1
|
Vardar US, Konings G, Yang J, Sagis LMC, Bitter JH, Nikiforidis CV. Modifying the interfacial dynamics of oleosome (lipid droplet) membrane using curcumin. J Colloid Interface Sci 2025; 678:1077-1086. [PMID: 39341139 DOI: 10.1016/j.jcis.2024.09.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Cells store energy in lipid droplets, known as oleosomes, which have a neutral lipid core surrounded by a dilatable membrane of phospholipids and proteins. Oleosomes can be loaded with therapeutic lipophilic cargos through their permeable membrane and used as carriers. However, the cargo can also adsorb between the phospholipids and affect the membrane properties. In the present work, we investigated the effect of adsorbed curcumin on the mechanical properties of oleosome membranes using dilatational interfacial rheology (LAOD). The oleosome membrane had a weak-stretchable behavior, while the adsorption of curcumin led to stronger in-plane interactions, which were dependent on curcumin concentration and indicated a glassy-like structure. Our findings showed that adsorbed curcumin molecules can enhance the molecular interactions on the oleosome membrane. This behavior suggests that oleosomes membranes can be modulated by loaded cargo. Understanding cargo and membrane interactions can help to design oleosome-based formulations with tailored mechanical properties for applications.
Collapse
Affiliation(s)
- Umay Sevgi Vardar
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Gijs Konings
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jack Yang
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Johannes H Bitter
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
2
|
Lv W, Zou K, Alouk I, Li X, Chen W, Miao S, Sun B, Wang Y, Xu D. Unlocking curcumin's revolutionary: Improvement of stability and elderly digestion by soybean oil bodies and soybean protein-chitosan complex based Pickering emulsion. Int J Biol Macromol 2025; 284:138052. [PMID: 39608545 DOI: 10.1016/j.ijbiomac.2024.138052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Curcumin shows promise for disease prevention and health improvement, but its limited water solubility and vulnerability to degradation reduce its bioavailability, while its biological fate in elderly is unclear. Oil bodies are natural pre-emulsified oil droplets that serve as carriers for functional nutrients. In this study, soybean protein isolate (SPI) was complexed with chitosan (CS) for the purpose of stabilizing the soybean oil body-curcumin emulsion, resulting in the formation of the soybean isolate protein-chitosan-soybean oil bodies-curcumin Pickering emulsion (SPI-CS-SOB-C). The study examined the digestive properties, bioaccessibility of curcumin, free fatty acids (FFA) release, and microstructure changes of SPI-CS-SOB-C through an in vitro elderly digestion model. The findings indicated that curcumin was effectively encapsulated within the SPI-CS-SOB-C, achieving an encapsulation efficiency of 97.7 %, which resulted in notable enhancements in light, heat, and storage stability, as well as an extended half-life of curcumin to 85 months. In vitro elderly digestion demonstrated that SPI-CS-SOB-C notably enhanced the bioaccessibility of curcumin, increasing it from 14.3 % to 51 %. The low FFA release of SPI-CS-SOB-C (23.06 %) suggested its potential suitability for incorporation into low-fat food products and using in food products for the elderly. The results of this study could offer theoretical insights for the utilization of oil bodies in food applications and the delivery of functional nutrients.
Collapse
Affiliation(s)
- Wenwen Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Kaiyi Zou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiaoyu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
3
|
Li J, Xu H, Wang G, Gao Y, Jiang Z, Hou J. Consequence of high-pressure homogenization on the whipping characteristics of soybean oil body cream. Food Chem 2024; 468:142450. [PMID: 39675278 DOI: 10.1016/j.foodchem.2024.142450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The study explored the effect of different high-pressure homogenization (HPH) pressure (30-70 MPa) on the whipping characteristics of soybean oil body (SOB) cream. With the increase of HPH treatment, fat globules were further broken, and their adsorption on the interface was promoted, which further enhanced the stability of cream, leading to smaller particle size and higher apparent viscosity. Moreover, whipping performance of cream is the best at 30 MPa. Textural results showed that the hardness of bubble formed by cream whipping tended to increase and then decrease after homogenization. The analysis of sensory evaluation and principal component analysis (PCA) showed that the whipping cream with 30 MPa treatment had the highest total score. Therefore, low HPH pressure could likewise improve the whipping characteristics of SOB cream. It provided the theoretical support for the production and application of high whipping performance and low trans-fat cream.
Collapse
Affiliation(s)
- Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science and Engineering, Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia Polycarpa of National Forestry and Grassland Administration, Guiyang University, Guiyang 550005, PR China
| | - Heyang Xu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangjie Wang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yitong Gao
- Quality Safety Monitoring and Technology Center for Grain of Heilongjiang Province, Harbin, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science and Engineering, Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia Polycarpa of National Forestry and Grassland Administration, Guiyang University, Guiyang 550005, PR China.
| |
Collapse
|
4
|
Ma Z, Bitter JH, Boom RM, Nikiforidis CV. Encapsulation of cannabidiol in hemp seed oleosomes. Food Res Int 2024; 195:114948. [PMID: 39277226 DOI: 10.1016/j.foodres.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Oleosomes are natural lipid droplets that can be extracted intact from oil seeds, forming oil/water emulsions. Their lipid cores, surrounded by a monolayer of phospholipids and proteins, make oleosomes suitable as carriers of hydrophobic bioactive compounds like cannabidiol (CBD). As CBD is crystalline at room temperature, it first has to be liquified to allow better encapsulation. This was done by heating (80 °C for 4 h) or by pre-solubilizing CBD in ethanol and then the liquified CBD was mixed with oleosome dispersions for the encapsulation. Both methods exhibit good encapsulation efficiency, but the results were significantly influenced by the ratio of CBD to lipid contents, regardless of the encapsulation method applied. At higher concentrations of CBD relative to that of the lipid in the oleosomes, the encapsulation efficiency decreased as saturation was attained. Moreover, the in vitro digestion analysis was conducted to investigate the potential of oleosomes as carriers to transport CBD. The relatively slow and steady release of CBD from oleosomes indicates that oleosomes are a slow-release carrier for hydrophobic functional ingredients. An important finding is that the encapsulation and in vitro digestive properties of the oleosomes remain unaffected by the presence of CBD, heating treatment or ethanol, which could bring more opportunities for the applications of oleosomes as carriers in various fields.
Collapse
Affiliation(s)
- Zhaoxiang Ma
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands; Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Remko M Boom
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
5
|
Gao F, Wang Y, Liu B, Du J, Wang T, Yu D. Quercetin on the properties of rice bran oil body: Focused surface charge, oxidative stability and digestive properties. Food Chem 2024; 455:139927. [PMID: 38843714 DOI: 10.1016/j.foodchem.2024.139927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
To further enhance the stability of rice bran oil body (RBOB) emulsions, this study examined the impact of various concentrations of quercetin (QU) on the microstructure, rheological properties, oxidative stability, and digestive properties of RBOB emulsions. The results indicated that by incorporating QU concentration, the particle size of RBOB emulsions could be significantly reduced to 300 nm; QU could improve the surface hydrophobicity, the emulsifying activity index and emulsification stability index of RBOB emulsions of 550, 0.078 m2/g and 50.78 min, respectively; the storage stability of RBOB emulsions was further improved; the higher concentration of QU could delay the oxidation of RBOB emulsions, among which, the 500 μmol/L concentration inhibited the strongest effect of oil oxidation. It also improved the thermal stability of RBOB emulsions. After gastrointestinal digestion, the free fatty acids release rate of RBOB emulsions with QU addition decreased to 14.68%, and RBOB emulsions were slowly hydrolyzed. Therefore, adding QU to RBOB helps to improve its stability and delay digestion.
Collapse
Affiliation(s)
- Fei Gao
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaguang Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Boyu Liu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Du
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Tian Y, Zhao X, Wang Z, Zhang W, Jiang Z. Structural characteristics and stability analysis of coconut oil body and its application for loading β-carotene. Food Chem 2024; 446:138818. [PMID: 38417282 DOI: 10.1016/j.foodchem.2024.138818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
In this work, we investigated structural characteristics and stability analysis of the coconut oil body (COB) and its application for loading β-carotene (β-CA). The COB contained neutral lipids (81.1 ± 2.1 %), membrane proteins (0.6 ± 0.0 %), and moistures (18.3 ± 3.2 %), in which the molecular weights of membrane proteins ranged from 12 kDa to 40 kDa, as analyzed by the SDS-PAGE. The COB exhibited a small droplet diameter (5.1 ± 0.3 µm) with a monomodal diameter distribution, as reflected by the dynamic light scattering. The COB showed stable states at alkaline pH values (pH 8-10) and instability against ionic strengths (50-200 mmol/L) and thermal treatment (30-90℃) after analyzing the instability indexes. COB-based emulsions were favorable for the loading and retention of β-CA, as reflected by free fatty acids release rates and bioaccessibility in the simulated gastrointestinal digestion. This study will contribute to using the coconut oil bodies for loading bioactive nutraceuticals to enhance their bioaccessibility.
Collapse
Affiliation(s)
- Yan Tian
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Xinxin Zhao
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Zhiguo Wang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| | - Zhiguo Jiang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| |
Collapse
|
7
|
Farooq S, Ahmad MI, Ali U, Zhang H. Fabrication of curcumin-loaded oleogels using camellia oil bodies and gum arabic/chitosan coatings for controlled release applications. Int J Biol Macromol 2024; 254:127758. [PMID: 38287596 DOI: 10.1016/j.ijbiomac.2023.127758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
This study has explored the potential of plant-derived oil bodies (OBs)-based oleogels as novel drug delivery systems for in vitro release under simulated physiological conditions. To obtain stable OBs-based oleogels, gum arabic (GA) and chitosan (CH) were coated onto the curcumin-loaded OBs using an electrostatic deposition technique, followed by 2,3,4-trihydroxybenzaldehyde (TB) induced Schiff-base cross-linking. Microstructural analyses indicated successful encapsulation of curcumin into the hydrophobic domain of the OBs through a pH-driven method combined with ultrasound treatment. The curcumin encapsulation efficiency of OBs increased up to 83.65 % and 92.18 % when GA and GA-CH coatings were applied, respectively, compared to uncoated OBs (63.47 %). In addition, GA-CH coatings retained the structural integrity of oleogel droplets with superior oil-holding capacity (99.07 %), while TB addition induced interconnected 3D-network structures with excellent gel strength (≥4.8 × 105 Pa) and thermal stability (≥80 °C). GA-CH coated oleogels appeared to provide the best protection for loaded bioactive against UV irradiation and high temperature-induced degradation during long-term storage. The combination of biopolymer coatings and TB-induced Schiff-base cross-linking synergistically hindered the simulated gastric degradability of oleogels, releasing only 23.35 %, 12.46 % and 7.19 % of curcumin by GA, GA-CH and GA-CH-TB stabilized oleogels, respectively, while also resulting in sustained release effects during intestinal conditions.
Collapse
Affiliation(s)
- Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Usman Ali
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
8
|
Zhu J, Wang H, Miao L, Chen N, Zhang Q, Wang Z, Xie F, Qi B, Jiang L. Curcumin-loaded oil body emulsions prepared by an ultrasonic and pH-driven method: Fundamental properties, stability, and digestion characteristics. ULTRASONICS SONOCHEMISTRY 2023; 101:106711. [PMID: 38061250 PMCID: PMC10749905 DOI: 10.1016/j.ultsonch.2023.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
In this study, oil bodies (OBs) loaded with curcumin (Cur) were successfully prepared via an ultrasonic and pH-driven method. Ultrasonic treatment significantly improved the encapsulation efficiency (EE) and loading capacity (LC) of Cur, producing OB particles with small size, uniform distribution, and high ζ-potential absolute values. When the ultrasonic power was 200 W, the EE, LC, and ζ-potential absolute value were the greatest (88.27 %, 0.044 %, and -25.71 mV, respectively), and the OBs possessed the highest yellowness, representing the best treatment result. The confocal laser scanning microscopy (CLSM) and cryo-scanning electron microscopy (cryo-SEM) results was also intuitionally shown that. Moreover, circular dichroism (CD) proved that ultrasonic treatment could unfold the surface protein structure, further enhancing the stability. Therefore, the cream index (CI), peroxide value (POV), and thiobarbituric acid reactive substances (TBARS) were the lowest when the ultrasonic power was 200 W. In this case, the Cur loaded in OBs was well protected against hostile conditions, evidenced by the highest Cur retention rate and the lowest degradation rate constant. Finally, the in vitro gastrointestinal digestion simulation results showed that the ultrasonic treatment effectively increased the release of FFA, bioaccessibility, and stability of Cur, especially when the ultrasonic power was 200 W. This research offers a new OB-based delivery system to stabilize, deliver, and protect Cur for food processing.
Collapse
Affiliation(s)
- Jianyu Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Liming Miao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ning Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qing Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziheng Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
9
|
Zhou Q, Wang J, Li H, Wu X, Wu W. Effect of protein oxidation on the emulsion carrier prepared by rice bran protein for improving stability and bioavailability of β-carotene. Food Res Int 2023; 172:113166. [PMID: 37689915 DOI: 10.1016/j.foodres.2023.113166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
The emulsion carriers which prepared by rice bran protein (RBP) with different oxidation extents were utilized to deliver β-carotene (BC). The effects of RBP oxidation extent on stability and bioaccessibility of BC in rice bran protein emulsion (RBPE) were investigated by measuring the droplet size, microstructure, digestive stability, cellular antioxidant, and delivery property of BC-RBPE. The results showed that BC-RBPE prepared by moderately oxidized RBP (extracted from rice bran with a storage time of 5 d) presented excellent digestive stability and delivery property during gastrointestinal digestion. The particle size of initial BC-RBPE, BC-RBPE after gastric digestion, and BC-RBPE after intestinal digestion were 509.73, 2149.33, and 997.82 nm, respectively. Compared with free BC suspension, the BC retention after gastric digestion and the BC bioavailability of BC-RBPE prepared by moderately oxidized RBP increased by 23.50% and 27.54%, respectively. In addition, the BC cellular antioxidant activity and BC cellular uptake of BC-RBPE prepared by moderately oxidized RBP were significantly higher than that of free BC-suspension, which increased by 29.63% and 13.84%, respectively. In summary, the study showed that oil-in-water emulsion prepared by moderately oxidized protein is a potential delivery system of BC, which can provide a theoretical basis for improving the utilization of protein by adjusting the extent of protein oxidation.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Jianqiang Wang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Helin Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China.
| |
Collapse
|
10
|
Yang X, Zhou L, Wu Y, Ding X, Wang W, Zhang D, Zhao L. Effect of Heat Treatment on the Digestive Characteristics of Different Soybean Oil Body Emulsions. Foods 2023; 12:2942. [PMID: 37569211 PMCID: PMC10418432 DOI: 10.3390/foods12152942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean oil body (SOB) emulsions were prepared using OBs extracted at pH 11.0 and pH 7.0. The pH 11.0-SOB comprised oleosins, whereas pH 7.0-SOB comprised extrinsic proteins and oleosins. All SOB emulsions were heated at 60-100 °C for 15 min. Heating may lead to the release of extrinsic proteins from the surface of pH 7.0-SOB due to heat-induced denaturation. The total proportion of α-helix and β-sheets gradually decreased from 77 (unheated) to 36.2% (100 °C). During stomach digestion, the extrinsic protein hydrolysis of heated pH 7.0-SOB emulsions was fast between 60 and 80 °C, and it then slowed between 90 and 100 °C; heating inhibited the oleosin hydrolysis of pH 7.0- and 11.0-SOBs. Heat treatment promoted aggregation and coalescence, and it resulted in increased particle sizes for all emulsions. Larger aggregates were found in heated pH 7.0-SOB emulsions, and larger oil droplets were found in heated pH 11.0-SOB emulsions. After intestinal digestion, the droplets of all SOB emulsions gradually dispersed, and particle sizes decreased. Different heating temperatures had lesser effects on particle sizes and microstructures. Lipolysis was affected by the extraction pH and heating. For pH 11.0-SOB emulsions, the FFA release tendency was greatly affected by the heating temperature, and heating to 80 °C resulted in the highest FFA release (74%). However, all pH 7.0-SOB emulsions had similar total FFA releases. In addition, the droplet charges of heated pH 7.0-SOB emulsions were lower than those of unheated pH 7.0-SOB emulsions in both the intestine and stomach phases; however, the charge changes in different pH 11.0-SOB emulsions showed the opposite tendency. This study will offer guidance regarding the application of SOB emulsions in food.
Collapse
Affiliation(s)
- Xufeng Yang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Y.); (L.Z.); (Y.W.); (X.D.); (W.W.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Luyao Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Y.); (L.Z.); (Y.W.); (X.D.); (W.W.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Yingying Wu
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Y.); (L.Z.); (Y.W.); (X.D.); (W.W.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Y.); (L.Z.); (Y.W.); (X.D.); (W.W.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Y.); (L.Z.); (Y.W.); (X.D.); (W.W.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Dajian Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Luping Zhao
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Y.); (L.Z.); (Y.W.); (X.D.); (W.W.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| |
Collapse
|
11
|
Wang H, Chen L, Cai Q, Wu S, Shen W, Hu Z, Huang W, Jin W. Formation, digestion properties, and physicochemical stability of the rice bran oil body carrier system. Food Chem 2023; 409:135283. [PMID: 36571900 DOI: 10.1016/j.foodchem.2022.135283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Rice bran is a major by-product of rice processing with abundant nutrient content. Oil bodies (OBs), which are fat particles with unique physicochemical stability, are specialized organelles for the storage of oils and fats in plant tissues. In this study, we extracted OBs from rice bran, to evaluate the function of hydrophobic nutrients efficiently delivered by OBs. The carrier system was prepared by sonicating curcumin with medium chain triglycerides (MCT) into rice bran oil bodies (RBOBs). Emulsions comprising different RBOB mass fractions were characterized. The results showed that the highest encapsulation efficiency (EE, 87.67%), optimal particle size (190 nm), and best storage stability were achieved with the 1.5 wt% RBOBs. Based on activity evaluation data, the carrier system can achieve sustained oil release in the intestine and shows high bioaccessibility (61.04%; IC50 in Caco-2 cells was 77.21 μg/mL), which is important for promoting grain by-product utilization.
Collapse
Affiliation(s)
- Han Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Lu Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Qiaoyu Cai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Shuang Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Zhongze Hu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Wenjing Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China.
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China.
| |
Collapse
|
12
|
Song H, Zhong M, Sun Y, Yue Q, Qi B. Ultrasound-assisted alkali removal of proteins from wastewater generated during oil bodies extraction. ULTRASONICS SONOCHEMISTRY 2023; 96:106436. [PMID: 37172539 DOI: 10.1016/j.ultsonch.2023.106436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In this study, an ultrasonic-assisted alkaline method was used to remove proteins from wastewater generated during oil-body extraction, and the effects of different ultrasonic power settings (0, 150, 300, and 450 W) on protein recovery were investigated. The recoveries of the ultrasonically treated samples were higher than those of the samples without ultrasonic treatment, and the protein recoveries increased with increasing power, with a protein recovery of 50.10 % ± 0.19 % when the ultrasonic power was 450 W. Amino acid analysis showed that the amino acids comprising the recovered samples were consistent, regardless of the ultrasonic power used, but significant differences in the contents of amino acids were observed. No significant changes were observed in the protein electrophoretic profile using dodecyl polyacrylamide gel, indicating that sonication did not change the primary structures of the recovered samples. Fourier transform infrared and fluorescence spectroscopy revealed that the molecular structures of the samples changed after sonication, and the fluorescence intensity increased gradually with increasing sonication power. The contents of α-helices and random coils obtained at an ultrasonic power of 450 W decreased to 13.44 % and 14.31 %, respectively, whereas the β-sheet content generally increased. The denaturation temperatures of the proteins were determined using differential scanning calorimetry, and ultrasound treatment reduced the denaturation temperatures of the samples, which was associated with the structural and conformational changes caused by their chemical bonding. The solubility of the recovered protein increased with increasing ultrasound power, and a high solubility was essential in good emulsification. The emulsification of the samples was improved well. In conclusion, ultrasound treatment changed the structure and thus improved the functional properties of the protein.
Collapse
Affiliation(s)
- Hanyu Song
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Yue
- Heilongjiang Open University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
Wang Y, Li M, Wen X, Tao H, Wang K, Fu R, Tao H, Wang F, Chen N, Ni Y. Conformational changes and the formation of new bonds achieving robust nanoemulsions by electrostatic interactions between whey protein isolate and chondroitin sulfate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Qiao X, Liu F, Kong Z, Yang Z, Dai L, Wang Y, Sun Q, McClements DJ, Xu X. Pickering emulsion gel stabilized by pea protein nanoparticle induced by heat-assisted pH-shifting for curcumin delivery. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
15
|
Li J, Zhou Y, Zhang J, Cui L, Lu H, Zhu Y, Zhao Y, Fan S, Xiao X. Barley β-glucan inhibits digestion of soybean oil in vitro and lipid-lowering effects of digested products in cell co-culture model. Food Res Int 2023; 164:112378. [PMID: 36737963 DOI: 10.1016/j.foodres.2022.112378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
The effect of barley β-glucan on soybean oil digestion characteristics before and after fermentation was studied in an in vitro-simulated gastrointestinal digestion model. The addition of barley β-glucan made the system more unstable, the particle size increased significantly, and confocal laser imaging showed that it was easier to form agglomerates. The addition of barley β-glucan increased the proportion of unsaturated fatty acids in digestion products, and reduced digestibility of soybean oil. In a co-culture model of Caco-2/HT29 and HepG2 cells, the effects of digestive products of soybean oil and barley β-glucan before and after fermentation on lipid metabolism in HepG2 cells were investigated. The results showed that adding only soybean oil digestion products significantly increased triglycerides (TG) content and lipid accumulation in basolateral HepG2 cells. When fermented barley β-glucan was added, lipid deposition was significantly decreased, and the lipid-lowering activity was better than that of unfermented barley β-glucan.
Collapse
Affiliation(s)
- Jiaying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haina Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Effects of FeII, tannic acid, and pH on the physicochemical stability of oil body emulsions. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
17
|
Decker EA, Villeneuve P. Impact of processing on the oxidative stability of oil bodies. Crit Rev Food Sci Nutr 2023; 64:6001-6015. [PMID: 36600584 DOI: 10.1080/10408398.2022.2160963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plant lipids are stored as emulsified lipid droplets also called lipid bodies, spherosomes, oleosomes or oil bodies. Oil bodies are found in many seeds such as cereals, legumes, or in microorganisms such as microalgae, bacteria or yeast. Oil Bodies are unique subcellular organelles with sizes ranging from 0.2 to 2.5 μm and are made of a triacylglycerols hydrophobic core that is surrounded by a unique monolayer membrane made of phospholipids and anchored proteins. Due to their unique properties, in particular their resistance to coalescence and aggregation, oil bodies have an interest in food formulations as they can constitute natural emulsified systems that does not need the addition of external emulsifier. This manuscript focuses on how extraction processes and other factors impact the oxidative stability of isolated oil bodies. The potential role of oil bodies in the oxidative stability of intact foods is also discussed. In particular, we discuss how constitutive components of oil bodies membranes are associated in a strong network that may have an antioxidant effect either by physical phenomenon or by chemical reactivities. Moreover, the importance of the selected process to extract oil bodies is discussed in terms of oxidative stability of the recovered oil bodies.
Collapse
Affiliation(s)
- Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massachusetts, USA
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
18
|
Sun Y, Zhong M, Liao Y, Kang M, Li Y, Qi B. Interfacial characteristics of artificial oil body emulsions (O / W) prepared using extrinsic and intrinsic proteins: Inspired by natural oil body. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Sun Y, Zhong M, Kang M, Liao Y, Wang Z, Li Y, Qi B. Novel core-shell nanoparticles: Encapsulation and delivery of curcumin using guanidine hydrochloride-induced oleosome protein self-assembly. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Sun Y, Zhong M, Liao Y, Kang M, Qi B, Li Y. Pickering emulsions stabilized by reassembled oleosome protein nanoparticles for co-encapsulating hydrophobic nutrients. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Mudhol S, Serva Peddha M. Development of capsaicin loaded nanoparticles based microneedle patch for transdermal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Li Z, Sun B, Zhu Y, Liu L, Huang Y, Lu M, Zhu X, Gao Y. Effect of maltodextrin on the oxidative stability of ultrasonically induced soybean oil bodies microcapsules. Front Nutr 2022; 9:1071462. [DOI: 10.3389/fnut.2022.1071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
IntroductionEncapsulation of soybean oil bodies (OBs) using maltodextrin (MD) can improve their stability in different environmental stresses and enhance the transport and storage performance of OBs.MethodsIn this study, the effects of different MD addition ratios [OBs: MD = 1:0, 1:0.5, 1:1, 1:1.5, and 1:2 (v/v)] on the physicochemical properties and oxidative stability of freeze-dried soybean OBs microcapsules were investigated. The effect of ultrasonic power (150–250 W) on the encapsulation effect and structural properties of oil body-maltodextrin (OB-MD) microcapsules were studied.ResultsThe addition of MD to OBs decreased the surface oil content and improved the encapsulation efficiency and oxidative stability of OBs. Scanning electron microscopy images revealed that the sonication promoted the adsorption of MD on the surface of OBs, forming a rugged spherical structure. The oil-body-maltodextrin (OB-MD) microcapsules showed a narrower particle size distribution and a lower-potential absolute value at an MD addition ratio of 1:1.5 and ultrasonic power of 250 W (32.1 mV). At this time, MD-encapsulated OBs particles had the highest encapsulation efficiency of 85.3%. Ultrasonic treatment improved encapsulation efficiency of OBs and increased wettability and emulsifying properties of MD. The encapsulation of OBs by MD was improved, and its oxidative stability was enhanced by ultrasound treatment, showing a lower hydrogen peroxide value (3.35 meq peroxide/kg) and thiobarbituric acid value (1.65 μmol/kg).DiscussionThis study showed that the encapsulation of soybean OBs by MD improved the stability of OBs microcapsules and decreased the degree of lipid oxidation during storage. Ultrasonic pretreatment further improved the encapsulation efficiency of MD on soybean OBs, and significantly enhanced its physicochemical properties and oxidative stability.
Collapse
|
23
|
Yang X, Wu Y, Liu Y, Ding X, Zhang D, Zhao L. Digestive characteristics of oil body extracted from soybean aqueous extract at different pHs. Food Res Int 2022; 161:111828. [DOI: 10.1016/j.foodres.2022.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
24
|
Hao J, Li X, Wang Q, Lv W, Zhang W, Xu D. Recent developments and prospects in the extraction, composition, stability, food applications, and
in vitro
digestion of plant oil bodies. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenguan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| |
Collapse
|