1
|
Sampaio SL, Chisnall T, Euston SR, Liddle C, Lonchamp J. Novel palm shortening substitute using a combination of rapeseed oil, linseed meal and beta-glucan. Food Chem 2024; 457:140134. [PMID: 38901335 DOI: 10.1016/j.foodchem.2024.140134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
This study investigated the potential of a novel sustainable ingredient composed of rapeseed oil, linseed meal and beta-glucan (PALM-ALT) to mimic palm shortening functionality in cake. The combined functional properties of linseed meal and beta-glucan led to stable semi-solid emulsion-gels (20-31 μm oil droplet size, 105-115 Pa.s viscosity and 60-65 Pa yield stress). PALM-ALT contained 25 and 88% less total and saturated fat than palm shortening, whilst PALM-ALT cakes contained 26 and 75% less total and saturated fat than the palm-based control. PALM-ALT cakes matched the flavour profile of the palm-based control, while rapeseed oil cakes tasted more sour and less sweet than the control (p < 0.05). PALM-ALT cakes proved less hard and more cohesive than the control (p < 0.05), with 100% of the consumer panel preferring PALM-ALT formulations. This study demonstrated the unique potential of PALM-ALT as healthier, sustainable and competitive alternative to palm shortening.
Collapse
Affiliation(s)
- Shirley L Sampaio
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Timothy Chisnall
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stephen R Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Catriona Liddle
- School of Health Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh EH21 6UU, United Kingdom
| | - Julien Lonchamp
- School of Health Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh EH21 6UU, United Kingdom.
| |
Collapse
|
2
|
Na Y, Nam AY, Park SH, Lee SH. Production of fructooligosaccharide-containing bakery and sweet paste products using invertase. Food Sci Biotechnol 2024; 33:1189-1194. [PMID: 38440681 PMCID: PMC10908721 DOI: 10.1007/s10068-023-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 03/06/2024] Open
Abstract
This study investigated the production of bakery and sweet paste products containing the prebiotic fructooligosaccharide (FOS) using an in situ method with invertase. The FOS formation method was optimized for each product to ensure high quality and appropriate sweetness. The method effectively decreased the sugar content in the final product by 12.7-68.4% while maintaining quality. The FOS content was 3.8-4.8% in castella, 0.6-3.6% in sweet dough bread, and 7.5-8.5% in sweet chickpea paste. By contrast, the commercial method of adding FOS decreased product quality; castella product height decreased by 20.8%, and hardness increased by 79%. The specific volume of the sweet dough bread decreased by 17.4% and hardness increased by 59%. Therefore, we developed a commercially feasible method to efficiently utilize FOS in sugar-containing foods while maintaining their quality.
Collapse
Affiliation(s)
- Yerim Na
- SPC Group Research Institute of Food and Biotechnology, 203-501, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ah Youn Nam
- SPC Group Research Institute of Food and Biotechnology, 203-501, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sung Hoon Park
- Department of Food & Nutrition, College of Life Sciences, Gangneung-Wonju National University, Gangneung, 25457 Korea
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung, 25457 Korea
| | - Sung Ho Lee
- SPC Group Research Institute of Food and Biotechnology, 203-501, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
3
|
Li Q, Liu J, Wan H, Zhang M. Inherent molecular characteristics and effect of garlic polysaccharides on dough micro- and mesoscopic properties. Food Chem X 2023; 19:100757. [PMID: 37408954 PMCID: PMC10319188 DOI: 10.1016/j.fochx.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
Directional control of the process of doughs with nutrition fortification is challenging. Thus, this study aimed to develop non-starch polysaccharides that can modify the quality of flour products. Polysaccharides were extracted from three different garlic cultivars, evaluated for physicochemical properties and used to enrich doughs for microstructure and mesoscopic characteristics analysis. We assessed the moisture distribution, texture characteristics, thermodynamic properties, dynamic viscoelastic properties, protein structure, microstructure and molecular interaction of the doughs and demonstrated a relatively high molecular weight, lower steric hindrance of molecular chains and higher cross-linking ability with the dough network in the supernatant polysaccharide from Yunnan single-clove-garlic (SGSOS) fraction. These features of SGSOS fraction improved the rheological, thermodynamic, texture characteristics, and water distribution of doughs. These findings provide information on the use of garlic polysaccharides during the processing and manufacturing of foods to enhance their processing adaptability and qualities.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Agricultural University, Tianjin 300392, PR China
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jiaming Liu
- Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Guangyuan Livestock and Poultry Breeding CO., LTD, Tianjin 301800, PR China
| | - Huiqi Wan
- Tianjin Agricultural University, Tianjin 300392, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
4
|
Woodbury TJ, Mauer LJ. Oligosaccharide, sucrose, and allulose effects on the pasting and retrogradation behaviors of wheat starch. Food Res Int 2023; 171:113002. [PMID: 37330845 DOI: 10.1016/j.foodres.2023.113002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
The pasting and retrogradation behaviors of starch are altered by the presence of sugars and are important in dictating the storage stability and texture of starch-containing foods. The use of oligosaccharides (OS) and allulose in reduced-sugar formulations is being explored. The objectives of this study were to determine the impacts of different types and concentrations (0% to 60% w/w) of OS (fructo-OS, gluco-OS, isomalto-OS, gluco-dextrin, and xylo-OS) and allulose on the pasting and retrogradation attributes of wheat starch compared to starch in water (control) or sucrose solutions using DSC and rheometry. Physicochemical properties of the additives and their effects on amylose leaching were also considered. Significant differences in starch pasting, retrogradation, and amylose leaching were found between the control and additive solutions, influenced by additive type and concentration. Allulose increased starch paste viscosity and promoted retrogradation over time (60% conc. PV = 7628 cP; ΔHret, 14 = 3.18 J/g) compared to the control (PV = 1473 cP; ΔHret, 14 = 2.66 J/g) and all OS (PV = 14 to 1834 cP; ΔHret,14 = 0.34 to 3.08 J/g). In the allulose, sucrose, and xylo-OS solutions, compared to the other OS types, the gelatinization and pasting temperatures of starch were lower, more amylose leaching occurred, and pasting viscosities were higher. Increasing OS concentrations elevated gelatinization and pasting temperatures. In most 60% OS solutions these temperatures exceeded 95 °C thereby preventing starch gelatinization and pasting in the rheological analysis, and in conditions relevant for inhibiting starch gelatinization in low moisture-sweetened products. Fructose-analog additives (allulose and fructo-OS) promoted starch retrogradation more than the other additives, while xylo-OS was the only additive that limited retrogradation across all OS concentrations. The correlations and quantitative findings from this study will assist product developers in selecting health-promoting sugar replacer ingredients that impart desirable texture and shelf-life properties in starch-containing foods.
Collapse
Affiliation(s)
- Travest J Woodbury
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, W. Lafayette, IN 47907, USA
| | - Lisa J Mauer
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, W. Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Nastaj M, Sołowiej BG, Terpiłowski K, Kucia W, Tomasevic IB, Peréz-Huertas S. The Effect of Erythritol on the Physicochemical Properties of Reformulated, High-Protein, and Sugar-Free Macarons Produced from Whey Protein Isolate Intended for Diabetics, Athletes, and Physically Active People. Foods 2023; 12:foods12071547. [PMID: 37048368 PMCID: PMC10093857 DOI: 10.3390/foods12071547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
This study reports the possibility of obtaining sugar-free WPI-based macarons with erythritol addition. The whey protein isolate (WPI) solution (20%, w/v) was whipped, and erythritol was added to the foam at concentrations of 20, 40, and 60 g, with 125 g of almond flour. The rheological properties (τ, G', G″, and tan (δ)) and stability of the macaron batters before baking were evaluated. In order to produce the macarons, the batters were solidified at 147 °C for 12 min. The textural and surface properties (roughness and color), as well as the microstructures and water activities, were determined for the macarons. It was feasible to produce macarons over the entire range of the tested erythritol content. Even the smallest amount of erythritol (20 g) facilitated the preservation of the macaron structure. The medium erythritol concentration (40 g) improved the stability of the batters and their rheology and was the most effective for air pocket stabilization during baking; however, its largest addition (60 g) resulted in an increase in the final macaron volume. The increased erythritol addition improved mechanical properties and shelf life, producing a smoothing effect on the macaron surfaces and having a significant effect on their color co-ordinates.
Collapse
Affiliation(s)
- Maciej Nastaj
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Bartosz G Sołowiej
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Konrad Terpiłowski
- Department of Physical Chemistry-Interfacial Phenomena, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Wiesław Kucia
- Wiesław Kucia's Artistic School in Lublin, Wojciechowska 3, 20-704 Lublin, Poland
| | - Igor B Tomasevic
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
| | - Salvador Peréz-Huertas
- Department of Chemical Engineering, University of Granada, Avenida de la Fuente Nueva 12 S/N, 18071 Granada, Spain
| |
Collapse
|
6
|
Liu L, Zhang Y, Dao L, Huang X, Qiu R, Pang J, Wu S. Efficient and accurate multi-scale simulation for viscosity mechanism of konjac glucomannan colloids. Int J Biol Macromol 2023; 236:123992. [PMID: 36898457 DOI: 10.1016/j.ijbiomac.2023.123992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
The viscosity is a foundational parameter of biomacromolecule in the food industry. The viscosity of macroscopic colloids is closely related to the dynamical behaviors of mesoscopic biomacromolecule clusters, which are difficult to be investigated at molecular resolution by common methods. In this study, based on experimental data, multi-scale simulations combining microscopic molecular dynamics simulation, mesoscopic Brownian dynamics simulation, and macroscopic flow field construction were used to investigate the dynamical behaviors of mesoscopic clusters of konjac glucomannan (KGM) colloids (~500 nm) over a long time (~100 ms). Numerical statistical parameters of the mesoscopic simulation of macroscopic clusters were proposed and proved to represent the viscosity of colloids. Based on the intermolecular interaction and macromolecular conformation, the mechanism of the shear thinning effect was revealed as both the regular arrangement of macromolecules at low shear rates (<100 s-1) and structural collapse of macromolecules at high shear rates (>500 s-1). Then, the effect of molecular concentration, molecular weight, and temperature on the colloid viscosity and cluster structure of KGM colloids was investigated by experiments and simulations. This study provides a novel multi-scale numerical method and insight into the viscosity mechanism of biomacromolecule.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liping Dao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xin Huang
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China
| | - Renhui Qiu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shuyi Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
7
|
Bread Products from Blends of African Climate Resilient Crops: Baking Quality, Sensory Profile and Consumers' Perception. Foods 2023; 12:foods12040689. [PMID: 36832764 PMCID: PMC9955494 DOI: 10.3390/foods12040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
With food insecurity rising dramatically in Sub-Saharan Africa, promoting the use of sorghum, cowpea and cassava flours in staple food such as bread may reduce wheat imports and stimulate the local economy through new value chains. However, studies addressing the technological functionality of blends of these crops and the sensory properties of the obtained breads are scarce. In this study, cowpea varieties (i.e., Glenda and Bechuana), dry-heating of cowpea flour and cowpea to sorghum ratio were studied for their effects on the physical and sensory properties of breads made from flour blends. Increasing cowpea Glenda flour addition from 9 to 27% (in place of sorghum) significantly improved bread specific volume and crumb texture in terms of instrumental hardness and cohesiveness. These improvements were explained by higher water binding, starch gelatinization temperatures and starch granule integrity during pasting of cowpea compared to sorghum and cassava. Differences in physicochemical properties among cowpea flours did not significantly affect bread properties and texture sensory attributes. However, cowpea variety and dry-heating significantly affected flavour attributes (i.e., beany, yeasty and ryebread). Consumer tests indicated that composite breads could be significantly distinguished for most of the sensory attributes compared to commercial wholemeal wheat bread. Nevertheless, the majority of consumers scored the composite breads from neutral to positive with regard to liking. Using these composite doughs, chapati were produced in Uganda by street vendors and tin breads by local bakeries, demonstrating the practical relevance of the study and the potential impact for the local situation. Overall, this study shows that sorghum, cowpea and cassava flour blends can be used for commercial bread-type applications instead of wheat in Sub-Saharan Africa.
Collapse
|
8
|
Nikinmaa M, Renzetti S, Juvonen R, Rosa-Sibakov N, Noort M, Nordlund E. Effect of Bioprocessing on Techno-Functional Properties of Climate-Resilient African Crops, Sorghum and Cowpea. Foods 2022; 11:foods11193049. [PMID: 36230122 PMCID: PMC9564308 DOI: 10.3390/foods11193049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Sorghum and cowpea are very compatible for intercropping in hot and dry environments, and they also have complementary nutritional compositions. Thus, the crops have the potential to improve food security in regions threatened by climate change. The aim of this study was to investigate different enzymes (carbohydrate-degrading, proteases and phytases) and lactic acid bacteria (LAB) fermentation to improve the techno-functional properties of sorghum and cowpea flours. Results show that sorghum carbohydrates were very resistant to hydrolysis induced by bioprocessing treatments. Most of the protease treatments resulted in low or moderate protein solubilization (from ca. 6.5% to 10%) in sorghum, while the pH adjustment to 8 followed by alkaline protease increased solubility to 40%. With cowpea, protease treatment combined with carbohydrate-degrading enzymes increased the solubility of proteins from 37% up to 61%. With regard to the techno-functional properties, LAB and amylase treatment decreased the sorghum peak paste viscosities (from 504 to 370 and 325 cPa, respectively), while LAB and chemical acidification increased cowpea viscosity (from 282 to 366 and 468 cPa, respectively). When the bioprocessed sorghum and cowpea were tested in breadmaking, only moderate effects were observed, suggesting that the modifications by enzymes and fermentation were not strong enough to improve breadmaking.
Collapse
Affiliation(s)
- Markus Nikinmaa
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
- Correspondence:
| | - Stefano Renzetti
- Wageningen Food & Biobased Research, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Riikka Juvonen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Natalia Rosa-Sibakov
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Martijn Noort
- Wageningen Food & Biobased Research, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Emilia Nordlund
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
9
|
Woodbury TJ, Mauer LJ. Oligosaccharides elevate the gelatinization temperature of wheat starch more than sucrose, paving the way for their use in reduced sugar starch-based formulations. Food Funct 2022; 13:10248-10264. [PMID: 36124951 DOI: 10.1039/d2fo01779b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gelatinization of wheat starch influences the final structure and texture of baked goods. Sucrose effectively elevates the gelatinization temperature (Tgel) of starch more than many sweeteners, and maintaining a higher Tgel has been a challenge while reducing the amount of sucrose in baked goods. The objective of this study was to quantify the effects of 14 different oligosaccharides (OS: maltose, isomaltulose, kestose, maltotriose, melezitose, raffinose, stachyose, a fructo-OS, a galacto-OS, an isomalto-OS, lactosucrose, a xylo-OS, and two glucose-based dextrins), allulose, and sucrose at different concentrations (0 to 60% w/w) on the Tgel of wheat starch using DSC, and to determine which OS physicochemical properties best explained the Tgel results. OS type and concentration significantly altered Tgel. Many OS elevated the Tgel as much as or more than sucrose at the same solution concentrations, while allulose did not. The onset Tgel in water was 60 °C, in 60% sucrose was 96 °C, in 60% allulose was 80 °C, and Tgel increased up to 107-108 °C in 60% fructo-OS and Nutriose® solutions. The effects of OS on Tgel correlated most strongly (r > 0.95) with two OS solution parameters: the solvent effective volume fraction (ϕw,eff, related to solute intermolecular hydrogen bond density) and solution viscosity, to a lesser extent with solution water activity, and not to the glass transition temperature of the OS. Based on Tgel elevation, many of the OS are promising sucrose replacements in baked goods, which could facilitate their use in desirable higher fiber, reduced sugar starch-based baked product formulations.
Collapse
Affiliation(s)
- Travest J Woodbury
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, W. Lafayette, IN 47907, USA.
| | - Lisa J Mauer
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, W. Lafayette, IN 47907, USA.
| |
Collapse
|