1
|
Ta LP, Corrigan S, Tselepis C, Iqbal TH, Ludwig C, Horniblow RD. Gastrointestinal-inert prebiotic micro-composites improve the growth and community diversity of mucosal-associated bacteria. J Control Release 2024; 375:495-512. [PMID: 39284524 DOI: 10.1016/j.jconrel.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
The process of microencapsulation and the development of microparticle-based drug formulations have gained increased pharmaceutical interest, particularly for drug delivery and bacterial-encapsulation purposes for probiotic delivery. Existing studies have examined microcomposite (MC) responses to gastrointestinal (GI) conditions with the aim of controlling disintegration, and thus release, across the small and large bowel. However, the delivery of MCs which remain intact, without degrading, could act as bacterial growth scaffolds or materials providing a prebiotic support, conferring potentially beneficial GI health properties. This present study employs prilling as a method to produce a portfolio of MCs using a variety of biopolymers (alginate, chitosan, pectin and gellan gum) with a range of MC diameters and density compositions. Fluorescent probes are co-encapsulated within each MC to enable flow-cytometry directed release profile assessments following exposure to chemical simulated gastric and intestinal digestion conditions. We observe that MC size, gel-strength, density, and biopolymer material all influence response to gastric and intestinal conditions. Gellan gum (GG) MCs demonstrated complete resistance to disintegration throughout GI-simulation in the stomach and small intestine. Considering these MCs could reach the colon intact, we then examined how such MCs, doped with prebiotic growth supporting carboxymethyl cellulose (CMC) polymers, could impact microbial communities using a bioreactor model of the colonic microbiome. Following supplementation with GGCMC MCs, mucosal bacterial diversity (using 16 s rRNA sequencing and Shannon entropy and observed feature diversity metrics) and taxonomic composition changes were observed. Concentrations of short chain fatty acid (SCFA) metabolites were also found to be altered. This is the first study to comprehensivelyexamine how MC physicochemistry can be manipulated to tailor MCs to have the desired GI release performance and subsequently, how GI-resistant MCs could have influential microbial altering properties and be adopted in novel prebiotic strategies.
Collapse
Affiliation(s)
- Linh P Ta
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah Corrigan
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chris Tselepis
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tariq H Iqbal
- The Microbiome Treatment Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard D Horniblow
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Łętocha A, Michalczyk A, Miastkowska M, Sikora E. Effect of Encapsulation of Lactobacillus casei in Alginate-Tapioca Flour Microspheres Coated with Different Biopolymers on the Viability of Probiotic Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52878-52893. [PMID: 39301782 PMCID: PMC11450766 DOI: 10.1021/acsami.4c10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
To realize the health benefits of probiotic bacteria, they must withstand processing and storage conditions and remain viable after use. The encapsulation of these probiotics in the form of microspheres containing tapioca flour as a prebiotic and vehicle component in their structure or shell affords symbiotic effects that improve the survival of probiotics under unfavorable conditions. Microencapsulation is one such method that has proven to be effective in protecting probiotics from adverse conditions while maintaining their viability and functionality. The aim of the work was to obtain high-quality microspheres that can act as carriers of Lactobacillus casei bacteria and to assess the impact of encapsulation on the viability of probiotic microorganisms in alginate microspheres enriched with a prebiotic (tapioca flour) and additionally coated with hyaluronic acid, chitosan, or gelatin. The influence of the composition of microparticles on the physicochemical properties and the viability of probiotic bacteria during storage was examined. The optimal composition of microspheres was selected using the design of experiments using statistical methods. Subsequently, the size, morphology, and cross-section of the obtained microspheres, as well as the effectiveness of the microsphere coating with biopolymers, were analyzed. The chemical structure of the microspheres was identified by using Fourier-transform infrared spectrophotometry. Raman spectroscopy was used to confirm the success of coating the microspheres with the selected biopolymers. The obtained results showed that the addition of tapioca flour had a positive effect on the surface modification of the microspheres, causing the porous structure of the alginate microparticles to become smaller and more sealed. Moreover, the addition of prebiotic and biopolymer coatings of the microspheres, particularly using hyaluronic acid and chitosan, significantly improved the survival and viability of the probiotic strain during long-term storage. The highest survival rate of the probiotic strain was recorded for alginate-tapioca flour microspheres coated with hyaluronic acid, at 5.48 log CFU g-1. The survival rate of L. casei in that vehicle system was 89% after storage for 30 days of storage.
Collapse
Affiliation(s)
- Anna Łętocha
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| | - Alicja Michalczyk
- Lukasiewicz
Research Network—Institute of Industrial Organic Chemistry, 03-236 Warsaw, Poland
| | - Małgorzata Miastkowska
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| | - Elżbieta Sikora
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| |
Collapse
|
3
|
Karkar B, Şahin S, Yılmaz‐Ersan L, Akça B, Güneş ME, Özakın C. Encapsulation of Lacticaseibacillus casei and Lactobacillus acidophilus using Elaeagnus angustifolia L. flour as encapsulating material by emulsion method. Food Sci Nutr 2024; 12:6810-6825. [PMID: 39554358 PMCID: PMC11561844 DOI: 10.1002/fsn3.4328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, Lacticaseibacillus casei and Lactobacillus acidophilus probiotic bacteria were encapsulated using oleaster flour, which is rich in phenolic compounds and has prebiotic properties as potential. The optimum conditions required for the encapsulation of L. casei and L. acidophilus bacteria with maximum efficiency using oleaster flour were determined by central composite design-response surface methodology. As a result of the optimization process, the encapsulation efficiency for L. casei and L. acidophilus capsules was 93.66 ± 2.58% and 74.97 ± 1.34%, respectively. The capsule sizes of L. casei and L. acidophilus encapsulated with oleaster flour were determined by scanning electron microscopy to be 104.8 ± 26.3 and 95.7 ± 12.1 μm, respectively. Fourier transform infrared spectroscopy analyses showed that there was no change in the structure of the encapsulation material, oleaster flour, after encapsulation. Also, the storage stability of free and encapsulated bacteria was investigated, and it was found that the viability losses of encapsulated probiotic bacteria were less than those of free probiotic bacteria. Finally, the effect of encapsulation on bacterial viability during in vitro gastrointestinal digestion was investigated, which is the main purpose of the study. While free probiotic bacteria cannot reach the intestinal environment alive after in vitro gastrointestinal digestion due to pH and enzyme effects, encapsulated L. casei and L. acidophilus bacteria largely preserved their viability, and their postdigestion viability was 39.59 ± 1.50% and 36.28 ± 0.01%, respectively. The results showed successful encapsulation of L. casei and L. acidophilus probiotic bacteria with oleaster flour.
Collapse
Affiliation(s)
- Büşra Karkar
- Faculty of Science and Arts, Department of ChemistryUniversity of Bursa UludağBursaTürkiye
| | - Saliha Şahin
- Faculty of Science and Arts, Department of ChemistryUniversity of Bursa UludağBursaTürkiye
| | - Lütfiye Yılmaz‐Ersan
- Faculty of Agriculture, Department of Food EngineeringUniversity of Bursa UludağBursaTürkiye
| | - Bekir Akça
- Faculty of Medicine, Department of Medical MicrobiologyUniversity of Bursa UludağBursaTürkiye
| | - Mesut Ertan Güneş
- Vocational School of Technical Sciences, Milk Technology ProgrammeUniversity of Bursa UludağBursaTürkiye
| | - Cüneyt Özakın
- Faculty of Medicine, Department of Medical MicrobiologyUniversity of Bursa UludağBursaTürkiye
| |
Collapse
|
4
|
Xing H, Pan X, Hu Y, Yang Y, Zhao Z, Peng H, Wang J, Li S, Hu Y, Li G, Ma D. High molecular weight hyaluronic acid-liposome delivery system for efficient transdermal treatment of acute and chronic skin photodamage. Acta Biomater 2024; 182:171-187. [PMID: 38759743 DOI: 10.1016/j.actbio.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Photodamage is one of the most common causes of skin injury. High molecular weight hyaluronic acid (HHA) has shown immense potential in the treatment of skin photodamage by virtue of its anti-inflammatory, reparative, and antioxidative properties. However, due to its large molecular structure of HHA, HHA solution could only form a protective film on the skin surface in conventional application, failing to effectively penetrate the skin, which necessitates the development of new delivery strategies. Liposomes, with a structure similar to biological membranes, have garnered extensive attention as transdermal drug delivery carriers because of their advantages in permeability, dermal compatibility, and biosafety. Herein, we have developed a HHA-liposome transdermal system (HHL) by embedding HHA into the liposome structure using reverse evaporation, high-speed homogenization, and micro-jet techniques. The effective penetration and long-term residence of HHA in skin tissue were multidimensionally verified, and the kinetics of HHA in the skin were extensively studied. Moreover, it was demonstrated that HHL significantly strengthened the activity of human keratinocytes and effectively inhibits photo-induced cellular aging in vitro. Furthermore, a murine model of acute skin injury induced by laser ablation was established, where the transdermal system showed significant anti-inflammatory and immunosuppressive properties, promoting skin proliferation and scar repair, thereby demonstrating immense potential in accelerating skin wound healing. Meanwhile, HHL significantly ameliorated skin barrier dysfunction caused by simulated sunlight exposure, inhibited skin erythema, inflammatory responses, and oxidative stress, and promoted collagen expression in a chronic photodamage skin model. Therefore, this transdermal delivery system with biocompatibility represents a promising new strategy for the non-invasive application of HHA in skin photodamage, revealing the significant potential for clinical translation and broad application prospects. STATEMENT OF SIGNIFICANCE: The transdermal system utilizing hyaluronic acid-based liposomes enhances skin permeability and retains high molecular weight hyaluronic acid (HHL). In vitro experiments with human keratinocytes demonstrate significant skin repair effects of HHL and its effective inhibition of cellular aging. In an acute photodamage model, HHL exhibits stronger anti-inflammatory and immunosuppressive properties, promoting skin proliferation and scar repair. In a chronic photodamage model, HHL significantly improves skin barrier dysfunction, reduces oxidative stress induced by simulated sunlight, and enhances collagen expression.
Collapse
Affiliation(s)
- Hui Xing
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiangjun Pan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China
| | - Yihan Hu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuhui Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ziyi Zhao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huanqi Peng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jianjin Wang
- Honest Medical China Co., Ltd, Zhuhai, 519000, China
| | - Shanying Li
- Honest Medical China Co., Ltd, Zhuhai, 519000, China
| | - Yunfeng Hu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China.
| | - Guowei Li
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China.
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Heidarrezaei M, Mauriello G, Shokravi H, Lau WJ, Ismail AF. Delivery of Probiotic-Loaded Microcapsules in the Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10311-6. [PMID: 38907825 DOI: 10.1007/s12602-024-10311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Probiotics are live microorganisms that inhabit the gastrointestinal tract and confer health benefits to consumers. However, a sufficient number of viable probiotic cells must be delivered to the specific site of interest in the gastrointestinal tract to exert these benefits. Enhanced viability and tolerance to sublethal gastrointestinal stress can be achieved using appropriate coating materials and food matrices for orally consumed probiotics. The release mechanism and interaction of probiotic microcapsules with the gastrointestinal tract have been minimally explored in the literature to date. To the authors' knowledge, no review has been published to discuss the nature of release and the challenges in the targeted delivery of probiotics. This review addresses gastrointestinal-related complications in the formulation of targeted delivery and controlled release of probiotic strains. It investigates the impacts of environmental stresses during the transition stage and delivery to the target region in the gastrointestinal tract. The influence of factors such as pH levels, enzymatic degradation, and redox conditions on the release mechanisms of probiotics is presented. Finally, the available methods to evaluate the efficiency of a probiotic delivery system, including in vitro and in vivo, are reviewed and assessed. The paper concludes with a discussion highlighting the emerging technologies in the field and emphasising key areas in need of future study.
Collapse
Affiliation(s)
- Mahshid Heidarrezaei
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049, Naples, Italy
| | - Hoofar Shokravi
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Woei Jye Lau
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
6
|
Bordini FW, Rosolen MD, da Luz GDQ, Pohndorf RS, de Oliveira PD, Conceição FR, Fiorentini ÂM, da Silva WP, Pieniz S. Development of a microencapsulated probiotic delivery system with whey, xanthan, and pectin. Braz J Microbiol 2023; 54:2183-2195. [PMID: 37434082 PMCID: PMC10484871 DOI: 10.1007/s42770-023-01041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
Pediococcus pentosaceus is a lactic acid bacterium that has probiotic potential proven by studies. However, its viability can be affected by adverse conditions such as storage, heat stress, and even gastrointestinal passage. Thus, the aim of the present study was to microencapsulate and characterize microcapsules obtained by spray drying and produced only with whey powder (W) or whey powder combined with pectin (WP) or xanthan (WX) in the protection of P. pentosaceus P107. In the storage test at temperatures of - 20 °C and 4 °C, the most viable microcapsule was WP (whey powder and pectin), although WX (whey powder and xanthan) presented better stability at 25 °C. In addition, WX did not show stability to ensure probiotic potential (< 6 Log CFU mL-1) for 110 days and the microcapsule W (whey powder) maintained probiotic viability at the three temperatures (- 20 °C, 4 °C, and 25 °C) for 180 days. In the exposition to simulated gastrointestinal juice, the WX microcapsule showed the best results in all tested conditions, presenting high cellular viability. For the thermal resistance test, WP microcapsule was shown to be efficient in the protection of P. pentosaceus P107 cells. The Fourier transform infrared spectroscopy (FTIR) results showed that there was no chemical interaction between microcapsules of whey powder combined with xanthan or pectin. The three microcapsules produced were able to protect the cell viability of the microorganism, as well as the drying parameters were adequate for the microcapsules produced in this study.
Collapse
Affiliation(s)
- Fernanda Weber Bordini
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Michele Dutra Rosolen
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | | | - Ricardo Scherer Pohndorf
- Departament Resources Engineering, Federal University of Pelotas, Pelotas, RS, 96010-610, Brazil
| | - Patrícia Diaz de Oliveira
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
- Department of Biotechnology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | | | - Ângela Maria Fiorentini
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Wladimir Padilha da Silva
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
- Department of Biotechnology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Simone Pieniz
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
- Department of Nutrition, Federal University of Pelotas, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
7
|
Hernández-Gallegos MA, Solorza-Feria J, Cornejo-Mazón M, Velázquez-Martínez JR, Rodríguez-Huezo ME, Gutiérrez-López GF, Hernández-Sánchez H. Protective Effect of Alginate Microcapsules with Different Rheological Behavior on Lactiplantibacillus plantarum 299v. Gels 2023; 9:682. [PMID: 37754363 PMCID: PMC10529054 DOI: 10.3390/gels9090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Alginate encapsulation is a well-known technique used to protect microorganisms from adverse conditions. However, it is also known that the viscosity of the alginate is dependent on its composition and degree of polymerization and that thermal treatments, such as pasteurization and sterilization, can affect the structure of the polymer and decrease its protection efficiency. The goal of this study was to evaluate the protective effect of encapsulation, using alginates of different viscosities treated at different temperatures, on Lactiplantibacillus plantarum 299v under in vitro gastrointestinal conditions and cold storage at 4 °C and -15 °C, respectively. Steady- and dynamic-shear rheological tests were used to characterize the polymers. Thermal treatments profoundly affected the rheological characteristics of alginates with high and low viscosity. However, the solutions and gels of the low-viscosity alginate were more affected at a temperature of 117 °C. The capsules elaborated with high-viscosity alginate solution and pasteurized at 63 °C for 30 min provided better protection to the cells of L. plantarum 299v under simulated gastrointestinal and cold storage conditions.
Collapse
Affiliation(s)
- Minerva Aurora Hernández-Gallegos
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Estatal Libre Villahermosa-Comalcalco Km 27 S/N, Ranchería, Jalpa de Méndez CP 86205, Mexico
| | - Javier Solorza-Feria
- Centro de Desarrollo de Productos Bióticos del IPN, Km 8.5 carr. Yautepec-Jojutla, Yautepec CP 62731, Mexico;
| | - Maribel Cornejo-Mazón
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Santo Tomás, Ciudad de México CP 11340, Mexico;
| | - José Rodolfo Velázquez-Martínez
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa Km. 25, Teapa CP 86291, Mexico;
| | - María Eva Rodríguez-Huezo
- División Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Ecatepec, Estado de México CP 55010, Mexico;
| | - Gustavo F. Gutiérrez-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
| |
Collapse
|
8
|
Ji C, Gao Y, Huang X, Yan F, Yu T. Microencapsulation of Bacillus smithii XY1 by spray drying and evaluation for treatment of inflammatory bowel disease. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Chen L, Qian WW, Zhou S, Zhou T, Gu Q. Fabrication of whey protein/pectin double layer microcapsules for improving survival of Lacticaseibacillus rhamnosus ZFM231. Int J Biol Macromol 2023:125030. [PMID: 37244347 DOI: 10.1016/j.ijbiomac.2023.125030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
To improve the viability of Lacticaseibacillus rhamnosus ZFM231 strain in the gastrointestinal tract and exhibit better probiotic effect, an internal emulsification/gelation technique was employed to encapsulate this strain using whey protein and pectin as wall materials to fabricate the double layer microcapsules. Four key factors affecting the encapsulation process were optimized using single factor analysis and response surface methodology. Encapsulation efficiency of L. rhamnosus ZFM231 reached 89.46 ± 0.82 %, the microcapsules possessed a particle size of 172 ± 1.80 μm and ζ-potential of -18.36 mV. The characters of the microcapsules were assessed using optical microscope, SEM, FT-IR and XRD analysis. It was found that after exposure to simulated gastric fluid, the bacterial count (log (CFU g-1)) of the microcapsules only lost 1.96 units, the bacteria were released readily in simulated intestinal fluid, reaching 86.56 % after 90 min. After stored at 4 °C for 28 days and 25 °C for 14 days, bacterial count of the dry microcapsules decreased from 10.59 to 9.02 and 10.49 to 8.70 log (CFU g-1), respectively. The double layered microcapsules could significantly increase the storage and thermal abilities of bacteria. Such L. rhamnosus ZFM231 microcapsules could find applications as ingredient of the functional foods and the dairy products.
Collapse
Affiliation(s)
- Liang Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Wen-Wen Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
10
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
11
|
Kalpa RE, Sreejit V, Preetha R, Nagamaniammai G. Synbiotic microencapsulation of Lactobacillus brevis and Lactobacillus delbrueckii subsp. lactis using oats/oats brans as prebiotic for enhanced storage stability. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:896-905. [PMID: 36908354 PMCID: PMC9998750 DOI: 10.1007/s13197-021-05240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Potential probiotic strains, Lactobacillus delbrueckii subsp. lactis and Lactobacillus brevis were microencapsulated with their appropriate prebiotics, oat bran, and oats, respectively, selected by in vitro fermentation. The microencapsulation of these probiotics were done in an alginate matrix, with and without their appropriate prebiotics. Results showed that cells microencapsulated with the prebiotics had significantly more storage stability (p < 0.05) than free cells and cells microencapsulated without the prebiotics. The probiotic cells encapsulated with their appropriate prebiotic had improved survival rates when exposed to bile as compared to free cells. The survival of microencapsulated and free cells in the simulated gastric fluid and simulated intestinal fluid was also evaluated in this study. Microencapsulated probiotics, along with an appropriate prebiotic, were found to be more stable in bile, simulated gastric fluid and simulated intestinal fluid. Interestingly, this is the first work to use prebiotic such as oats and the oat bran to prepare the synbiotic microsphere.
Collapse
Affiliation(s)
- R. E. Kalpa
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - V. Sreejit
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - R. Preetha
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - G. Nagamaniammai
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| |
Collapse
|
12
|
Costa NDA, Silveira LR, Amaral EDP, Pereira GC, Paula DDA, Vieira ÉNR, Martins EMF, Stringheta PC, Leite Júnior BRDC, Ramos AM. Use of maltodextrin, sweet potato flour, pectin and gelatin as wall material for microencapsulating Lactiplantibacillus plantarum by spray drying: Thermal resistance, in vitro release behavior, storage stability and physicochemical properties. Food Res Int 2023; 164:112367. [PMID: 36737954 DOI: 10.1016/j.foodres.2022.112367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Different plant products and co-products have been studied as wall materials for the microencapsulation of probiotics due to the need for new lost-cost, abundant, and natural materials. In this study, microparticles were developed by spray drying using different combinations of conventional materials such as maltodextrin, pectin, gelatin, and agar-agar with unconventional materials such as sweet potato flour to microencapsulate Lactiplantibacillus plantarum. The microparticles obtained were evaluated for encapsulation efficiency, thermal resistance, and rupture test. The most resistant microparticles were characterized and evaluated for probiotic viability during storage and survival to in vitro gastrointestinal conditions. Microparticles A (10 % maltodextrin, 5 % sweet potato flour, and 1 % pectin) and B (10 % maltodextrin, 4 % sweet potato flour, and 2 % gelatin) showed high thermal resistance (>59 %) and survival in acidic conditions (>80 %). L. plantarum in microparticles A and B remained viable with counts > 6 log CFU.g-1 for 45 days at 8 °C and -18 °C and resisted in vitro gastrointestinal conditions after processing with counts of 8.38 and 9.10 log CFU.g-1, respectively. Therefore, the selected microparticles have great potential for application in different products in the food industry, as they promote the protection and distribution of probiotic microorganisms.
Collapse
Affiliation(s)
- Nataly de Almeida Costa
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil.
| | | | - Ester de Paula Amaral
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | - Eliane Maurício Furtado Martins
- Department of Food Science and Technology (DCTA), Federal Institute of Education, Science and Technology of Southeast Minas Gerais, Av. Dr. José Sebastião da Paixão - Lindo Vale, 36180-000 Rio Pomba, Minas Gerais, Brazil
| | - Paulo César Stringheta
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | | | - Afonso Mota Ramos
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| |
Collapse
|
13
|
Cerutti Martellet M, Majolo F, Cima L, Goettert MI, Volken de Souza CF. Microencapsulation of Kluyveromyces marxianus and Plantago ovata in cheese whey particles: Protection of sensitive cells to simulated gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
14
|
da Silva SÂD, Batista LDSP, Diniz DS, Nascimento SSDC, Morais NS, de Assis CF, Passos TS, de Sousa Júnior FC. Microencapsulation of Probiotics by Oil-in-Water Emulsification Technique Improves Cell Viability under Different Storage Conditions. Foods 2023; 12:foods12020252. [PMID: 36673344 PMCID: PMC9857835 DOI: 10.3390/foods12020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Probiotics are associated with health benefits to the host. However, their application can be limited due to a decrease in cell viability during processing, storage, and passage through the gastrointestinal tract. Microencapsulation is a simple and efficient alternative to improve the physical protection and stability of probiotics. The present study aimed to produce and characterize alginate or gelatin-based microparticles containing Lactobacillus acidophilus NRRL B-4495 or Lactiplantibacillus plantarum NRRL B-4496 by oil-in-water (O/W) emulsification and to evaluate the stability under storage conditions. The results showed that L. acidophilus and L. plantarum encapsulated in gelatin (LAEG and LPEG) presented diameters of 26.08 ± 1.74 μm and 21.56 ± 4.17 μm and encapsulation efficiencies of 89.6 ± 4.2% and 81.1 ± 9.7%, respectively. However, those encapsulated in alginate (LAEA and LPEA) showed an encapsulation efficiency of <1.0%. Furthermore, LAEG was stable for 120 days of storage at 5 °C and 25 °C. Therefore, encapsulation in gelatin by O/W emulsification is a promising strategy for protecting and stabilizing probiotic bacteria, enabling future application in foods.
Collapse
Affiliation(s)
| | | | - Dara Souza Diniz
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | | | - Neyna Santos Morais
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Thaís Souza Passos
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Francisco Canindé de Sousa Júnior
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Postgraduate Program in Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Correspondence:
| |
Collapse
|
15
|
Tyutkov N, Zhernyakova A, Birchenko A, Eminova E, Nadtochii L, Baranenko D. Probiotics viability in frozen food products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Medeiros JA, Otoni CG, Niro CM, Sivieri K, Barud HS, Guimarães FE, Alonso JD, Azeredo HM. Alginate films as carriers of probiotic bacteria and Pickering emulsion. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Farahmand A, Ghorani B, Emadzadeh B, Sarabi-Jamab M, Emadzadeh M, Modiri A, Tucker N. Millifluidic-assisted ionic gelation technique for encapsulation of probiotics in double-layered polysaccharide structure. Food Res Int 2022; 160:111699. [DOI: 10.1016/j.foodres.2022.111699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
|
18
|
Łętocha A, Miastkowska M, Sikora E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers (Basel) 2022; 14:polym14183834. [PMID: 36145992 PMCID: PMC9502979 DOI: 10.3390/polym14183834] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics. Here, we report the methods most frequently used for AMP production and encapsulation of different actives. The technological parameters important in the process of AMP preparation, such as alginate concentration, the type and concentration of other reagents (cross-linking agents, oils, emulsifiers and pH regulators), agitation speed or cross-linking time, are reviewed. Furthermore, the advantages and disadvantages of alginate microparticles as delivery systems are discussed, and an overview of the active ingredients enclosed in the alginate carriers are presented.
Collapse
|
19
|
Transglutaminase-catalyzed modification of fish skin gelatin enhanced the protection of microcapsules to Limosilactobacillus reuteri. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Use of red onion (Allium cepa L.) residue extract in the co-microencapsulation of probiotics added to a vegan product. Food Res Int 2022; 161:111854. [DOI: 10.1016/j.foodres.2022.111854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 01/01/2023]
|
21
|
Masoomi Dezfooli S, Bonnot C, Gutierrez‐Maddox N, Alfaro AC, Seyfoddin A. Chitosan coated alginate beads as probiotic delivery system for New Zealand black footed abalone (
Haliotis iris
). J Appl Polym Sci 2022. [DOI: 10.1002/app.52626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seyedehsara Masoomi Dezfooli
- Aquaculture Biotechnology Research Group, Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Chloe Bonnot
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Noemi Gutierrez‐Maddox
- School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| |
Collapse
|
22
|
Kowalska E, Ziarno M, Ekielski A, Żelaziński T. Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry. Molecules 2022; 27:3321. [PMID: 35630798 PMCID: PMC9142984 DOI: 10.3390/molecules27103321] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Probiotics and probiotic therapy have been rapidly developing in recent years due to an increasing number of people suffering from digestive system disorders and diseases related to intestinal dysbiosis. Owing to their activity in the intestines, including the production of short-chain fatty acids, probiotic strains of lactic acid bacteria can have a significant therapeutic effect. The activity of probiotic strains is likely reduced by their loss of viability during gastrointestinal transit. To overcome this drawback, researchers have proposed the process of microencapsulation, which increases the resistance of bacterial cells to external conditions. Various types of coatings have been used for microencapsulation, but the most popular ones are carbohydrate and protein microcapsules. Microencapsulating probiotics with vegetable proteins is an innovative approach that can increase the health value of the final product. This review describes the different types of envelope materials that have been used so far for encapsulating bacterial biomass and improving the survival of bacterial cells. The use of a microenvelope has initiated the controlled release of bacterial cells and an increase in their activity in the large intestine, which is the target site of probiotic strains.
Collapse
Affiliation(s)
- Ewa Kowalska
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Małgorzata Ziarno
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.); (T.Ż.)
| | - Tomasz Żelaziński
- Department of Production Engineering, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.); (T.Ż.)
| |
Collapse
|
23
|
The assessment of microencapsulated Lactobacillus plantarum survivability in rose petal jam and the changes in physicochemical, textural and sensorial characteristics of the product during storage. Sci Rep 2022; 12:6200. [PMID: 35418196 PMCID: PMC9007973 DOI: 10.1038/s41598-022-10224-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to develop a probiotic rose petal jam containing microencapsulated L. plantarum. The attributes of L. plantarum microcapsules and bacteria viability in simulated gastrointestinal conditions and jam were assessed. In addition, L. plantarum effects on physicochemical, textural and sensorial properties of jam were studied. The microencapsulation yield, diameter, and zeta potential value of the microcapsules ranged from 90.23 to 92.75%, 14.80–35.02 µm, and − 16.83 to − 14.71 mV, respectively. The microencapsulation process significantly increases the survival of L. plantarum in simulated gastrointestinal tract and jam. In jam samples containing L. plantarum microencapsulated with 2% sodium alginate and 3.5% or 5% Arabic gum and stored for 90 days, the bacterial count was higher than the acceptable level (106 CFU/g). While there was no significant difference (P > 0.05) between physicochemical characteristics of non-probiotic and probiotic jams, taste and overall acceptance scores of microencapsulated probiotic jams were higher. The microencapsulation of L. plantarum in sodium alginate (2%) and Arabic gum (5%) and its inoculation into rose petal jam could yield a new probiotic product with increased health benefits.
Collapse
|
24
|
Rajam R, Subramanian P. Encapsulation of probiotics: past, present and future. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00228-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Probiotics are live microbial supplements known for its health benefits. Consumption of probiotics reported to improve several health benefits including intestinal flora composition, resistance against pathogens. In the recent years, there is an increasing trend of probiotic-based food products in the market.
Main body
Probiotics cells are targeted to reach the large intestine, and the probiotics must survive through the acidic conditions of the gastric environment. It is recommended to formulate the probiotic bacteria in the range of 108–109 cfu/g for consumption and maintain the therapeutic efficacy of 106–107 cfu/g in the large intestine. During the gastrointestinal transit, the probiotics will drastically lose its viability in the gastric environment (pH 2). Maintaining cell viability until it reaches the large intestine remains challenging task. Encapsulating the probiotics cells with suitable wall material helps to sustain the survival of probiotics during industrial processing and in gastrointestinal transit. In the encapsulation process, cells are completely enclosed in the wall material, through different techniques including spray drying, freeze drying, extrusion, spray freeze drying, emulsification, etc. However, spray-drying and freeze-drying techniques are successfully used for the commercial formulation; thus, we limited to review those encapsulation techniques.
Short conclusions
The survival rate of spray-dried probiotics during simulated digestion mainly depends on the inlet air temperature, wall material and exposure in the GI condition. And fermentation, pH and freeze-drying time are the important process parameters for maintaining the viability of bacterial cells in the gastric condition. Improving the viability of probiotic cells during industrial processing and extending the cell viability during storage and digestion will be the main concern for successful commercialization.
Graphical abstract
Collapse
|
25
|
Novel Developments on Stimuli-Responsive Probiotic Encapsulates: From Smart Hydrogels to Nanostructured Platforms. FERMENTATION 2022. [DOI: 10.3390/fermentation8030117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we explored the routes for encapsulates design to enhance their performance in terms of degradation kinetics, adsorption, and mucus and gut microbiome interactions. Finally, we present the clinical perspectives of implementing novel probiotics and the challenges to assure scalability and cost-effectiveness, prerequisites for an eventual niche market penetration.
Collapse
|
26
|
Gonçalves A, Estevinho BN, Rocha F. Spray-drying of oil-in-water emulsions for encapsulation of retinoic acid: Polysaccharide- and protein-based microparticles characterization and controlled release studies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Development of a shelf-stable, gel-based delivery system for probiotics by encapsulation, 3D printing, and freeze-drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
How Y, Lai K, Pui L, In LL. Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yu‐Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Ka‐Wai Lai
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Liew‐Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Lionel Lian‐Aun In
- Department of Biotechnology, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| |
Collapse
|
29
|
Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. FOOD BIOPROCESS TECH 2022; 15:998-1039. [PMID: 35126801 PMCID: PMC8800850 DOI: 10.1007/s11947-021-02753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
From the past few decades, consumers' demand for probiotic-based functional and healthy food products is rising exponentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health benefits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough discussion of novel processing technologies and applications in food products with the incorporation of recent research works is the novelty and highlight of this review paper.
Collapse
Affiliation(s)
- Sourav Misra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| |
Collapse
|
30
|
Ribeiro LLSM, Araújo GP, de Oliveira Ribeiro K, Torres IMS, De Martinis ECP, Marreto RN, Alves VF. Use of encapsulated lactic acid bacteria as bioprotective cultures in fresh Brazilian cheese. Braz J Microbiol 2021; 52:2247-2256. [PMID: 34363592 PMCID: PMC8578368 DOI: 10.1007/s42770-021-00579-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
There is great interest for biopreservation of food products, and encapsulation may be a good strategy to extend the viability of protective cultures. In this study, Lactobacillus paraplantarum FT-259 and Lactococcus lactis QMF 11 were separately encapsulated in casein/pectin (C/P) microparticles, which were tested for antilisterial and anti-staphylococcal activity in fresh Minas cheese (FMC) stored at 8 °C. The encapsulation efficiency for both lactic acid bacteria (LAB) was 82.5%, with viability over 6.2 log CFU/g after storage of C/P microparticles for 90 days under refrigeration. Interestingly, free Lb. paraplantarum and free Lc. lactis grew significantly in refrigerated FMC, both in the presence and absence of pathogens, but only the first significatively grew when encapsulated. Encapsulation increased the antilisterial activity of Lb. paraplantarum in FMC. Moreover, Lc. lactis significantly inhibited listerial growth in FMC in both its free and encapsulated forms, whereas Staphylococcus aureus counts were only significantly reduced in the presence of free Lc. lactis. In conclusion, these results indicate that C/P microparticles are effective carriers of LAB in FMC, which can contribute for the assurance of the safety of this product.
Collapse
|
31
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Qiu K, Huang Y, Anselmo AC. Polymer and Crosslinker Content Influences Performance of Encapsulated Live Biotherapeutic Products. Cell Mol Bioeng 2021; 14:487-499. [PMID: 34777606 PMCID: PMC8548438 DOI: 10.1007/s12195-021-00674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Live biotherapeutic products (LBPs), or therapeutic microbes, are an emerging therapeutic modality for prevention and treatment of gastrointestinal diseases. Since LBPs are living, they are uniquely sensitive to external stresses (e.g., oxygen, acid) encountered during manufacturing, storage, and delivery. Here, we systematically evaluate how polymer and crosslinker concentration affects the performance of an encapsulated LBP toward developing a comprehensive framework for the characterization and optimization of LBP delivery systems. METHODS We encapsulate a model LBP, Lactobacillus casei ATCC 393, in calcium chloride (CaCl2)-crosslinked alginate beads, and evaluate how alginate and CaCl2 concentrations influence LBP formulation performance, including: (i) encapsulation efficiency, (ii) shrinkage upon drying, (iii) survival upon lyophilization, (iv) acid resistance, (v) release, and (vi) metabolite secretion. Approaches from microbiology (e.g., colony forming unit enumeration), materials science (e.g., scanning electron microscopy), and pharmaceutical sciences (e.g., release assays) are employed. RESULTS LBP-encapsulating alginate beads were systematically evaluated as a function of alginate and CaCl2 concentrations. Specifically: (i) encapsulation efficiency of all formulations was >50%, (ii) all alginate beads shrunk (after lyophilization) and recovered (after rehydration) similarly, (iii) at 10% alginate concentration, lower CaCl2 concentration decreased survival upon lyophilization, (iv) 10% alginate improved acid resistance, (v) sustained release was enabled by increasing alginate and CaCl2 concentrations, and (vi) encapsulation did not impair secretion of l-lactate as compared to free LBP. CONCLUSIONS This research demonstrates that polymer content and crosslinking extent modulate the performance of polymer-based LBP delivery systems, motivating research into the optimization of material properties for LBP delivery systems.
Collapse
Affiliation(s)
- Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| | - Yirui Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| |
Collapse
|
33
|
Zhang J, Li G, Xu D, Cao Y. Stability, Microstructure, and Rheological Properties of CaCO 3 S/O/W Calcium-Lipid Emulsions. Foods 2021; 10:foods10092216. [PMID: 34574326 PMCID: PMC8468493 DOI: 10.3390/foods10092216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 01/28/2023] Open
Abstract
Calcium carbonate (CaCO3) is a commonly used fortified calcium, but poor suspension stability and easy precipitation seriously limited its food processing and products application. The formation of CaCO3 loaded microparticles based on the form of solid/oil/water (S/O/W) emulsion is a promising method to improve the dispersion stability of CaCO3 in liquid food. In this study, CaCO3, soybean oil, and sodium caseinate (NaCas) were used as the solid, oil, and W phase, respectively. The fabrication involved two steps: the S/O emulsion was prepared by adding CaCO3 into soybean oil by magnetic stirring and high-speed shearing, and then put the S/O crude emulsion into NaCas solution (W phase) to obtain S/O/W emulsion by high-speed blender. The particle size distribution, zeta potential, stability of the microsphere, infrared spectral analysis, and XRD of the S/O/W calcium-lipid microsphere were explored. The stability and rheological mechanism of S/O/W calcium-lipid emulsion were investigated by combining the microstructure, shear rheological, and microrheological properties. It was found that the emulsion particles have more uniform particle size distribution and no aggregation, and the stability of the emulsion was improved with increasing the content of NaCas. The mean square displacement (MSD) curve and solid-liquid equilibrium (SLB) value of S/O/W emulsion increased with the increase in NaCas concentration, and the viscosity behavior is dominant. The results of confocal laser microscopy (CLSM) and cryo-scanning electron microscopy (Cryo-SEM) showed that the three-dimensional network structure of S/O/W emulsions was more compact, and the embedding effect of calcium carbonate (CaCO3) was slightly improved with the increase in NaCas concentration. According to infrared spectrum and XDR analysis, the addition of CaCO3 into the emulsion system caused crystal structure distortion. This study provides a reference for solving the dispersibility of insoluble calcium salt in liquid food.
Collapse
Affiliation(s)
| | | | | | - Yanping Cao
- Correspondence: ; Tel./Fax: +86-10-6898-5645
| |
Collapse
|
34
|
Bastiani FH, Sufredini S, Romio AP, Nicolin DJ. Modeling the drying kinetics of alginate particles considering shrinkage. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Stephani Sufredini
- Engineering Academic Department Federal Technological University of Paraná (UTFPR) Francisco Beltrão Brazil
| | - Ana Paula Romio
- Engineering Academic Department Federal Technological University of Paraná (UTFPR) Francisco Beltrão Brazil
| | - Douglas Junior Nicolin
- Engineering Academic Department Federal Technological University of Paraná (UTFPR) Francisco Beltrão Brazil
| |
Collapse
|
35
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Fu GM, Xu ZW, Luo C, Xu LY, Chen YR, Guo SL, Wu XD, Wan Y. Modification of soy protein isolate by Maillard reaction and its application in microencapsulation of Limosilactobacillusreuteri. J Biosci Bioeng 2021; 132:343-350. [PMID: 34344604 DOI: 10.1016/j.jbiosc.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Limosilactobacillusreuteri was encapsulated using Maillard-reaction-products (MRPs) of soy protein isolate (SPI) and α-lactose monohydrate by freeze-drying. The mixed solution of SPI and α-lactose monohydrate was placed in a water bath at 89°C for 160 min for Maillard reaction, and then freeze-dried to obtain MRPs. The effects of Maillard reaction on functional characteristics of MRPs and the properties of MRPs-microcapsules were studied. SDS-PAGE indicated that SPI subunit reacted with lactose to form a polymer, and the band of MRPs disappeared around the molecular weights of 33, 40, 63, and 100 kDa. Compared with SPI, the emulsion stability, emulsion activity, foaming capacity, foam stability, and gel strength of MRPs were increased by 259%, 55.71%, 82.32%, 58.53%, and 3266%, respectively. The results of Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and scanning electron micrographs confirmed that the protein structure also changed significantly. Then, MRPs were used as wall material to prepare L. reuteri microcapsules. Physical properties and viable counts of L. reuteri during the simulated gastrointestinal digestion and storage period were determined. The particle size of MRPs-microcapsules (68 μm) was smaller than that of SPI-microcapsules (91 μm). The viable counts of L. reuteri in simulated gastrointestinal digestion and after storage for 30 days were improved. The modifications with Maillard reaction can improve emulsification, foaming, and gel strength of SPI, and MRPs could be used as a new type of wall material in the production of L. reuteri microcapsules.
Collapse
Affiliation(s)
- Gui-Ming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zi-Wen Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cheng Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Li-Yun Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan-Ru Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shuai-Ling Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiao-Dan Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
37
|
Iqbal R, Liaqat A, Jahangir Chughtai MF, Tanweer S, Tehseen S, Ahsan S, Nadeem M, Mehmood T, Ur Rehman SJ, Saeed K, Sameed N, Aziz S, Tahir AB, Khaliq A. Microencapsulation: a pragmatic approach towards delivery of probiotics in gut. J Microencapsul 2021; 38:437-458. [PMID: 34192983 DOI: 10.1080/02652048.2021.1949062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Probiotics confer numerous health benefits and functional foods prepared with these microbes own largest markets. However, their viability during transit from gastrointestinal tract is a concerning issue. Microencapsulation of probiotics is a novel technique of major interest to increase their survivability in GIT and food matrices by providing a physical barrier to protect them under harsh conditions. This article contributes the knowledge regarding microencapsulation by discussing probiotic foods, different methods and approaches of microencapsulation, coating materials, their release mechanisms at the target site, and interaction with probiotics, efficiency of encapsulated probiotics, their viability assessment methods, applications in food industry, and their future perspective. In our opinion, encapsulation has significantly got importance in the field of innovative probiotic enriched functional foods development to preserve their viability and long-term survival rate until product expiration date and their passage through gastro-intestinal tract. Previous review work has targeted some aspects of microencapsulation, this article highlights different methods of probiotics encapsulation and coating materials in relation with food matrices as well as challenges faced during applications: Gut microbiota; Lactic acid bacteria; Micro-encapsulation; Stability enhancement; Cell's release, Health benefits.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Atif Liaqat
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saira Tanweer
- University College of Agriculture and Environmental Sciences, Islamia University, Bahawalpur, Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Samreen Ahsan
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tariq Mehmood
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Syed Junaid Ur Rehman
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Kanza Saeed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Nimra Sameed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shoaib Aziz
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Assam Bin Tahir
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
38
|
Nasiri H, Golestan L, Shahidi SA, Darjani P. Encapsulation of Lactobacillus casei in sodium alginate microcapsules: improvement of the bacterial viability under simulated gastrointestinal conditions using wild sage seed mucilage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01022-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Marefati A, Pitsiladis A, Oscarsson E, Ilestam N, Bergenståhl B. Encapsulation of Lactobacillus reuteri in W1/O/W2 double emulsions: Formulation, storage and in vitro gastro-intestinal digestion stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Li H, Li Y, Zhang T, Liu T, Yang J, Luo X, Li H, Xue C, Yu J. Co-encapsulation of Lactobacillus paracasei with lactitol in caseinate gelation cross-linked by Zea mays transglutaminase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Azizi S, Rezazadeh-Bari M, Almasi H, Amiri S. Microencapsulation of Lactobacillus rhamnosus using sesame protein isolate: Effect of encapsulation method and transglutaminase. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Zhang ZH, Li MF, Peng F, Zhong SR, Huang Z, Zong MH, Lou WY. Oxidized high-amylose starch macrogel as a novel delivery vehicle for probiotic and bioactive substances. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106578] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Cheng Q, Liu L, Xie M, Li H, Ma D, Xue W. A Colon-Targeted Oral Probiotics Delivery System Using an Enzyme-Triggered Fuse-Like Microcapsule. Adv Healthc Mater 2021; 10:e2001953. [PMID: 33448140 DOI: 10.1002/adhm.202001953] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/20/2020] [Indexed: 01/05/2023]
Abstract
Probiotics are closely related to human health. However, it is hard to find an appropriate disintegration mode for encapsulation to balance the survival, release, and adhesion of probiotics simultaneously during the current colon-targeted oral delivery, which leads to limited colonization. In this study, an enzyme-triggered fuse-like microcapsule is constructed using alginate and protamine via the electrostatic droplet combined with the layer by layer self-assembly. The multilayer microcapsule can protect the probiotics in the stomach and disintegrate layer by layer under the catalysis of trypsin in the intestine. The formulation with two protamine layers showed the best protection for Escherichia coli MG1655 (EM) during the oral delivery; as well the minimal release at the gastric pH value but a burst release after 1 h at the intestinal pH value. In particular, the adhesion strength of EM is improved with the increase of the layer number. In vivo experiments demonstrate that the EM enters into the stationary phase within 12 h in the colon. Moreover, the blood biochemistry and histological analysis demonstrates the safety of the microcapsule formulation. It can be concluded that this microcapsule can help the probiotics survive during the delivery, then release and colonize in the colon.
Collapse
Affiliation(s)
- Qikun Cheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| | - Lu Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| | - Mingzhi Xie
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| | - Hang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou 510515 China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| |
Collapse
|
44
|
Castro‐Rosas J, Gómez‐Aldapa CA, Chávez‐Urbiola EA, Hernández‐Bautista M, Rodríguez‐Marín ML, Cabrera‐Canales ZE, Falfán‐Cortés RN. Characterisation, storage viabilit, and application of microspheres with
Lactobacillus paracasei
obtained by the extrusion technique. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Javier Castro‐Rosas
- Universidad Autónoma del Estado de Hidalgo (UAEH) ICBI. Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
| | - Carlos Alberto Gómez‐Aldapa
- Universidad Autónoma del Estado de Hidalgo (UAEH) ICBI. Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
| | - Edgar Arturo Chávez‐Urbiola
- Universidad Autónoma del Estado de Hidalgo (UAEH) ICBI. Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
- Catedráticos CONACYT Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
| | - Monserrat Hernández‐Bautista
- Universidad Autónoma del Estado de Hidalgo (UAEH) ICBI. Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
| | - María Luisa Rodríguez‐Marín
- Universidad Autónoma del Estado de Hidalgo (UAEH) ICBI. Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
- Catedráticos CONACYT Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
| | - Zaira Esmeralda Cabrera‐Canales
- Instituto Politécnico Nacional CICATA unidad Querétaro Cerro Blanco 141, Colinas del Cimatario Santiago de QuerétaroQro, C.P. 76090México
| | - Reyna Nallely Falfán‐Cortés
- Universidad Autónoma del Estado de Hidalgo (UAEH) ICBI. Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
- Catedráticos CONACYT Carr. Pachuca‐Tulancingo Km 4.5 Mineral de la ReformaC.P. 42184Hidalgo México
| |
Collapse
|
45
|
Çanga EM, Dudak FC. Improved digestive stability of probiotics encapsulated within poly(vinyl alcohol)/cellulose acetate hybrid fibers. Carbohydr Polym 2021; 264:117990. [PMID: 33910728 DOI: 10.1016/j.carbpol.2021.117990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Novel cellulose acetate (CA) and poly(vinyl alcohol) (PVA) hybrid fibers, fabricated via angled dual-nozzle electrospinning, were used for the encapsulation of probiotics to enhance their gastrointestinal stability. In this study, Escherichia coli strain Nissle 1917 (EcN) cells were encapsulated within PVA/CA composite mats, where CA enhanced the bacterial stability under gastric conditions and PVA provided protection against the toxic solvent during the electrospinning process. Scanning electron microscopy images revealed that EcN was successfully encapsulated within the hybrid fibers. In the simulated digestive system, free cells lost their viability within 100 min, whereas PVA/CA-encapsulated cells survived with a final count of 3.9 log CFU/mL (from an initial count of 7.8 log CFU/mL), an increase of 1 log CFU/mL compared with those in PVA/PVA fibers. Considering the enhanced viability of the encapsulated cells in the gastrointestinal system, multi-nozzle electrospinning is a promising technique for the fabrication of novel matrices for probiotic encapsulation.
Collapse
Affiliation(s)
- Emine Merve Çanga
- Hacettepe University, Department of Food Engineering, Beytepe, 06800, Ankara, Turkey.
| | - Fahriye Ceyda Dudak
- Hacettepe University, Department of Food Engineering, Beytepe, 06800, Ankara, Turkey.
| |
Collapse
|
46
|
Martins M, Silva KCG, Ávila PF, Sato ACK, Goldbeck R. Xylo-oligosaccharide microparticles with synbiotic potential obtained from enzymatic hydrolysis of sugarcane straw. Food Res Int 2021; 140:109827. [PMID: 33648164 DOI: 10.1016/j.foodres.2020.109827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/01/2020] [Accepted: 10/04/2020] [Indexed: 01/22/2023]
Abstract
Synbiotic formulations and microencapsulation techniques have been explored in food industries to guarantee the viability of probiotic organisms; playing an important role in microbiota balance. Microparticles of alginate, gelatin and xylo-oligosaccharides (XOS) were produced by external gelation with the purpose of enhancing the survival rate of the probiotic L. acidophilus. XOS was obtained through enzymatic hydrolysis of xylan extracted from sugarcane straw, achieving more than 70% conversion and used for microparticle preparation. Microparticles containing 3% XOS provided greater cell protection during exposure to the gastrointestinal tract and during refrigerated storage; keeping 97.86 ± 0.44% of viability during 28 days of storage and enabling 87.50 ± 0.02% survival after digestive simulation. However, particles without XOS showed 84.49 ± 0.59% of viability after storage and 68.45 ± 0.03% after digestion assay. These results lead to promising applications in synbiotic and functional food formulations comprised of components requiring extended shelf-life, protection from gastrointestinal conditions and gradual bioactive delivery.
Collapse
Affiliation(s)
- Manoela Martins
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Karen Cristina Guedes Silva
- Process Engineering Laboratory, School of Food Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Patrícia Félix Ávila
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana Carla Kawazoe Sato
- Process Engineering Laboratory, School of Food Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
47
|
Cao X, Joseph N, Jellicoe M, Al-Antaki AHM, Luo X, Su D, He S, Raston C. Vortex fluidics mediated non-covalent physical entanglement of tannic acid and gelatin for entrapment of nutrients. Food Funct 2021; 12:1087-1096. [PMID: 33416819 DOI: 10.1039/d0fo02230f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a simple process for the entrapment of nutrients in shear stress induced non-covalent physically entangled tannic acid-gelatin gel in a thin film vortex fluidic device (VFD) operating under continuous flow. This allows control of the porosity and surface area of the pores in order to improve the nutrient entrapment capacity. The VFD microfluidic platform simplifies the processing procedure of physically entangled biopolymers, as a time and cost saving one-step process devoid of any organic solvents, in contrast to the conventional homogenization process, which is also inherently complex, involving multiple-step processing. Moreover, the use of homogenization (as a benchmark to entrap nutrients) afforded much larger porosity and surface area of pores, with lower entrapment capacity of nutrients. Overall, the VFD processing provides a new alternative, bottom-up approach for easy, scalable processing for materials with a high nutrient entrapment capacity.
Collapse
Affiliation(s)
- Xuejiao Cao
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Dongxiao Su
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China. and Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Colin Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
48
|
Lai K, How Y, Pui L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J Microencapsul 2020; 38:134-148. [PMID: 33306440 DOI: 10.1080/02652048.2020.1863490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM This study aimed to evaluate the protective effect of flaxseed mucilage on the co-extrusion microencapsulation of Lactobacillus rhamnosus GG. METHODS Core flow rate, chitosan coating, and flaxseed mucilage concentration were optimised for the microencapsulation of L. rhamnosus. The microbeads were characterised and evaluated on microencapsulation efficiency and cell released after 6 h of sequential digestion. RESULTS The optimised parameters for the L. rhamnosus microencapsulation were 1.0 mL/min core flow rate, 0.4% (w/v) chitosan coating, and 0.4% (w/v) flaxseed mucilage. The L. rhamnosus microbeads with flaxseed mucilage in core and wall materials had a smooth surface with 781.3 µm diameter, the highest microencapsulation efficiency (98.8% w/w), lowest swelling (5196.7% w/w) and erosion ratio (515.5% w/w), and least cell release (<40% w/w) with 9.31 log10 CFU mL-1 after sequential digestion. CONCLUSIONS This study showed the protective capacity of flaxseed mucilage towards the L. rhamnosus GG during microencapsulation and gastrointestinal environment.
Collapse
Affiliation(s)
- Kawai Lai
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yuhsuan How
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Liewphing Pui
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Han C, Xiao Y, Liu E, Su Z, Meng X, Liu B. Preparation of Ca-alginate-whey protein isolate microcapsules for protection and delivery of L. bulgaricus and L. paracasei. Int J Biol Macromol 2020; 163:1361-1368. [DOI: 10.1016/j.ijbiomac.2020.07.247] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
|
50
|
Edwards JS, Hettiarachchy NS, Kumar TKS, Carbonero F, Martin EM, Benamara M. Physicochemical properties of soy protein hydrolysate and its formulation and stability with encapsulated probiotic under in vitro gastrointestinal environment. J Food Sci 2020; 85:3543-3551. [PMID: 32869300 DOI: 10.1111/1750-3841.15399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 11/27/2022]
Abstract
The objective of this study was to prepare protein isolate from defatted soybean and identify an optimal hydrolysis protocol to create improved hydrolysates and ascertain the optimum encapsulation technique for probiotics. Soy protein isolate (SPI) was prepared using an alkaline extraction procedure for solubility within a neutral, beverage-specific pH range. The soy protein hydrolysate (SPH) was prepared from aqueous extracted SPI using pepsin. The physicochemical properties of the SPH were investigated by solubility, degree of hydrolysis (DH), surface hydrophobicity, and electrophoresis. Hydrolysates from 2, 2.5, and 3 hr of hydrolysis time achieved the suitable DH between 2.5% to 5.0%. The 2.5 to 3 hr hydrolysates were also significantly more soluble than SPI at all pH levels from 85% to 95% solubility. Surface hydrophobicity of the hydrolysates ranged from 15 to 20 S0 values. Alginate (1%), resistant starch (2%), and probiotic culture (0.1%) were used as an encapsulation agent to protect probiotics. Alginate microcapsules were observed to be 1 mm in size using environmental scanning electron microscopy. The dried SPH and encapsulated probiotics with alginate in a dry powder formulation were tested for its gastrointestinal resistance and probiotic viability under in vitro simulated digestion. Approximately 1-log decrease was observed for all experimental groups after simulated digestion (final log colony forming units [CFU]/mL range: 6.55 to 6.19) with free probiotics having the lowest log CFU/mL (6.10 ± 0.10) value. No significant difference was observed among experimental groups for probiotic viability (P = 0.445). The findings of this research will provide an understanding of formulation for easily digestible protein and encapsulated probiotics. PRACTICAL APPLICATION: The findings of this research provide an understanding of improved formulation for more suitable soy protein hydrolysate and viability of encapsulated probiotics in gastrointestinal environment. Probiotics with the prebiotics in an encapsulated environment provide a technology for the enhancement of probiotics viability and for applications in suitable products for health and wellness.
Collapse
Affiliation(s)
- John S Edwards
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR, 72704, U.S.A
| | - Navam S Hettiarachchy
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR, 72704, U.S.A
| | | | - Franck Carbonero
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, U.S.A
| | - Elizabeth M Martin
- Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson St., Fayetteville, AR, 72704, U.S.A
| | - Mourad Benamara
- Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson St., Fayetteville, AR, 72704, U.S.A
| |
Collapse
|