1
|
Kong Y, Chen J, Hong Z, Guo R, Huang Q. Insights into the Pickering emulsions stabilized by yeast dietary fiber: Interfacial adsorption kinetics, rheological characteristics, and stabilization mechanisms. Food Chem 2025; 464:141924. [PMID: 39520889 DOI: 10.1016/j.foodchem.2024.141924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
This study developed Pickering emulsions based on yeast dietary fiber (YDF) and investigated the interfacial adsorption kinetics of YDF, rheological properties and stabilization mechanisms of emulsions. Results indicated that increasing YDF concentration enhanced its diffusion and rearrangement at the oil-water interface. At a concentration of 8 %, YDF exhibited the highest diffusion rate (0.1406 mN·m-1·s-0.5) and rearrangement rate (18.8 s-1). The emulsion stabilized at this concentration had the smallest droplet size (1.55 μm) and the slowest droplet migration rate (0.34 mm/h), effectively suppressing droplet aggregation due to collisions and thereby improving the overall emulsion stability. Confocal laser scanning microscopy results confirmed that emulsion stability relied on the co-adsorption of proteins and polysaccharides from YDF at the interface, with proteins primarily adsorbed at the oil-water interface and polysaccharides responsible for the continuous phase network formation. This study demonstrates YDF's potential as an emulsion stabilizer and elucidates the stabilization mechanism of YDF-induced emulsion.
Collapse
Affiliation(s)
- Yaqiu Kong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jieling Chen
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zehan Hong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruotong Guo
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Chen W, Deng J, Wang D, Yang H, Yang J, Puangsin B, He X, Shi Z. Slow-release antimicrobial preservation composite coating based on bamboo-derived xylan-A new way to preserve blueberry freshness. Food Chem 2025; 463:141291. [PMID: 39303466 DOI: 10.1016/j.foodchem.2024.141291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In recent years, the biocompatibility and environmental friendliness of xylan-based materials have demonstrated great potential in the field of food packaging and coatings. In this study, the cationized xylan based composite coating (CXC) was developed using a hybrid system of cationic-modified bamboo xylan (CMX) and sodium alginate (SA) combined with thyme oil microcapsules (TM). The optimized CXC-B was composed of 1.27 % TM, 2.42 % CMX (CMX: SA = 3:2), and 96.31 % distilled water. When applied to the surface of a blueberry, the CXC-B treatment extended the ambient storage time of the fruit to 10 days while substantially reducing its morbidity (P < 0.05) and protecting its texture, flavor, and nutritional integrity. The resulting composite coating provides a promising solution to the problem of blueberry perishability during ambient storage.
Collapse
Affiliation(s)
- Wenge Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming 650224, China
| | - Jia Deng
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming 650224, China.
| | - Dawei Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Haiyan Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jing Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Buapan Puangsin
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand.
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming 650224, China.
| | - Zhengjun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming 650224, China.
| |
Collapse
|
3
|
Yue Z, Yu Q, Qin Y, He Y, Liu J, Zhu Y. Enhancement of quality induced by ultrasonic-assisted stewing improved the nutritional concentration, emulsifying property, and flavor characteristic of the chicken soup. Food Chem X 2025; 25:102184. [PMID: 39901946 PMCID: PMC11788733 DOI: 10.1016/j.fochx.2025.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025] Open
Abstract
To investigate the effects of ultrasonic-assisted stewing (UAS) on the quality of chicken soup, the nutritional content, emulsifying properties and flavor characteristic were detected, and the underlying mechanisms were analyzed. The results showed that UAS led to a milky appearance, improved nutrient content and emulsifying properties, attributed to increased rheological properties, absolute Zeta potential, and reduced particle size and surface tension. Laser scanning confocal microscopy revealed that the micro-nano particles in the UAS group were uniformly sized and densely arranged. When treated for 90 min of UAS, the chicken soup achieved the highest emulsibility. Additionally, sensory and electronic tongue evaluations demonstrated that UAS group had superior taste attributes compared to the control group. The relative concentration of marker VOCs in the UAS group was also higher than in the control group. These findings offer scientific and theoretical insights into the impact of UAS on chicken soup quality.
Collapse
Affiliation(s)
- Ziyan Yue
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Qiuyu Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yuchen Qin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yuchun He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jiali Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
4
|
Lv S, Hou J, Xu HN. Scaling of the formation of cyclodextrin-based droplets in a flow-focusing microchannel. Carbohydr Polym 2025; 347:122762. [PMID: 39486989 DOI: 10.1016/j.carbpol.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 11/04/2024]
Abstract
Cyclodextrin (CD)-based droplets have received considerable attention in health and body care applications, and a real-time approach to actively control the size and generation frequency of the droplets is desirable. Here we study the droplet formation experimentally inside a flow-focusing microchannel using aqueous CD solutions as the continuous phase, and different oils including glycerol trioleate (TG), oleic acid (OA) and tetradecane (TD) as the dispersed phase, respectively. We identify three distinct flow regimes: threading, dripping and jamming, whose boundaries change as the oil is varied. We further measure the size and generation frequency of the droplets as a function of the CD concentration and the flow rate ratio of the two liquid phases in the dripping regime. Remarkably the least viscous oil of TD forms droplets with the largest size and lowest generation frequency. Building on our recent findings for the dynamic anchoring patterns of CD microcrystals on droplets, we demonstrate that interfacial elastic behavior plays an important role in the droplet formation, and develop a scaling relation by including the interfacial elasticity to predict the size and generation frequency of the droplets, which is consistent with the experimental results.
Collapse
Affiliation(s)
- Sisi Lv
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
5
|
Gao J, Tan X, Dai H, Wang H, Chen H, Zhang Y. Properties regulation and mechanism on ferritin/chitooligosaccharide dual-compartmental emulsions and its application for co-encapsulation of curcumin and quercetin bioactive compounds. Food Chem 2024; 458:140243. [PMID: 38944931 DOI: 10.1016/j.foodchem.2024.140243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Dual-compartmental emulsions, containing multiple chambers, possess great advantages in co-encapsulation of different cargoes. Herein, we reported a stable dual-compartmental emulsion by regulating the ratio of Marsupenaeus japonicus ferritin (MF) and chitooligosaccharide (COS), enabling efficient co-encapsulation of different compounds. The adsorption behavior of MF/COS complex over droplet interface varied at different ratios, thereby exerting an influence on the emulsion properties. Remarkably, emulsions stabilized by MF/COS complex at a ratio of 2:1 exhibited superior stability, as evidenced by no significant creaming or demulsification during storage or heat treatment. The mechanism is that MF/COS2:1 complex can enhance the formation of thicker interfacial layer and dense continuous phase network structure. Additionally, curcumin and quercetin can be co-encapsulated into the emulsions and their retention rates were significantly improved than those in oils, implying the potential of the resulting dual-compartmental emulsions in co-encapsulation and delivery of bioactive compounds.
Collapse
Affiliation(s)
- Junlu Gao
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiaoyi Tan
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China.
| |
Collapse
|
6
|
Wu S, Wang C, Liu C, He Q, Zhang Z, Ma T. Synergistic effects of xanthan gum and β-cyclodextrin on properties and stability of vegetable oil-based whipped cream. Int J Biol Macromol 2024; 279:135379. [PMID: 39244122 DOI: 10.1016/j.ijbiomac.2024.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The synergistic effects between xanthan gum (XG) and β-cyclodextrin (β-CD) on the properties and stability of vegetable oil-based whipped cream stabilized by kidney bean protein aggregates was investigated. The visual appearance, SEM, TEM, CLSM, FT-IR and LF-NMR results showed that when the ratio of XG to β-CD in the XG-β-CD complex was appropriate, the hydrogen bonding effect between β-CD and XG was significant enhanced, the three-dimensional network structure has the highest density, the emulsion droplets were the smallest and evenly distributed. The unique tapered microstructure of β-CD acted as a bridge between the hydrophilic and hydrophobic components, effectively preventing the aggregation of oil droplets and establishing a flexible support system between oil droplets; while the flexible molecular structure of XG could support Pickering emulsion system. The XG-β-CD complex had a synergistic effect with protein aggregates, making it ideal for use in whipped cream products. This study explored the stability mechanism of β-CD in the Pickering emulsion-based whipped cream system, providing valuable insights into producing whole plant-based whipped cream by texturizing highly unsaturated oils. This effectively solves the problem of inadequate intake of unsaturated oil for individuals who consume excessive amounts of animal-derived fats.
Collapse
Affiliation(s)
- Sisi Wu
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Chenqiang Wang
- Technology Center, Xinjiang Guannong Share Group Co., Ltd, Korla City, Xinjiang 841000, China
| | - Chunxiu Liu
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuqiu He
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Zifan Zhang
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Tiezheng Ma
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
7
|
Ye L, Wang Y, Lu X. Pickering emulsion stabilized by quercetin-β-cyclodextrin-diglyceride particles: Effect of diglyceride content on interfacial behavior and emulsifying property of complex particles. Food Chem 2024; 455:139901. [PMID: 38833858 DOI: 10.1016/j.foodchem.2024.139901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
This research develops diacylglycerol (DAG) based Pickering emulsions with enhanced oxidative stability stabilized by self-assembled quercetin/DAG/β-cyclodextrin (β-CD) complexes (QDCCs) using a one-step agitation method. Influence of DAG content (5%, 15%, 40%, and 80%, w/w) on the self-assembly behavior, interfacial properties, and emulsifying ability of complex particles was investigated. SEM, XRD and ATR-FTIR studies confirmed the formation of ternary composite particles. QDCCs in 80% DAG oil had the highest quercetin encapsulation efficiency (6.09 ± 0.01%), highest DPPH radical scavenging rate and ferric reducing antioxidant property (FRAP). β-CD and quercetin adsorption rates in emulsion with 80% DAG oil were 88.4 ± 2.53% and 98.34 ± 0.15%, respectively. Pickering emulsions with 80% DAG had the smallest droplet size (8.90 ± 1.87 μm) and excellent oxidation stability. This research develops a novel approach to regulate the physicochemical stability of DAG-based emulsions by anchoring natural antioxidants at the oil-water interface through a one-pot self-assembly method.
Collapse
Affiliation(s)
- Liuyu Ye
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
8
|
Diao X, Wang Y, Jia R, Chen X, Liu G, Liu D, Guan H. Influences of ultrasonic treatment on the physicochemical properties and microstructure of diacylglycerol-loaded emulsion stabilized with soybean protein isolate and sodium alginate. ULTRASONICS SONOCHEMISTRY 2024; 108:106981. [PMID: 38981339 PMCID: PMC11280087 DOI: 10.1016/j.ultsonch.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
This study examined the impacts of ultrasonic power (0, 150, 300, 450, 600, and 750 W) and ultrasonic durations (3, 6, 9, 12, and 15 min) on the physicochemical properties and microstructure of diacylglycerol (DAG)-loaded emulsions stabilized with soybean protein isolate (SPI) and sodium alginate (SA). The findings indicated that the smallest particle size, zeta potential, and contact angle for SPI-SA-DAG emulsions were respectively 5.58 μm, -49.85 mV, and 48.65°, achieved at an ultrasonic power of 450 W. The emulsification properties, loss modulus, storage modulus, and apparent viscosity of the emulsions were optimal at this power setting and at a duration of 9 min. Analytical techniques, including confocal laser scanning-, scanning electron-, and atomic force microscopy, revealed that ultrasonication significantly altered emulsion aggregation state, with the surface roughness (Rq) being minimized at 450 W. These results demonstrated that the stability of SPI-SA-DAG emulsions can be effectively enhanced by an appropriate ultrasonic treatment at 450 W for 9 min. This research provides theoretical support for the broad application of sonication techniques in the food industry.
Collapse
Affiliation(s)
- Xiaoqin Diao
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Ying Wang
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Ruixin Jia
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Xiaodong Chen
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Guanhua Liu
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China.
| | - Haining Guan
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China.
| |
Collapse
|
9
|
Zhang Y, Yu D, Zhao R, Hu F, Li Z, Dong B, Lu P, Song Z, Wang H, Zhang F, Chen W, Liu W, Li H. Enhanced stability and biocompatibility of HIPEs stabilized by cyclodextrin-metal organic frameworks with inclusion of resveratrol and soy protein isolate for β-carotene delivery. Int J Biol Macromol 2024; 274:133431. [PMID: 38936573 DOI: 10.1016/j.ijbiomac.2024.133431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
High internal phase Pickering emulsions (HIPEs) constitute a significant research domain within colloid interface chemistry, addressing the demand for robust emulsion systems across various applications. An innovative nanoparticle, synthesized from a cyclodextrin metal-organic framework encapsulated with a composite of resveratrol and soy isolate protein (RCS), was employed to fortify a high internal phase emulsion. The emulsion's three-dimensional printing capabilities, alongside the encapsulated delivery efficacy for β-carotene, were thoroughly examined. Cyclodextrin metal-organic frameworks (CD-MOFs), facilitated by cellulose nanofibrils, were synthesized to yield particles at the nanoscale, maintaining a remarkable 97.67 % cellular viability at an elevated concentration of 1000 μg/ml. The RCS nanoparticles demonstrated thermal stability and antioxidant capacities surpassing those of CD-MOF. The integration of soybean isolate protein augmented both the hydrophobicity (from 21.95 ± 0.64° to 59.15 ± 0.78°) and the interfacial tension (from 14.36 ± 0.46 mN/m to 5.34 ± 0.81 mN/m) of the CD-MOF encapsulated with resveratrol, thereby enhancing the RCS nanoparticles' adsorption at the oil-water interface with greater stability. The durability of the RCS-stabilized high internal phase emulsions was contingent upon the RCS concentration. Emulsions stabilized with 5 wt%-RCS exhibited optimal physical and chemical robustness, demonstrating superior performance in emulsion 3D printing and β-carotene encapsulation delivery. This investigation furnishes a novel perspective on the amalgamation of food customization and precision nutrition.
Collapse
Affiliation(s)
- Yannan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China; Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China.
| | - Rui Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Feihong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Zhuo Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
10
|
Wang Y, Liu J, Xia K, Ding Z, Wang B, Yu X, Liu J, Yuan P, Duan S. Enhancing the stability of O/W emulsions by the interactions of casein/carboxymethyl chitosan and its application in whole nutrient emulsions. Int J Biol Macromol 2024:133589. [PMID: 39084970 DOI: 10.1016/j.ijbiomac.2024.133589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
The influence of Carboxymethyl chitosan (CMCS) on the emulsification stability mechanism of casein (CN) and its effects on the stability of whole nutrient emulsions were investigated. The complex solutions of CN and CMCS were prepared and the turbidity, ultraviolet (UV) absorption spectrum, fluorescence spectrum, circular dichroism (CD) spectrum, Fourier transform infrared (FTIR) spectrum, interfacial tension and microstructural observations were used to study the inter-molecular interaction of CMCS and CN. The effects of CMCS on the emulsion stability of CN were further analyzed by particle size, ζ-potential, instability index and rheological properties. Moreover, the accelerated stability of whole nutrient emulsions prepared by CMCS and CN was evaluated. The results revealed that CN-CMCS complexes were mainly formed by hydrogen bonding. The stability of the CN-CMCS composite emulsions were improved, as evidenced by the interfacial tension decreasing from 165.96 mN/m to 158.49 mN/m, the particle size decreasing from 45.85 μm to 12.98 μm, and the absolute value of the potential increasing from 29.8 mV to 33.5 mV. The stability of whole nutrient emulsion was also significantly enhanced by the addition of CN-CMCS complexes. Therefore, CN-CMCS complex could be served as a novel emulsifier to improve the stability of O/W emulsions.
Collapse
Affiliation(s)
- Yingxiang Wang
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Jinyang Liu
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Kai Xia
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Zhenjiang Ding
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | | | - Xinyu Yu
- Chinese Academy of Inspection and Quarantine Comprehensive Test Center, Beijing 100124, China
| | - Jia Liu
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Peng Yuan
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Shenglin Duan
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China.
| |
Collapse
|
11
|
Lu Y, Zhang Y, Zhang R, Gao Y, Miao S, Mao L. Different interfaces for stabilizing liquid-liquid, liquid-gel and gel-gel emulsions: Design, comparison, and challenges. Food Res Int 2024; 187:114435. [PMID: 38763682 DOI: 10.1016/j.foodres.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yanhui Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
12
|
Li Y, Chen M, Ding Y, Li Y, Guo M, Zhang Y. A Pickering emulsion stabilized by Chitosan-g-Poly(N-vinylcaprolactam) microgels: Interface formation, stability and stimuli-responsiveness. Carbohydr Polym 2024; 332:121948. [PMID: 38431386 DOI: 10.1016/j.carbpol.2024.121948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Pickering emulsions stabilized by solid particles are more stable and environmentally friendly compared to traditional surfactants. Herein, a series of Chitosan-g-Poly(N-vinylcaprolactam) (CS-g-PNVCL) microgel particles were synthesized via a free radical surfactant-free emulsion copolymerization and the obtained particles were used to stabilize Pickering emulsions. It is found that the ratio (CS/PNVCL = 60 wt%) was optimal to produce Pickering emulsions. The microstructures of Pickering emulsions can maintain for 60 days at room temperature and this long-term stability is attributed to the CS-g-PNVCL microgel particles adsorbed at the oil-water interface. The Pickering emulsions displayed thermo-responsive characteristics when exposed to environmental stimuli. The emulsions became destabilized with an increase in pH and temperature. The droplets turned unstable and irregular due to excessive NaCl concentration, caused by electrostatic repulsion between the microgel particles. This study presents a novel way to form smart and uniform Pickering emulsions with the application potential in food, cosmetics, and drug delivery, etc.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Mengting Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Yanjun Ding
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Yanke Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yichuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Jiang F, Xu X, Xiao Q, Li Z, Weng H, Chen F, Xiao A. Fabrication, structure, characterization and emulsion application of citrate agar. Int J Biol Macromol 2024; 268:131451. [PMID: 38614177 DOI: 10.1016/j.ijbiomac.2024.131451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
In this study, citric acid successfully reacted with agar through the dry heat method, and citrate agar (CA) gel was used to stabilize O/W emulsions. The mechanisms of the CA structure and emulsion pH that affected emulsion stabilization were analyzed, and the application of CA gel emulsion (CAGE) was explored. Compared with native agar (NA), CA showed lower gel strength, higher transparency, and higher water contact angle. These changes indicate that a cross-linking reaction occurred, and it was demonstrated via FTIR and NMR. The emulsion properties were evaluated using particle size, ζ-potential, and the emulsification activity index. Results showed that CAGEs had a smaller particle size and lower ζ-potential than the native agar gel emulsion (NAGE). Meanwhile, confocal laser scanning microscopy confirmed that the CA gels stabilized the emulsions by forming a protective film around the oil droplets. Stability experiments revealed that CAGE (prepared with CA gel [DS = 0.145]) exhibited better stability than NAGE in the pH range of 3-11, and the rheological results further confirmed that the stability of the emulsions was influenced by the network structure and oil droplet interaction forces. Afterward, the application prospect of CAGE was evaluated by encapsulating vitamin D3 and curcumin.
Collapse
Affiliation(s)
- Feng Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Xinwei Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Zhenyi Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Fuquan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
14
|
Wang M, Zhou Y, Fan L, Li J. Interfacial adsorption of soybean phosphatidylethanolamine in different oil phase and the stability of water-in-oil emulsion. Food Chem 2024; 439:138144. [PMID: 38100870 DOI: 10.1016/j.foodchem.2023.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Water-in-oil (W/O) emulsion holds great potential in designing fat-reduced foods. However, due to the lack of W/O-type surfactant, formation of all-natural W/O emulsion is challenged. This study aimed to investigate the effect of oil phase on interfacial adsorption of soybean phosphatidylethanolamine (SP) and stability of W/O emulsion. Five oils, including medium chain triglycerides oil (MO), coconut oil (CO), palm kernel oil (PKO), sunflower oil (SO) and rapeseed oil (RO), were selected. Results showed that diffusion rate of SP to the interface ranked as MO > CO > PKO > SO ≈ RO, increasing interfacial adsorption from 50.2 % to 85.3 %. Higher interfacial adsorption improved the deformation resistance of interfacial layer, causing more significant decrease in interfacial tension (3.54 mN/m). So, the largest water fraction (65 %) was stabilized by SP with MO and CO, and exhibited smaller droplet sizes and better stability. Consequently, shorter-chain oil was more suitable for preparing W/O emulsions.
Collapse
Affiliation(s)
- Mengzhu Wang
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Pan Y, Ma X, Sun J, Bai W. Fabrication and characterization of anthocyanin-loaded double Pickering emulsions stabilized by β-cyclodextrin. Int J Pharm 2024; 655:124003. [PMID: 38492900 DOI: 10.1016/j.ijpharm.2024.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Anthocyanins, one of the important water-soluble pigments, are sensitive to environmental factors, which limits the application of anthocyanins in food field. In order to overcome this limitation, double Pickering emulsions stabilized by β-cyclodextrin were developed. The optimum preparation conditions of the emulsions were determined firstly and the performance and structure of emulsions were investigated. Results showed that the optimum preparation conditions of emulsions were the ratio of (W1/O): W2 = 6:4 and 4 % β-cyclodextrin concentration. Optical microscope and confocal laser scanning microscope results confirmed that β-cyclodextrin adsorbed onto the surface of droplets forming stable double Pickering emulsions structure. In vitro gastrointestinal digestion experiments proved that double Pickering emulsions played a controlled-release effect in the small intestine. Rheological analysis proved that the emulsions exhibited elastic properties and demonstrated shear thinning behavior. The emulsions showed excellent stability under centrifugation and thermal conditions. These findings will promote anthocyanins' application in daily diet.
Collapse
Affiliation(s)
- Yibo Pan
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiaoqiang Ma
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
16
|
Cheng C, Yuan C, Cui B, Li J, Liu G. β-Cyclodextrin based Pickering emulsions for α-tocopherol delivery: Antioxidation stability and bioaccessibility. Food Chem 2024; 438:138000. [PMID: 38000154 DOI: 10.1016/j.foodchem.2023.138000] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
β-Cyclodextrin (β-CD) Pickering emulsion and cinnamaldehyde/β-cyclodextrin (CIN/β-CD) Pickering emulsion were prepared and the influences of oxidation and digestion were investigated. CIN/β-CD composite was better dispersed at the oil-water interface than β-CD. Hydrophobic group of CIN anchored in the oil phase and Hydrophilic hydroxyl group of β-CD extended into the aqueous phase, which allowed CIN/β-CD composite to be oriented at the oil-water interface and formed a more stable oil-water interface layer. β-CD Pickering emulsion was more susceptible to oxidative deterioration than CIN/β-CD Pickering emulsion, its malondialdehyde (MDA) value was as high as 509.41 ± 9.37 nmol/L. Digestion experiment indicated that CIN/β-CD Pickering emulsion was released inner oil phase in the small intestine and free fatty acid (FFA) release rate was 44.32 ± 1.08%. Pharmacokinetic parameters manifested that α-tocopherol peak concentration (Cmax) was 64.32 ± 6.45 mg/L and the peak time (Tmax) appeared at 5 h after administration of CIN/β-CD Pickering emulsion.
Collapse
Affiliation(s)
- Caiyun Cheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
17
|
Huang L, Cai Y, Zhao Q, Zhao D, Hu Y, Zhao M, Van der Meeren P. Effects of physical method and enzymatic hydrolysis on the properties of soybean fiber-rich stabilizer for oil in water emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3080-3089. [PMID: 38063380 DOI: 10.1002/jsfa.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Okara is a by-product from the soybean industry and an abundant resource of insoluble soybean fiber (ISF). ISF with various properties could be obtained by different extraction methods. It is an attractive option to utilize okara by taking advantage of ISF as an emulsifier or stabilizer. RESULTS Compared with the untreated ISF (ISFUT ), superfine grinding reduced the particle size and viscosity of ISF (ISFSG ). Steam explosion increased the water solubility from 17.5% to 51.7% but decreased the water holding capacity and swelling capacity of ISF (ISFSE ) from 15.0 and 14.0 g/g to 4.2 and 3.3 g/g, respectively. Emulsions prepared by ISFUT and ISFSG before or after enzymatic hydrolysis presented large oil droplets and were unstable. Although emulsions prepared by ISFSE after enzymatic hydrolysis (ISFSE-E ) showed flocculation, the volume-weighted average diameter (19.7 μm) were the smallest while the viscosity and viscoelastic modulus were the highest, and exhibited excellent physical stability during storage. CONCLUSION ISF obtained by physical and hydrolysis treatment displayed diverging physicochemical properties while ISF prepared by steam explosion-enzymatic hydrolysis presented the best potential to stabilize emulsions. The present study could provide novel information about the utilization of okara by the application of ISF as an emulsifier or stabilizer. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dongrui Zhao
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Yulin Hu
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
18
|
Chen ZY, Shi YJ, Zhang XF, Luan F, Guo DY, Sun J, Zhai BT, Zhang DK, Jun-bo Zou. The investigation of thermal stability and GC-MS analysis of Acorus tatarinowii and Atractylodes lancea volatile oils treated by β cyclodextrin inclusion and Pickering emulsion technologies. Heliyon 2024; 10:e25909. [PMID: 38439839 PMCID: PMC10909634 DOI: 10.1016/j.heliyon.2024.e25909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Objective To investigate the stability of Acorus tatarinowii and Atractylodes lancea essential oils (ATaAL-EO) under a hot environment at 60 °C, and to analyze the differences in component, quantity, and quality changes, as well as variations in the main components, under different treatment methods of crude oil, β-cyclodextrin inclusion of ATaAL-EO, and Pickering emulsion, to improve the stability and quality of ATaAL-EO. Methods The stability of the ATaAL-EO group, the β-cyclodextrin inclusion ATaAL-EO group, and the Pickering emulsion group were investigated under a 60 °C heat environment. Volatile oil retention rate and peroxide value were collected and measured. The volatile oil components of each group were determined by GC-MS, and t-tests were used to screen for differential components. PCA plots for each group were constructed using the OmicShare online platform. Line plots were generated using the Rmisc and reshape2 packages. Upset Venn diagrams under different hot environments were created using the OmicShare online platform to identify quantitative and qualitative changing components and heat map stack plots for newly generated compounds and connected line plots for disappearing compounds were produced for each group. Boxplots for the main component compounds under different hot environments were generated using the reshape2 and ggplot2 packages. Results In a hot environment of 60 °C, the β-cyclodextrin inclusion ATaAL-EO and Pickering emulsion group with 1, 3, and 8 h of placement showed higher retention and lower oxidation degree compared to the stability of the ATaAL-EO group. GC-MS analysis results showed that the stability of volatile components in the Pickering emulsion group and β-cyclodextrin inclusion ATaAL-EO group was significantly improved compared to the crude oil group. Conclusion β-cyclodextrin inclusion complexes with ATaAL-EO, as well as Pickering emulsions, can significantly enhance the stability and quality of ATaAL-EO. Pickering emulsions have more advantages.
Collapse
Affiliation(s)
- Zhong-ying Chen
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ya-jun Shi
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiao-fei Zhang
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Fei Luan
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-yan Guo
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jing Sun
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Bing-tao Zhai
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ding-kun Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun-bo Zou
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
19
|
Tian Y, Qi Y, Chen S, Qiao Z, Han H, Chen Z, Wang H, Zhang Y, Chen H, Wang L, Gong X, Chen Y. Hydrogen bond recombination regulated by strongly electronegative functional groups in demulsifiers for efficient separation of oil-water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132525. [PMID: 37716267 DOI: 10.1016/j.jhazmat.2023.132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Tight oil extraction and offshore oil spills generate large amounts of oil-water emulsions, causing serious soil and marine pollution. In such oil-water emulsions, the resin molecules are bound by π-π stacking and bind to interfacial water molecules via hydrogen bonds, which impede the aggregation between water droplets and thereby the separation of the emulsion. In this study, strongly electronegative oxygen atoms (in ethylene oxide, propylene oxide, esters, and hydroxyl groups) were introduced through poly(propylene glycol)-block-polyether and esterification with acrylic acid to attract negative charges in order to form electron-rich regions and enhance interfacial hydrogen bond recombination. The potential distribution in the demulsifier molecules and their space occupancy were regulated by the polymerization reaction to destroy the π-π stacking interaction between resin molecules. The results show that the binding energies (binding free energy and hydrogen bonding energy) of oxygen-containing demulsifier molecules with water molecules were higher than those of resin molecules with water molecules, resulting in the fission of the hydrogen bonds between resin and water molecules. The introduction of demulsifier molecules that occupied large interfacial space reduced the binding energy between resin molecules from -2176.06 to -110.00 kJ·mol-1. Noteworthy, the binding energy between demulsifier molecules and resin molecules was -1076.36 kJ·mol-1 lower than that between resin molecules (-110.00 kJ·mol-1), indicating the adsorption of the surrounding interfacial resin molecules by the demulsifier molecules and destruction of the π-π stacking between them, thus favoring the collapse of the interfacial structure of the oil-water emulsion and achieving its separation. This study provides important theoretical support for the treatment of oil-contaminated soil and offshore oil spill pollution.
Collapse
Affiliation(s)
- Yuxuan Tian
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Yaming Qi
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China; óDesign branch of PetroChina (Xinjiang) Petroleum Engineering Co., Ltd, Petro China, 834000 Kelamayi, Xinjiang, PR China
| | - Sijia Chen
- PetroChina Petrochemical Research Institute, Daqing Chemical Engineering Research Center, Daqing 163714, PR China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387 China
| | - Hongjing Han
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China.
| | - Zherui Chen
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Haiying Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Yanan Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Huiying Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Leilei Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Xuzhong Gong
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yanguang Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China.
| |
Collapse
|
20
|
Xu H, Fan Q, Huang M, Cui L, Gao Z, Liu L, Chen Y, Jin J, Jin Q, Wang X. Combination of carrageenan with sodium alginate, gum arabic, and locust bean gum: Effects on rheological properties and quiescent stabilities of partially crystalline emulsions. Int J Biol Macromol 2023; 253:127561. [PMID: 37865364 DOI: 10.1016/j.ijbiomac.2023.127561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
In the present study, carrageenan (CG) was combined with sodium alginate (SA), gum arabic (GA), and locust bean gum (LBG) to obtain four gum combinations (CG, CG + SA, CG + GA, and CG + LBG). The effects of different combinations on rheological properties and quiescent stabilities of PCEs were systematically investigated through characterization of fresh emulsion related parameters (rheological properties, forces between proteins, zeta potentials, surface tensions, interfacial adsorption properties, and multiple light scattering) and storage related parameters (visual appearance, creaming index, viscosities, particle sizes, and microscopic morphology). Rheological results indicated that CG PCEs had the highest apparent viscosities of 7.77-41.91 Pa·s at 0.01 s-1, followed by CG + SA PCEs (2.35-30.62 Pa·s), CG + GA PCEs (2.37-21.16 Pa·s), and CG + LBG PCEs (2.06-19.93 Pa·s). At low thickener concentration (0.02 %), CG PCE exhibited weak gel structure due to higher G' than G″ at all frequencies, while CG + SA, CG + GA, and CG + LBG PCEs had entangled network due to intersection between G' and G″. After three months of storage, CG + SA PCEs showed the lowest creaming index values (11.47-17.75 %), which were significantly lower than CG PCEs (15.35-20.85 %), CG + GA PCEs (15.97-24.42 %), and CG + LBG PCEs (17.13-21.71 %). Meanwhile, all the samples except for 0.02 % CG + SA PCE completely lost fluidity, and their viscosities were above 14,000 mPa·s. It was further found that CG stabilized emulsions showed severe droplet flocculation induced by hydrophobic interactions among adsorbed proteins. Combination of CG with SA, GA, and LBG, especially CG + SA, formed strong network structure and reduced contribution of hydrophobic interactions, which effectively inhibited flocculation of fat droplets, thereby improving rheological properties and storage stabilities of PCEs.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qinyuan Fan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcui Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Limin Cui
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Ziwei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Longfei Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuhang Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
21
|
Zhang L, Tian Y, Song A, Hao J. Particle-Polymer Union with Changeable Wettability for Constructing Bijels Using a Simple Mixing Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16513-16521. [PMID: 37932941 DOI: 10.1021/acs.langmuir.3c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Bicontinuous emulsion gels (bijels) are nonequilibrium dispersed systems with particle-stabilized continuous fluid domains, and the internal connectivity of channels brings the possibility of efficient mass transport, endowing bijels great potential in diverse applications. Different from the common method to produce bijels, the spinodal decomposition, which needs precise temperature control and is restricted by the selection of liquid pairs, in this work, a direct mixing method was performed to construct bijels, simplifying the fabrication process. The hydrophilic rod-shaped cellulose nanocrystalline (CNC) particles were in situ combined with the hydrophobic polymer, aminopropyl-terminated polydimethylsiloxane (PDMS-NH2), to acquire a controllable interfacial wettability of CNC. The CNC@mPDMS-NH2 complexes were adsorbed at the water-toluene interface and achieved a change of Pickering emulsion types, oil-in-water, bijel, and water-in-oil, through tuning the interfacial performance of CNC@mPDMS-NH2 complexes. A three-dimensional scanning image and curvature calculation were applied to verify the obtained bijel, further demonstrating the successful preparation of the bicontinuous structure. This work enriched the members of particles for stabilizing bijels and was considered to be scalable in manufacturing for applications on a large scale.
Collapse
Affiliation(s)
- Liya Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Yanmei Tian
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| |
Collapse
|
22
|
Jiang Q, Liu M, Xu LP, Lu ZL, Zhang L, Zhang L. Interfacial Rheological and Emulsion Properties of Self-Assembled Cyclodextrin-Oil Inclusion Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11675-11683. [PMID: 37551025 DOI: 10.1021/acs.langmuir.3c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
To investigate the effect of the molecular size of alkanes and the cavity size of cyclodextrins (CDs) on the formation of interfacial host-guest inclusion complexes, the interfacial tension (IFT) of CD (α-CD, β-CD, γ-CD) solutions against oils (hexadecane, dodecylbenzene) was determined by interfacial dilational rheology measurements. The results show that the "space compatibility" between CDs and oil molecules is crucial for the formation of interface host-guest inclusion complexes. Hexadecane with a smaller molecular size can form host-guest inclusion complexes with small cavities of α-CD and β-CD, dodecylbenzene with a larger molecular size can form interfacial aggregates with the medium-sized cavity of β-CD easily, and the polycyclic aromatic hydrocarbon molecules in kerosene can form inclusion complexes with the large cavity of γ-CD. The formation of interfacial inclusion complexes leads to lower IFT values, higher interfacial dilational modulus, nonlinear IFT responses to the interface area oscillating, and skin-like films at the oil-water interface. What's more, the phase behavior of Pickering emulsions formed by CDs with different oils is explored, and the phenomena in alkane-CD emulsions are in line with the results in dilatation rheology. The interfacial active host-guest structure in the kerosene-γ-CD system improves the stability of the Pickering emulsion, which results in smaller emulsion droplets. This unique space compatibility characteristic is of great significance for the application of CDs in selective host-guest recognition, sensors, enhanced oil recovery, food industries, and local drug delivery.
Collapse
Affiliation(s)
- Qin Jiang
- Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Miao Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Luo-Peng Xu
- Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Zi-Ling Lu
- Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Lei Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Effect of emulsifier HLB on aerated emulsions: Stability, interfacial behavior, and aeration properties. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
24
|
Effect of egg white protein-insoluble soybean fiber interactions on the formation and structural characteristics of low-oil emulsion gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
25
|
Guo Z, Li Z, Cen S, Liang N, Muhammad A, Tahir HE, Shi J, Huang X, Zou X. Modulating hydrophilic properties of β-cyclodextrin/carboxymethyl cellulose colloid particles to stabilize Pickering emulsions for food 3D printing. Carbohydr Polym 2023; 313:120764. [PMID: 37182940 DOI: 10.1016/j.carbpol.2023.120764] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
This research investigated edible Pickering emulsions stabilized by polysaccharide complexes as inks for food 3D printing. The interface membrane structure in the Pickering emulsion system was formed using complexes consisting of β-cyclodextrin (β-CD) and carboxymethyl cellulose (CMC). Except for provide sufficient steric barrier and electrostatic repulsion to increase the stability of the Pickering emulsions, the interface membrane constructs also can demonstrate good biphasic wettability and lower oil/water interfacial tension. The hydrophilicity of complexes (β-CD/CMC) was mainly adjusted by the ratio of β-CD/CMC (Rβ/C) and the substitution degree (DS) of CMC, which further adjusted the physical and chemical properties of Pickering emulsion to make it correspond to the rheological behavior applied to 3D printing. The stable Pickering emulsion (Rβ/C = 2:2, DS = 1.2, weight ratio of oil phase (φ) = 65 %) displayed excellent printing potential by characterizations analysis of Pickering emulsions. The smoothness, viscosity, and self-supporting ability of the Pickering emulsion under the optimized conditions were further analyzed using a filling density printing experiment of a cuboid model. The emulsifying properties of β-CD were adjusted by hydrophilic CMC to achieve the required amphipathic properties of the complexes to develop Pickering emulsions for food 3D printing.
Collapse
|
26
|
Zhu Y, Yuan C, Cui B, Guo L, Zhao M. Pickering emulsion stabilized by linear dextrins: Effect of the chain length. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
The interfacial destabilization of bile salt-emulsified oil droplets, essential for lipase function, is mediated by Lycium barbarum L. leaf polysaccharides. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|