CHMP) study. Food Chem 2023; 410:135311. [PMID: 36610088 DOI: 10.1016/j.foodchem.2022.135311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Milk phospholipids (PLs) are critical components of infant growth. This study aimed to discover PL in mature human milk (HM) from China (n = 201) and mainly assessed the effect caused by sampled regions. The average total PL concentration was quantified from 3.65 to 11.25 mg per g of lipid, and the major PL class identified was sphingomyelin (SM, 38.06-47.62 %), followed by phosphatidylcholine (PC, 29.61-34.39 %), and phosphatidylethanolamine (PE, 10.54-24.46 %). In addition, the 36:2 (18:0/18:2), 38:6 (16:0/22:6), 40:1 (d18:1/22:0), and 42:2 (d18:1/24:1) were the most abundant molecular species identified in glycerophospholipid and SM molecular species respectively. Some PL molecular species were strongly related with region of sampling, like lysophosphatidylinositol 18:1 was only detected in Beijing. In conclusion, those findings showed that the PL molecular species and concentration of HM had significant regional diversity, and it will give the Chinese human milk database more accurate PL data.
Collapse
|
29
|
Alves ES, Ferreira CSR, Souza PR, Bruni ARS, Castro MC, Saqueti BHF, Santos OO, Madrona GS, Visentainer JV. Freeze-dried human milk microcapsules using gum arabic and maltodextrin: An approach to improving solubility. Int J Biol Macromol 2023; 238:124100. [PMID: 36958443 DOI: 10.1016/j.ijbiomac.2023.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Human milk (HM) is essential for newborns' food, but its low storage stability is a limiting factor so that microencapsulation may stabilize and protect compounds sensitive to degradation. This study investigated the action of maltodextrin and gum arabic on freeze-dried HM concerning its quality and solubility. Microencapsulation was evidenced by morphology, and all samples presented high encapsulation efficiency (>85 %), proving to be an efficient process. Furthermore, specific signals in the Fourier-Transform Infrared (FTIR) spectra indicate the interactions between the coating materials and the HM matrix. Gum arabic improved the reconstitution properties of freeze-dried HM (higher solubility, 3 % on average, and lower dissolution time, around 80 %), elucidating its high stabilization capacity, even at low concentrations (5 and 10 %). Despite the best results reached by gum arabic, the addition of maltodextrin proved effective; in other words, its low stabilization capacity enables combinations with gum arabic. A lower polidispersibility (difference of 20 % between samples: control and containing gum arabic) was also observed, which means that the encapsulated samples were more homogeneous. Therefore, through the analysis performed, we recommend using gum arabic alone or with maltodextrin to obtain HM microcapsules with a good quality of reconstitution.
Collapse
Affiliation(s)
- Eloize Silva Alves
- Post-Graduation Program in Food Science, State University of Maringá, Maringá, PR 87020-900, Brazil
| | | | - Paulo Ricardo Souza
- Chemistry Department, State University of Maringá, Maringá, PR 87020-900, Brazil
| | | | | | | | - Oscar Oliveira Santos
- Post-Graduation Program in Food Science, State University of Maringá, Maringá, PR 87020-900, Brazil; Chemistry Department, State University of Maringá, Maringá, PR 87020-900, Brazil
| | | | - Jesui Vergilio Visentainer
- Post-Graduation Program in Food Science, State University of Maringá, Maringá, PR 87020-900, Brazil; Chemistry Department, State University of Maringá, Maringá, PR 87020-900, Brazil.
| |
Collapse
|
30
|
Yu X, Zhou W, Jia Z, Liu L, Li X, Zhang X, Cheng J, Ma C, Sun L, Jiao Y. Interfacial composition in infant formulas powder modulate lipid digestion in simulated in-vitro infant gastrointestinal digestion. Food Res Int 2023; 165:112553. [PMID: 36869459 DOI: 10.1016/j.foodres.2023.112553] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The interface structure and composition of fat globules are very important for the digestion and metabolism of fat and growth in infants. Interface composition of fat globules in infant formula (IF) supplemented with milk fat globule membranes (MFGM) and lecithin in different ways were analyzed and their effects on fat digestion properties were evaluated. The results showed that the distribution of phospholipids at the interface and structural of Concept IF1 and Concept IF2 that were more similar to those of human milk (HM) than that of conventionally processed IF3. Concept IF2 and IF3 supplemented with lecithin had larger initial particle size and more sphingomyelin (SM) (23.12 ± 0.26 %, 26.94 ± 0.34 %) than Concept IF1, and Concept IF2 had the smallest proportion of casein in the interfacial. Due to its interface composition, Concept IF2 had the highest degree of lipolysis (85.07 ± 0.76 %), the phospholipid ring structure can always be observed during gastric digestion, and a final fatty acid composition released that was more similar to HM. Concept IF1 and IF3 were different from HM and Concept IF2 in terms of structure and lipolysis rate, although superior to commercial IF4. These indicate that changes in the interfacial composition and structure of fat globules improve the digestive properties of fats in IF. Overall, the results reported herein are useful in designing new milk formulas that better simulate HM.
Collapse
Affiliation(s)
- Xiaoxue Yu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Wenli Zhou
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Zhibing Jia
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Jinju Cheng
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lina Sun
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yang Jiao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
31
|
Liu Y, Liu L, Liu S, Sun M, Jiao Y, Chai J, Bi L, Fanny Massounga Bora A, Li X, Zhang X, Liu B, Cheng J, Ma C, Li J. The influence of MPL addition on structure, interfacial compositions and physicochemical properties on infant formula fat globules. Food Res Int 2023; 168:112769. [PMID: 37120219 DOI: 10.1016/j.foodres.2023.112769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The lack of milk fat globule membrane phospholipids (MPL) at the interface of infant formula fat globules has an impact on the stability of fat globules, compared to human milk. Therefore, infant formula powders with different MPL contents (0%, 10%, 20%, 40%, 80%, w/w of MPL/whey protein mixture) were prepared, and the effect of interfacial compositions on the stability of globules was investigated. With increasing MPL amount, the particle size distribution had two peaks and returned to a uniform state when 80% MPL was added. At this composition, the MPL at the oil-water interface formed a continuous thin layer. Moreover, the addition of MPL improved the electronegativity and the emulsion stability. In terms of the rheological properties, increasing the concentration of MPL improved the elastic properties of the emulsion and the physical stability of the fat globules, while reducing the aggregation and agglomeration between fat globules. However, the potential for oxidation increased. Based on these results, the interfacial properties and stability on infant formula fat globules was significantly influenced by the level of MPL, which should be considered in the design of infant milk powders.
Collapse
Affiliation(s)
- Yibo Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Co., Ltd., 151400 Suihua, China
| | - Meng Sun
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yang Jiao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jing Chai
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lianji Bi
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Bincheng Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jinju Cheng
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, 150010, Harbin, China
| |
Collapse
|
32
|
Effects of various thermal treatments on interfacial composition and physical properties of bovine milk fat globules. Food Res Int 2023; 167:112580. [PMID: 37087201 DOI: 10.1016/j.foodres.2023.112580] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
This study aimed to investigate changes of milk fat globules (MFG) and their membranes after thermal treatments, and further analyzed the relationship between the stability of MFG and interfacial compositions of milk fat globule membrane (MFGM). We characterized the influence of three kinds of thermal treatments on fat globule interfacial components (including interfacial phospholipids and interfacial protein) and physical properties using phospholipidomics and several microscopy techniques. The results showed that size of MFG increased from 2.96 μm to 3.59 μm and ζ-potential decreased from -9.71 mV to -13.23 mV after thermal treatment, suggesting that MFGM was damaged and MFG occurred coalescence. Thermal treatment increased the Young's modulus of MFGM and made membranes more fragile. The abundance of MFGM proteins decreased while casein and β-lactoglobulin increased after thermal treatment. Results of phospholipidomics showed that 27 phospholipid species could be used to distinguish the samples. Pasteurization reduced mainly SM and PC located in the outer bilayer of MFGM, while ultra-pasteurization reduced not only SM and PC but also PI and PE located in the inner leaflet. Based on correlation analysis, the increase in Young's modulus of MFGM during thermal treatment might be related to changes in chemical components on the membrane, suggesting a potential link between the change of MFGM components and fat globule coalescence behavior.
Collapse
|
33
|
Interaction between whey protein and soy lecithin and its influence on physicochemical properties and in vitro digestibility of emulsion: A consideration for mimicking milk fat globule. Food Res Int 2023; 163:112181. [PMID: 36596120 DOI: 10.1016/j.foodres.2022.112181] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
In this study, from the perspective of simulating the milk fat globule (MFG) emulsion, the interaction between soybean lecithin (SL) and the main protein in milk, whey protein (WP), and its effect on physical characteristics and lipid digestion were investigated through multiple spectroscopic techniques and in vitro digestion. The mechanism of SL and WP was static quenching, indicating that a complex formed between WP and SL through hydrophobic interaction and hydrogen bonding. The addition of SL changed the secondary structure of WP. When the ratio of SL to WP was 1:3, the obtained SL-WP emulsion that simulated milk fat globule exhibited the smallest particle size distribution and the highest absolute value of zeta potential. In addition, the emulsion exhibited high encapsulation efficiency (91.67 ± 1.24 %) and good stability. Compared with commercially available infant formula (IF), the final free fatty acid release of prepared SL-WP emulsion was close to that of human milk (HM). The addition of lecithin increased the digestibility of fat and the release of free fatty acids, and the digestive characteristic and particle size change also were closer to that of HM from results of kinetics of free fatty acid release and microstructure analysis.
Collapse
|
34
|
Ahn N, Imm JY. Effect of phospholipid matrix on emulsion stability, microstructure, proteolysis, and in vitro digestibility in model infant formula emulsion. Food Res Int 2023; 163:112218. [PMID: 36596147 DOI: 10.1016/j.foodres.2022.112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
The effects of adding different phospholipid (PL) matrices [milk sphingomyelin (SM) vs soy phosphatidylcholine (PC)] on emulsion stability, microstructure, and in vitro simulated lipid digestion were examined using a Model Infant Formula Emulsion (MIFE). The emulsion stability of MIFE increased significantly with PL addition (0.1 and 0.2 %). Compared to sole MIFE or MIFE + PC, the incorporation of SM resulted in increased emulsion stability (p < 0.05) and a greater amount of free fatty acid release (p < 0.05) during in vitro simulated digestion. This was mainly due to the reduction of intensive droplet aggregation, thus providing a large surface area and improved digestibility. This is further experimentally supported by the evolution of particle size distribution, zeta-potential, and microstructure analysis using confocal laser scanning microscopy. The incorporation of SM in the emulsion formation significantly delayed digestion of β-lactoglobulin during in vitro digestion. Lipid digestibility in MIFE was altered depending on the type of PL matrix, and SM displayed a superior effect to PC. Thus, the creation of a novel emulsion interface by the appropriate selection of emulsifiers can be used to improve lipid digestion in infants and obtain desirable nutritional consequences.
Collapse
Affiliation(s)
- Nahyun Ahn
- Department of Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea.
| | - Jee-Young Imm
- Department of Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea; Department of Foods and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
35
|
Effect of Different Polymerization Degrees and Fatty Acids of Polyglycerol Esters on the Physical Properties and Whippability of Recombined Dairy Cream. Foods 2022; 12:foods12010022. [PMID: 36613238 PMCID: PMC9818443 DOI: 10.3390/foods12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Polyglycerol esters (PGEs) are used as emulsifiers in recombined dairy cream (RDC) to improve product quality. In this study, the effects of four PGEs with different polymerization degrees and esterification on the particle size, viscosity, zeta potential, and microrheology of RDC emulsions were investigated, and the whipping time, overrun, serum loss, and firmness of the RDC emulsions were recorded. The results show that the addition of the PGEs reduced the particle size (from 2.75 μm to 1.48-1.73 μm) and increased the viscosity (from 41.92 cP to 73.50-100 cP) and stability (from 0.354 to 0.105-0.128), which were related to the change in interfacial properties and the weakening of Brownian motion, but there were differences in the effect on the whipping behavior of the RDCs. Although the addition of 0.9% triglyceride monolaurate gave the emulsion the best stability, the RDC had a longer whipping time (318 s) and a lower overrun (116.6%). Comparatively, the 0.7-0.9% concentrations of PGE55 and tripolycerol monostearate (TMS) provided RDC with good stability and aeration characteristics, allowing inflation within 100 s and expansion rates of up to 218.24% and 186.88%, respectively. In addition, the higher degree of polymerization of polyglyceryl-10 monstearate (PMS) did not work well at any concentration. These results contribute to understanding the mechanism of action of PGEs and improving the quality of RDC.
Collapse
|
36
|
Abad I, Serrano L, Graikini D, Pérez MD, Grasa L, Sánchez L. Effect of in vitro gastrointestinal digestion on the antibacterial activity of bioactive dairy formulas supplemented with lactoferrin against Cronobacter sakazakii. Biometals 2022; 36:667-681. [PMID: 36335546 PMCID: PMC10182125 DOI: 10.1007/s10534-022-00459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
AbstractMilk is a source of proteins with high nutritional value and relevant biological activities. Bioactive milk proteins, like lactoferrin, are important for newborn development and can also be used as ingredients in functional products to improve health. Lactoferrin is essential in infant’s diet, since protects against infections and promotes immune system maturation. Bovine lactoferrin is used to supplement formula milk in order to strengthen baby’s defences against some pathogenic bacteria. Thus, lactoferrin supplemented formula can be a barrier against emergent pathogens, such as Cronobacter sakazakii, which has caused great concern in the last few years. Milk proteins generate bioactive peptides in the digestion process, and it is known that industrial processing can modify their susceptibility to digestion. Treatments such as heating have been shown to denature whey proteins and make them more easily digestible. Therefore, the aim of this study was to analyze the effect of technological treatments and gastrointestinal digestion on the antibacterial activity against C. sakazakii of proteins present in dairy formulas supplemented with lactoferrin. Commercial bovine lactoferrin has been shown to have antibacterial activity against C. sakazakii, both in the native state and after static in vitro gastrointestinal digestion. In addition, the digests obtained from dairy formulas subjected to technological treatments, either homogenization or pasteurization, have higher antibacterial activity than non-treated formulas. The release of low molecular weight peptides during the in vitro gastric digestion is probably the cause that would explain the enhanced antibacterial activity of the digested dairy formulas.
Collapse
|
37
|
Model infant formulas: Influence of types of whey proteins and lipid composition on the in vitro static digestion behavior. Food Res Int 2022; 161:111835. [DOI: 10.1016/j.foodres.2022.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
|
38
|
Stabilization of human milk fat analog emulsions using milk fat globule membrane material–coated lipid droplets: Structural and physical properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Yu X, Zhao Y, Sun M, Liu L, Li X, Zhang X, Sun Y, Bora AFM, Li C, Leng Y, Jiang S. Effects of egg yolk lecithin/milk fat globule membrane material ratio on the structure and stability of oil-in-water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Bioaccessibility of phospholipids in homogenized goat milk: Lipid digestion ecology through INFOGEST model. Food Chem 2022; 386:132770. [PMID: 35339088 DOI: 10.1016/j.foodchem.2022.132770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Phospholipids-rich goat milk provides health benefits to consumers. The effects of homogenization on the disruption and recombination of milk fat globule membrane and change the fatty acid positional distribution in glycerophospholipids profile by phosphatidylcholine metabolism pathways were investigated. Goat milk was homogenized at different intensity pressure. Homogenized samples were introduced into harmonized INFOGEST digestion model. Results showed that phosphatidylcholine increased significantly during storage in 30 MPa and were approximately twice that in raw milk (LOD 0.27-1.49 μg/L and LOQ 0.89-4.92 μg/L, respectively). Meanwhile, both linoleic acid (C18:2) and α-linolenic acid (C18:3ω-3), the foremost polyunsaturated acyl chains in homogenized milk extracts, showed upward trends. Notably, homogenization increased the number and altered the composition of Sn-1, 2 diacylglycerols via increasing trypsin and pancreatic lipase (PLRP2, MAUC15, CD36 and BSSL) expression and accelerated the phosphatidylcholine conversion. Ultimately, the relationship between homogenization and milk fat globule recombination and phospholipids bioaccessibility was preliminary established.
Collapse
|
41
|
Sun Y, Ma S, Liu Y, Jia Z, Li X, Liu L, Ma Q, Jean Eric-parfait Kouame K, Li C, Leng Y, Jiang S. Changes in interfacial composition and structure of milk fat globules are crucial regulating lipid digestion in simulated in-vitro infant gastrointestinal digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Impacts of Formula Supplemented with Milk Fat Globule Membrane on the Neurolipidome of Brain Regions of Piglets. Metabolites 2022; 12:metabo12080689. [PMID: 35893256 PMCID: PMC9330244 DOI: 10.3390/metabo12080689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The milk fat globule membrane (MFGM) appears to play an important role in infant neurocognitive development; however, its mechanism(s) of action remains unclear. This study aimed to investigate the role of a dietary MFGM supplement on the lipid profiles of different neonatal brain regions. Ten-day-old male piglets (4−5 kg) were fed unsupplemented infant formula (control, n = 7) or an infant formula supplemented with low (4%) or high (8%) levels of MFGM (n = 8 each) daily for 21 days. Piglets were then euthanized, and brain tissues were sectioned. Untargeted liquid chromatography-mass spectrometry lipidomics was performed on the cerebellum, hippocampus, prefrontal cortex, and the rest of the brain. The analyses identified 271 and 171 lipids using positive and negative ionization modes, respectively, spanning 16 different lipid classes. MFGM consumption did not significantly alter the lipidome in most brain regions, regardless of dose, compared to the control infant formula. However, 16 triacylglyceride species were increased in the hippocampus (t-test, p-value < 0.05) of the high-supplemented piglets. Most lipids (262 (96.7%) and 160 (93.6%), respectively) differed significantly between different brain regions (ANOVA, false discovery rate corrected p-value < 0.05) independent of diet. Thus, this study highlighted that dietary MFGM altered lipid abundance in the hippocampus and detected large differences in lipid profiles between neonatal piglet brain regions.
Collapse
|
43
|
Liu Q, Zhao J, Liu Y, Qiao W, Jiang T, Liu Y, Yu X, Chen L. Advances in analysis, metabolism and mimicking of human milk lipids. Food Chem 2022; 393:133332. [PMID: 35661604 DOI: 10.1016/j.foodchem.2022.133332] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022]
Abstract
Human milk lipids differ from the milk lipids of other mammals in composition and positional distribution of fatty acids. Analysis and detection technology of lipids is key to understanding milk lipids, and thus the concentrations, compositions and distribution characteristics of milk lipids are discussed. Differences between human milk lipids and their substitutes in form, composition and structure affect their digestion, absorption and function in infants. Characteristics and mimicking of human milk lipids have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. Based on the existing achievements, further progress may be made by improving detection techniques, deepening knowledge of metabolic pathways and perfecting fat substitutes. This review detailed the characteristics of human milk lipids and related detection technologies with a view towards providing a clear direction for research on mimicking human milk lipids in formulae to further improve infant nutrition.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
44
|
Chai C, Oh S, Imm JY. Roles of Milk Fat Globule Membrane on Fat Digestion and Infant Nutrition. Food Sci Anim Resour 2022; 42:351-371. [PMID: 35611078 PMCID: PMC9108948 DOI: 10.5851/kosfa.2022.e11] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Milk fats are present as globules emulsified in the aqueous phase of milk and stabilized by a delicate membrane architecture called milk fat globule membrane (MFGM). The unique structure and composition of the MFGM play an important role in fat digestion and the metabolic programming of neonates. The objective of this review is to compare the structure, composition, and physicochemical characteristics of fat globules in human milk, bovine milk, and infant formula. It provides an overview of the fat digestion process and enzymes in healthy infants, and describes the possible roles of the MFGM in association with factors affecting fat digestion. Lastly, the health benefits of the MFGM on infant nutrition and future perspectives are discussed with a focus on brain development, metabolic response, and gut health.
Collapse
Affiliation(s)
- Changhoon Chai
- Department of Applied Animal Science,
Kangwon National University, Chuncheon 24341, Korea
| | - Sejong Oh
- Devision of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| |
Collapse
|