1
|
Luo X, Dong M, Liu J, Guo N, Li J, Shi Y, Yang Y. Fermentation: improvement of pharmacological effects and applications of botanical drugs. Front Pharmacol 2024; 15:1430238. [PMID: 39253373 PMCID: PMC11381286 DOI: 10.3389/fphar.2024.1430238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Juntong Liu
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Li
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yufeng Yang
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
2
|
Herman A, Herman AP. Biological Activity of Fermented Plant Extracts for Potential Dermal Applications. Pharmaceutics 2023; 15:2775. [PMID: 38140115 PMCID: PMC10748213 DOI: 10.3390/pharmaceutics15122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented plant extracts (FPEs) are functional liquids formed as a result of the fermentation of fresh plants by microorganisms, mainly bacteria and fungi. The appropriate selection of plants, microorganism strains, and conditions under which the fermentation process is carried out is very important in terms of obtaining a suitable matrix of biologically active compounds with different biological properties. The purpose of this review is to provide verified data on the current knowledge acquired regarding the biological activity of FPEs for cosmetic use and dermal applications. The antioxidant, antimicrobial, anti-inflammatory, anti-melanogenic, and wound-healing activity of FPEs, as well as their potential dermal applications, will be described.
Collapse
Affiliation(s)
- Anna Herman
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland
| | - Andrzej Przemysław Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland;
| |
Collapse
|
3
|
Chen Y, Wang L, Liu X, Wang F, An Y, Zhao W, Tian J, Kong D, Zhang W, Xu Y, Ba Y, Zhou H. The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165344. [PMID: 36014582 PMCID: PMC9414938 DOI: 10.3390/molecules27165344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023]
Abstract
The Broussonetia genus (Moraceae), recognized for its value in many Chinese traditional herbs, mainly includes Broussonetia papyrifera (L.) L’Hér. ex Vent. (BP), Broussonetia kazinoki Siebold (BK), and Broussonetia luzonica (Blanco) Bureau (BL). Hitherto, researchers have found 338 compounds isolated from BP, BK, and BL, which included flavonoids, polyphenols, phenylpropanoids, alkaloids, terpenoids, steroids, and others. Moreover, its active compounds and extracts have exhibited a variety of pharmacological effects such as antitumor, antioxidant, anti-inflammatory, antidiabetic, anti-obesity, antibacterial, and antiviral properties, and its use against skin wrinkles. In this review, the phytochemistry and pharmacology of Broussonetia are updated systematically, after its applications are first summarized. In addition, this review also discusses the limitations of investigations and the potential direction of Broussonetia. This review can help to further understand the phytochemistry, pharmacology, and other applications of Broussonetia, which paves the way for future research.
Collapse
|
4
|
Majchrzak W, Motyl I, Śmigielski K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules 2022; 27:molecules27154845. [PMID: 35956792 PMCID: PMC9369470 DOI: 10.3390/molecules27154845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The cosmetics industry is currently looking for innovative ingredients with higher bioactivity and bioavailability for the masses of natural and organic cosmetics. Bioferments are innovative ingredients extracted from natural raw materials by carrying out a fermentation process with appropriate strains of microorganisms. The review was conducted using the SciFinder database with the keywords “fermented plant”, “cosmetics”, and “fermentation”. Mainly bioferments are made from plant-based raw materials. The review covers a wide range of fermented raw materials, from waste materials (whey with beet pulp) to plant oils (F-Shiunko, F-Artemisia, F-Glycyrrhiza). The spectrum of applications for bioferments is broad and includes properties such as skin whitening, antioxidant properties (blackberry, soybean, goji berry), anti-aging (red ginseng, black ginseng, Citrus unshiu peel), hydrating, and anti-allergic (aloe vera, skimmed milk). Fermentation increases the biochemical and physiological activity of the substrate by converting high-molecular compounds into low-molecular structures, making fermented raw materials more compatible compared to unfermented raw materials.
Collapse
Affiliation(s)
- Weronika Majchrzak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Interdisciplinary Doctoral School, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland
- Correspondence: ; Tel.: +48-42-631-34-92
| | - Ilona Motyl
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland; (I.M.); (K.Ś.)
| | - Krzysztof Śmigielski
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland; (I.M.); (K.Ś.)
| |
Collapse
|
5
|
Hu Z, Sha X, Zhang L, Huang S, Tu Z. Effect of Grass Carp Scale Collagen Peptide FTGML on cAMP-PI3K/Akt and MAPK Signaling Pathways in B16F10 Melanoma Cells and Correlation between Anti-Melanin and Antioxidant Properties. Foods 2022; 11:391. [PMID: 35159541 PMCID: PMC8834497 DOI: 10.3390/foods11030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
Peptide Phe-Thr-Gly-Met-Leu (FTGML) is a bioactive oligopeptide with tyrosinase inhibitory activity derived from gelatin hydrolysate of grass carp scales. Previous studies have shown that FTGML addition can effectively inhibit mushroom tyrosinase activity in vitro, and also has some effect on the inhibition of melanogenesis in zebrafish in vivo, but the underlying mechanism is not fully understood. In this study, we used FTGML to treat B16F10 melanoma cells, and found a significant inhibition of tyrosinase activity and melanin synthesis. Interestingly, the treatment showed a strong correlation between antioxidant activity and anti-melanin, which was associated with FTGML reducing the involvement of reactive oxygen species in melanin synthesis. Furthermore, FTGML reduced melanogenesis in B16F10 cells by downregulating the cAMP-PI3K/Akt and MAPK pathways (p38 and JNK). These results suggested that FTGML can reduce melanin production in mouse B16F10 melanoma cells through multiple pathways.
Collapse
Affiliation(s)
- Zizi Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (L.Z.)
| | - Xiaomei Sha
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China;
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (L.Z.)
| | - Sheng Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| |
Collapse
|
6
|
Zofia NŁ, Aleksandra Z, Tomasz B, Martyna ZD, Magdalena Z, Zofia HB, Tomasz W. Effect of Fermentation Time on Antioxidant and Anti-Ageing Properties of Green Coffee Kombucha Ferments. Molecules 2020; 25:E5394. [PMID: 33218080 PMCID: PMC7698870 DOI: 10.3390/molecules25225394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023] Open
Abstract
Kombucha, also known as the Manchurian mushroom, is a symbiotic culture of bacteria and yeast, the so-called SCOBY. This paper presents a comprehensive evaluation of the ferments obtained from green coffee beans after different fermentation times with kombucha. Results for the ferments were compared to the green coffee extract that was not fermented. In this study, the antioxidant potential of obtained ferments was analyzed by assessing the scavenging of external and intracellular free radicals and the assessment of superoxide dismutase activity. Cytotoxicity of ferments on keratinocyte and fibroblast cell lines was assessed as well as anti-aging properties by determining their ability to inhibit the activity of collagenase and elastase enzymes. In addition, the composition of the obtained ferments and the extract was determined, as well as their influence on skin hydration and transepidermal water loss (TEWL) after application of samples on the skin. It has been shown that the fermentation time has a positive effect on the content of bioactive compounds and antioxidant properties. The highest values were recorded for the tested samples after 28 days of fermentation. After 14 days of the fermentation process, it was observed that the analyzed ferments were characterized by low cytotoxicity to keratinocytes and fibroblasts. On the other hand, the short fermentation time of 7 days had a negative effect on the properties of the analyzed ferments. The obtained results indicate that both green coffee extracts and ferments can be an innovative ingredient of cosmetic products.
Collapse
Affiliation(s)
- Nizioł-Łukaszewska Zofia
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (N.-Ł.Z.); (Z.A.); (Z.-D.M.)
| | - Ziemlewska Aleksandra
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (N.-Ł.Z.); (Z.A.); (Z.-D.M.)
| | - Bujak Tomasz
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (N.-Ł.Z.); (Z.A.); (Z.-D.M.)
| | - Zagórska-Dziok Martyna
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland; (N.-Ł.Z.); (Z.A.); (Z.-D.M.)
| | - Zarębska Magdalena
- ŁUKASIEWICZ Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetykow 9, 47-225 Kedzierzyn-Kozle, Poland; (Z.M.); (H.-B.Z.)
| | - Hordyjewicz-Baran Zofia
- ŁUKASIEWICZ Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetykow 9, 47-225 Kedzierzyn-Kozle, Poland; (Z.M.); (H.-B.Z.)
| | - Wasilewski Tomasz
- Department of Industrial Chemistry, University of Technology and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland;
- Research and Development Department, ONLYBIO.life Sp. z o.o., Wojska Polskiego 65, 85-825 Bydgoszcz, Poland
| |
Collapse
|
7
|
Zhang J, Wang C, Wang C, Sun B, Qi C. Understanding the role of extracts from sea buckthorn seed residues in anti-melanogenesis properties on B16F10 melanoma cells. Food Funct 2018; 9:5402-5416. [PMID: 30277491 DOI: 10.1039/c8fo01427b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydroalcoholic extract of sea buckthorn (Hippophae rhamnoides L.) seed residues (HYD-SBSR) is a potential skin whitening agent. To test this material as a potential skin whitening agent, we identified and quantified the main chemical constituents of HYD-SBSR by using ultra-performance liquid chromatography coupled with quadruple time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) and ultra-high performance liquid chromatography coupled with triple quadruple mass spectrometry (UPLC-QQQ-MS). The anti-melanogenesis properties of HYD-SBSR on B16F10 mouse melanoma cells were analysed and the mechanism was measured on both the transcriptional and translational levels. About 24 compounds were identified. Kaempferol and its derivatives were the main compounds with a concentration of about (2796.22 ± 31.55) μg per g DW. The following order among the detected compounds was observed: quercetin and its derivatives > isorhamnetin and its derivatives > procyanidins. HYD-SBSR has a strong antioxidant activity but with a slight cytotoxic effect on B16F10 when treated with 45.45 μg mL-1 and 4.55 μg mL-1 respectively, for 48 h. HYD-SBSR has been found to significantly decrease melanin content (P < 0.01) in 24 h, 48 h, and 72 h. Additionally, strong inhibitory extracellular tyrosinase activities and decreasing intracellular tyrosinase activities were also observed (P < 0.01). HYD-SBSR shows inhibitory effects on the expression of tyrosinase (TYR) and tyrosinase-related protein 1 (TRP-1), and the secretion of TYR and TRP-1 proteins in cell lines. The protein levels of tyrosinase-related protein 2 (TRP-2) and microphthalmia-associated transcription factor (MITF) showed no significant difference. HYD-SBSR may inhibit melanin synthesis by decreasing the tyrosinase activity and down-regulating the expression of TYR and TRP-1 which were probably induced by other transcriptional factors rather than MITF.
Collapse
Affiliation(s)
- Jiachan Zhang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
8
|
Wang GH, Lin YM, Kuo JT, Lin CP, Chang CF, Hsieh MC, Cheng CY, Chung YC. Comparison of biofunctional activity of Asparagus cochinchinensis (Lour.) Merr. Extract before and after fermentation with Aspergillus oryzae. J Biosci Bioeng 2018; 127:59-65. [PMID: 30097404 DOI: 10.1016/j.jbiosc.2018.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Asparagus cochinchinensis root (ACR) is used in traditional Chinese medicine. In this study, ACR was first extracted with 25% ethyl acetate (EA) and then fermented by Aspergillus oryzae to enhance its antioxidant activity and evaluate its potential antityrosinase activity. The physiological activity and cytotoxicity of A. oryzae-fermented ACR extract, along with its antityrosinase activity and effects on melanogenic factor levels in human epidermal melanocytes (HEMs), were analyzed and compared with those of the unfermented extract. The results showed that the physiological activity of the fermented extract in vitro or in cells was significantly higher than that of the unfermented extract. The IC50 values for 2,2-diphenyl-1-picrylhydrazine radical scavenging activity, reducing power, and antityrosinase activity in vitro for the fermented extract were 250.6 ± 32.5, 25.7 ± 3.5, and 50.6 ± 3.1 mg/L, respectively. The fermented extract favored cellular antityrosinase activity with low melanin production in human melanoma cells compared with the unfermented extract. The inhibitory mechanism of melanin synthesis by unfermented extract was independent of the tested melanogenesis-related proteins. However, the inhibitory mechanism of the fermented extract was possibly caused by synergistic inhibition of these proteins. Thus, A. oryzae-fermented ACR extract may be used for developing new health food or cosmetic ingredients.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, No. 1999, Guankou Middle Rd., Jimei Dist., Xiamen City 361023, China.
| | - Yi-Min Lin
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Jong-Tar Kuo
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Chia-Pei Lin
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Chin-Feng Chang
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Min-Chi Hsieh
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| |
Collapse
|
9
|
Wang GH, Chen CY, Tsai TH, Chen CK, Cheng CY, Huang YH, Hsieh MC, Chung YC. Evaluation of tyrosinase inhibitory and antioxidant activities of Angelica dahurica root extracts for four different probiotic bacteria fermentations. J Biosci Bioeng 2017; 123:679-684. [PMID: 28254340 DOI: 10.1016/j.jbiosc.2017.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/07/2017] [Indexed: 01/14/2023]
Abstract
Angelica dahurica root (ADR), which shows strong antioxidant activity, is used in Chinese medicine. This study evaluated the tyrosinase inhibitory and antioxidant activities of ADR extracts fermented by four different probiotic bacteria: Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus, and Lactobacillus brevis. The ADR was first extracted using distilled water, 70% ethanol, and ethyl acetate, and then fermented by probiotic bacteria. The physiological characteristics of these fermented extracts, namely the antityrosinase activity, antioxidant activity, phenolic composition, and phenolic content, were evaluated and compared with those of unfermented extracts. Results showed that the water extracts after fermentation by probiotic bacteria exhibited the most favorable physiological characteristics. Among the extracts fermented by these probiotic bacteria, L. acidophilus-fermented ADR extract showed the most favorable physiological characteristics. The optimal IC50 values for antityrosinase activity, DPPH radical scavenging activity, and reducing power for L. acidophilus-fermented ADR extract were 0.07 ± 0.03, 0.12 ± 0.01, and 0.68 ± 0.06 mg/mL, respectively. Furthermore, the physiological activities of fermented extracts were considerably higher than those of unfermented extracts. The tyrosinase inhibition and melanin content of B16F10 melanoma cells, and cytotoxicity effects of the fermented ADR extracts on B16F10 cells were also evaluated. We found that the L. acidophilus-fermented ADR extract at 1.5 mg/mL showed significant cellular antityrosinase activity with low melanin production in B16F10 cells and was noncytotoxic to B16F10 cells. Among all probiotic bacteria, water-extracted ADR fermented by L. acidophilus for 48 h was found to be the best skincare agent or antioxidant agent.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Fujian Provincial Key Laboratory of Biological Engineering on Traditional Herbs and Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, No. 1999, Guankou Road, Xiamen, Fujian 361023, China
| | - Chih-Yu Chen
- Department of Tourism and Leisure, Hsing Wu University, No. 101, Sec. 1, Fenliao Rd., New Taipei City 24452, Taiwan
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 10608, Taiwan
| | - Ching-Kuo Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 10608, Taiwan
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Taipei City 11581, Taiwan
| | - Yi-Hsin Huang
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Taipei City 11581, Taiwan
| | - Min-Chi Hsieh
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Taipei City 11581, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Taipei City 11581, Taiwan.
| |
Collapse
|
10
|
Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 2014; 19:13122-35. [PMID: 25255749 PMCID: PMC6271004 DOI: 10.3390/molecules190913122] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 01/16/2023] Open
Abstract
Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.
Collapse
|
11
|
Investigation of antibrowning activity of pine needle (Cedrus deodara) extract with fresh-cut apple slice model and identification of the primary active components. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2263-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|