1
|
Li Y, Li R, Chen S, Wang X, Jiang Y, Fang Y, Lin Q, Ding Y. Understanding regulating effects of protein-anionic octenyl succinic anhydride-modified starch interactions on the structural, rheological, digestibility and release properties of starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8580-8592. [PMID: 38925572 DOI: 10.1002/jsfa.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Proteins and anionic octenyl succinic anhydride (OSA)-modified starch (OSA-starch) are common ingredients in food systems. The interactions between OSA-starch and protein are found to alter the structural and functional properties of the protein-OSA-starch complexes. In this regard, the close understanding of the relationship among the molecular interactions between whey protein isolate (WPI) and OSA-high amylose corn starch (HAS), structure changes and rheological, digestibility and release properties of WPI-OSA-HAS was investigated. RESULTS The molecular interactions of WPI-OSA-HAS were significant for increasing the surface rough, solubility, storage modulus and loss modulus, but decreasing the R1047/1022 values. For the nutritional evaluation, the anti-digestibility of WPI-OSA-HAS was enhanced with increased resistant starch + slowly digestible starch contents and decreased equilibrium hydrolysis percentage and kinetic constant. During the digestion, part of the starch granule, OSA groups and WPI were lost, but the loss was lower than for OSA-HAS. Furthermore, the results of curcumin-loaded WPI-OSA-HAS in simulated gastrointestinal fluids demonstrated that curcumin could be gradually released to simulate colonic fluid. Notably, the interaction between WPI and OSA-HAS depended on the WPI concentration with the stronger molecular interactions obtained at 35% concentration. CONCLUSION These results provided important information concerning how to adjust the rheological, anti-digestibility and release properties of WPI-OSA-HAS through altering the electrostatic interactions and hydrophobic interactions of WPI-OSA-HAS. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yihui Li
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Runya Li
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Sitong Chen
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
2
|
Lei L, Achenbach S, Wells G, Zhang H, Zhang W. A Novel Device for Micro-Droplets Generation Based on the Stepwise Membrane Emulsification Principle. MICROMACHINES 2024; 15:1118. [PMID: 39337778 PMCID: PMC11433940 DOI: 10.3390/mi15091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
This paper presents a novel design of the device to generate microspheres or micro-droplets based on the membrane emulsification principle. Specifically, the novelty of the device lies in a proposed two-layer or stepwise (by generalization) membrane structure. An important benefit of the stepwise membrane is that it can be fabricated with the low-cost material (SU-8) and using the conventional lithography technology along with a conventional image-based alignment technique. The experiment to examine the effectiveness of the proposed membrane was conducted, and the result shows that microspheres with the size of 2.3 μm and with the size uniformity of 0.8 μm can be achieved, which meets the requirements for most applications in industries. It is noted that the traditional membrane emulsification method can only produce microspheres of around 20 μm. The main contribution of this paper is thus the new design principle of membranes (i.e., stepwise structure), which can be made by the cost-effective fabrication technique, for high performance of droplets production.
Collapse
Affiliation(s)
- Lei Lei
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Sven Achenbach
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices, Canadian Light Source Incorporated, Saskatoon, SK S7N 2V3, Canada
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 201620, China
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
3
|
Camelo-Silva C, Figueredo LL, Cesca K, Verruck S, Ambrosi A, Di Luccio M. Membrane Emulsification as an Emerging Method for Lacticaseibacillus rhamnosus GG ® Encapsulation. FOOD BIOPROCESS TECH 2023:1-17. [PMID: 37363380 PMCID: PMC10120479 DOI: 10.1007/s11947-023-03099-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Techniques capable of producing small-sized probiotic microcapsules with high encapsulation yields are of industrial and scientific interest. In this study, an innovative membrane emulsification system was investigated in the production of microcapsules containing Lacticaseibacillus rhamnosus GG® (Lr), sodium alginate (ALG), and whey protein (WPI), rice protein (RPC), or pea protein (PPC) as encapsulating agents. The microcapsules were characterized by particle size distribution, optical microscopy, encapsulation yield, morphology, water activity, hygroscopicity, thermal properties, Fourier-transform infrared spectroscopy (FTIR), and probiotic survival during in vitro simulation of gastrointestinal conditions. The innovative encapsulation technique resulted in microcapsules with diameters varying between 18 and 29 μm, and encapsulation yields > 93%. Combining alginate and whey, rice, or pea protein improved encapsulation efficiency and thermal properties. The encapsulation provided resistance to gastrointestinal fluids, resulting in high probiotic viability at the end of the intestinal phase (> 7.18 log CFU g-1). The proposed encapsulation technology represents an attractive alternative to developing probiotic microcapsules for future food applications. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11947-023-03099-w.
Collapse
Affiliation(s)
- Callebe Camelo-Silva
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Lais Leite Figueredo
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Karina Cesca
- Laboratory of Biological Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88034-001 Brazil
| | - Alan Ambrosi
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Marco Di Luccio
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| |
Collapse
|
4
|
Ferreira S, Nicoletti VR, Dragosavac M. Novel methods to induce complex coacervation using dual fluid nozzle and metal membranes: Part II – use of metal membrane technology to induce complex coacervation. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Cheng C, Tu Z, Wang H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: phase behavior and structural properties. Food Res Int 2023; 167:112652. [PMID: 37087241 DOI: 10.1016/j.foodres.2023.112652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023]
Abstract
The aim of this study was to investigate the phase behavior and structural properties of fish gelatin complex coacervation with carboxylated chitosan as a function of pH by varying the amount of carboxylated chitosan added (0-0.25%, w/v) while keeping the fish gelatin concentration constant at 0.667% (w/v). Zeta potential indicated that electrostatic interaction drove the complex coalescence of fish gelatin and carboxylated chitosan to form soluble or insoluble complexes. The turbidity of the fish gelatin-carboxylated chitosan complex system was greatest at a carboxylated chitosan concentration of 0.2%. UV and fluorescence spectroscopy indicated that the carboxylated chitosan changed the tertiary conformation of fish gelatin. Circular dichroism showed that complexation of fish gelatin with carboxylated chitosan resulted in a shift from the α-helix to the β-sheet structure of fish gelatin. In particular, at pH 5, the fish gelatin complexed with carboxylated chitosan had a disordered structure. X-ray diffraction and scanning electron microscopy of the composite coacervates both investigated that electrostatic interaction between the two replaced molecular interaction within the carboxylated chitosan to form a new lamellar porous structure. These findings may in future enable the use of fish gelatin-carboxylated chitosan complex systems in the design of new food matrices.
Collapse
|
6
|
A review on the micro-encapsulation of phase change materials: classification, study of synthesis technique and their applications. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Mane S, Kumari P, Singh A, Taneja NK, Chopra R. Amelioration for oxidative stability and bioavailability of N-3 PUFA enriched microalgae oil: an overview. Crit Rev Food Sci Nutr 2022; 64:2579-2600. [PMID: 36128949 DOI: 10.1080/10408398.2022.2124505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Technological improvements in dietary supplements and nutraceuticals have highlighted the significance of bioactive molecules in a healthy lifestyle. Eicosapentaenoic acid and Cervonic acid (DHA), omega-3 polyunsaturated fatty acids seem to be famed for their ability to prevent diverse physiological abnormalities. Selection of appropriate pretreatments and extraction techniques for extraction of lipids from robust microalgae cell wall are very important to retain their stability and bioactivity. Therefore, extraction techniques with optimized extraction parameters offer an excellent approach for obtaining quality oil with a high yield. Oils enriched in omega-3 are particularly imperiled to oxidation which ultimately affects customer acceptance. Bio active encapsulation could be one of the effective approaches to overcome this dilemma. This review paper aims to give insight into the cultivation methods, and downstream processes, various lipid extraction approaches, techniques for retaining oxidative stability, bioavailability and food applications based on extracted or encapsulated omega-3.
Collapse
Affiliation(s)
- Sheetal Mane
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Purnima Kumari
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Anupama Singh
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| |
Collapse
|
8
|
Camelo-Silva C, Verruck S, Ambrosi A, Di Luccio M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Ferreira S, Nicoletti VR, Dragosavac M. Novel methods to induce complex coacervation using dual fluid nozzle and metal membranes: Part I – use of metal membranes for emulsification. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhao Y, Moshtaghibana S, Zhu T, Fayemiwo KA, Price A, Vladisavljević G. Microfluidic fabrication of novel polymeric core‐shell microcapsules for storage of
CO
2
solvents and organic chelating agents. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuan Zhao
- Department of Chemical Engineering Loughborough University Loughborough LE11 3TU UK
- School of Space and Environment, Beijing Key Laboratory of Bio‐Inspired Energy Materials and Devices Beihang University Beijing China
| | | | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio‐Inspired Energy Materials and Devices Beihang University Beijing China
| | - Kehinde A. Fayemiwo
- Department of Chemical Engineering Loughborough University Loughborough LE11 3TU UK
| | - Adam Price
- Department of Chemistry Loughborough University Loughborough UK
| | - Goran Vladisavljević
- Department of Chemical Engineering Loughborough University Loughborough LE11 3TU UK
| |
Collapse
|
11
|
Development of Microcapsule Bioactive Paper Loaded with Chinese Fir Essential Oil to Improve the Quality of Strawberries. COATINGS 2022. [DOI: 10.3390/coatings12020254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Essential oils are natural antibacterial substances and have potential value for application in fruit and vegetable packaging. In this study, Chinese fir essential oil (CFEO) was microencapsulated to prepare food packaging materials for the first time to overcome its volatilization and oxidation shortcomings and to obtain a sustained-release form of the oil. CFEO was effectively encapsulated in gelatin and chitosan using the complex coacervation method, and the encapsulation efficiency, microstructure, infrared spectrum and thermal stability of the microcapsules were evaluated. Experiments confirmed that the microcapsules had some antibacterial activity. A bioactive paper was developed by combining CFEO microcapsules (CFEO-Ms) with paper-based material using the film-forming property of polyvinyl alcohol (PVA). The coated paper showed good mechanical, air permeability and moisture permeability properties. Environmental scanning electron microscopy confirmed that CFEO-Ms bonded well with PVA and was successfully introduced into the paper fiber after coating, forming an obvious coating film on the surface to facilitate the continuous release of CFEO. The shelf life of strawberries was significantly prolonged when the PVA-coated paper mixed with 3% CFEO-Ms was used for packaging. The results demonstrated that the CFEO-Ms coated paper has the potential to become an effective packaging material for the preservation of strawberries.
Collapse
|
12
|
Shi XD, Huang JJ, Wu JL, Cai XX, Tian YQ, Rao PF, Huang JL, Wang SY. Fabrication, interaction mechanism, functional properties, and applications of fish gelatin-polysaccharide composites: a review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
CAMPOS-ESPINOZA F, CASTAÑO-AGUDELO J, RODRIGUEZ-LLAMAZARES S. Polysaccharides systems for probiotic bacteria microencapsulation: mini review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.95121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Ferreira S, Nicoletti VR. Use of a tubular heat exchanger to achieve complex coacervation in a semi-continuous process: Effects of capsules curing temperature and shear rate. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Kawecki K, Stangierski J, Konieczny P. An Analysis of Oxidative Changes and the Fatty Acid Profile in Stored Poultry Sausages with Liquid and Microencapsulated Fish Oil Additives. Molecules 2021; 26:molecules26144293. [PMID: 34299569 PMCID: PMC8303385 DOI: 10.3390/molecules26144293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022] Open
Abstract
This study deals with the fatty acid profile and oxidative changes (TBARS) in vacuum-packed (VP) or modified-atmosphere-packed (MAP) finely-comminuted poultry sausages with liquid fish oil and microencapsulated fish oil (MC) additives. An analysis of omega-3 fatty acids (EPA and DHA) showed that their content in the samples with the fish oil additive decreased from the initial value of 0.22 g∙100 g−1 of the product to 0.18 g∙100 g−1 (MAP) and 0.17 g∙100 g−1 (VP), respectively. After in vitro digestion, the total EPA and DHA content in the sample with microencapsulated oil amounted to 0.17 g∙100 g−1 of the product. The TBARS values showed the VP samples with both forms of the fish oil additive had the lowest values on the first day of storage. Storage of the samples for 21 days caused a slight increase in the degree of lipid oxidation. The research indicated that the forms of the oil additive did not have a negative influence on the sensory features or the physicochemical properties of the sausages. The EPA and DHA levels in samples with liquid fish oil and those with oil microcapsules were sufficient for the sausage producer to declare high content of these fatty acids in accordance with the current EC regulation.
Collapse
Affiliation(s)
- Krzysztof Kawecki
- Correspondence: (K.K.); (J.S.); Tel.: +48-798-137-580 (K.K.); +48-618-487-324 (J.S.)
| | - Jerzy Stangierski
- Correspondence: (K.K.); (J.S.); Tel.: +48-798-137-580 (K.K.); +48-618-487-324 (J.S.)
| | | |
Collapse
|
16
|
Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar Drugs 2021; 19:md19030145. [PMID: 33800149 PMCID: PMC8000627 DOI: 10.3390/md19030145] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
There are several reviews that separately cover different aspects of fish gelatin including its preparation, characteristics, modifications, and applications. Its packaging application in food industry is extensively covered but other applications are not covered or covered alongside with those of collagen. This review is comprehensive, specific to fish gelatin/hydrolysate and cites recent research. It covers cosmetic applications, intrinsic activities, and biomedical applications in wound dressing and wound healing, gene therapy, tissue engineering, implants, and bone substitutes. It also covers its pharmaceutical applications including manufacturing of capsules, coating of microparticles/oils, coating of tablets, stabilization of emulsions and drug delivery (microspheres, nanospheres, scaffolds, microneedles, and hydrogels). The main outcomes are that fish gelatin is immunologically safe, protects from the possibility of transmission of bovine spongiform encephalopathy and foot and mouth diseases, has an economic and environmental benefits, and may be suitable for those that practice religious-based food restrictions, i.e., people of Muslim, Jewish and Hindu faiths. It has unique rheological properties, making it more suitable for certain applications than mammalian gelatins. It can be easily modified to enhance its mechanical properties. However, extensive research is still needed to characterize gelatin hydrolysates, elucidate the Structure Activity Relationship (SAR), and formulate them into dosage forms. Additionally, expansion into cosmetic applications and drug delivery is needed.
Collapse
|
17
|
Franklin D, Ueltschi T, Carlini A, Yao S, Reeder J, Richards B, Van Duyne RP, Rogers JA. Bioresorbable Microdroplet Lasers as Injectable Systems for Transient Thermal Sensing and Modulation. ACS NANO 2021; 15:2327-2339. [PMID: 33439017 DOI: 10.1021/acsnano.0c10234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Minimally invasive methods for temperature sensing and thermal modulation in living tissues have extensive applications in biological research and clinical care. As alternatives to bioelectronic devices for this purpose, functional nanomaterials that self-assemble into optically active microstructures offer important features in remote sensing, injectability, and compact size. This paper introduces a transient, or bioresorbable, system based on injectable slurries of well-defined microparticles that serve as photopumped lasers with temperature-sensitive emission wavelengths (>4-300 nm °C-1). The resulting platforms can act as tissue-embedded thermal sensors and, simultaneously, as distributed vehicles for thermal modulation. Each particle consists of a spherical resonator formed by self-organized cholesteric liquid crystal molecules doped with fluorophores as gain media, encapsulated in thin shells of soft hydrogels that offer adjustable rates of bioresorption through chemical modification. Detailed studies highlight fundamental aspects of these systems including particle sensitivity, lasing threshold, and size. Additional experiments explore functionality as photothermal agents with active temperature feedback (ΔT = 1 °C) and potential routes in remote evaluation of thermal transport properties. Cytotoxicity evaluations support their biocompatibility, and ex vivo demonstrations in Casper fish illustrate their ability to measure temperature within biological tissues with resolution of 0.01 °C. This collective set of results demonstrates a range of multifunctional capabilities in thermal sensing and modulation.
Collapse
Affiliation(s)
- Daniel Franklin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Tyler Ueltschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrea Carlini
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shenglian Yao
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Reeder
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin Richards
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard P Van Duyne
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Tian Q, Zhou W, Cai Q, Ma G, Lian G. Concepts, processing, and recent developments in encapsulating essential oils. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Microencapsulation of ginger oil by complex coacervation using atomization: Effects of polymer ratio and wall material concentration. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Encapsulation of resveratrol using Maillard conjugates and membrane emulsification. Food Res Int 2020; 137:109359. [PMID: 33233062 DOI: 10.1016/j.foodres.2020.109359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Resveratrol is a stilbene phenolic associated with health-promoting properties such as antioxidant, anti-inflammatory and chemoprevention. Due to its chemical instability and low water solubility, microencapsulation represents a good alternative to provide better results when employing resveratrol as a nutraceutical ingredient. The main purpose of our work was to use low shear membrane emulsification to produce resveratrol-loaded emulsions of low polydispersity and integrate this process to spray drying to produce a powdered product. Resveratrol was dispersed with palm oil in a continuous phase obtained via Maillard reaction. We evaluated the influence of process conditions and phases composition on emulsions properties and performed the characterization of the spray-dried powder. Emulsions droplet size and span decreased as shear stress was increased. Higher dispersed phase fluxes provided increased droplet size polydispersity. Process conditions were set on 60.0 Pa shear stress and 70 L m-2h-1 of dispersed phase flux, obtaining emulsions with mean diameter around 30 μm and span of 0.76. Despite this relatively high droplet size of the infeed emulsions, the spray drying process resulted in particles with high encapsulation efficiency (97.97 ± 0.01%), and water content (~3.6%) and diameter (~10.2 μm) similar to particles obtained from fine emulsions in previously reported works.
Collapse
|
21
|
Luhede L, Besser B, Schumacher D, Wilhelm M, Fritsching U. Continuous Multistep Encapsulation Process for the Generation of Multiple Emulsions. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura Luhede
- Leibniz Institute for Material Engineering Badgasteiner Strasse 3 28359 Bremen Germany
| | - Benjamin Besser
- University of Bremen Advanced Ceramics Group Am Biologischen Garten 2 28359 Bremen Germany
| | - Daniel Schumacher
- University of Bremen Advanced Ceramics Group Am Biologischen Garten 2 28359 Bremen Germany
| | - Michaela Wilhelm
- University of Bremen Advanced Ceramics Group Am Biologischen Garten 2 28359 Bremen Germany
| | - Udo Fritsching
- Leibniz Institute for Material Engineering Badgasteiner Strasse 3 28359 Bremen Germany
| |
Collapse
|
22
|
Dhakal SP, He J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res Int 2020; 137:109326. [DOI: 10.1016/j.foodres.2020.109326] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 01/29/2023]
|
23
|
Jamshidi A, Cao H, Xiao J, Simal-Gandara J. Advantages of techniques to fortify food products with the benefits of fish oil. Food Res Int 2020; 137:109353. [PMID: 33233057 DOI: 10.1016/j.foodres.2020.109353] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 02/08/2023]
|
24
|
Ishak S, Mandal S, Lee HS, Singh JK. Microencapsulation of stearic acid with SiO 2 shell as phase change material for potential energy storage. Sci Rep 2020; 10:15023. [PMID: 32929104 PMCID: PMC7490278 DOI: 10.1038/s41598-020-71940-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 12/02/2022] Open
Abstract
Stearic acid (SA) is being used as phase change material (PCM) in energy storage applications. In the present study, the microencapsulation of SA with SiO2 shell was carried out by sol–gel method. Different amounts of SA (5, 10, 15, 20, 30 and 50 g) were taken against 10 ml of tetraethyl orthosilicate (TEOS) for encapsulation. The synthesized microencapsulated PCM (MEPCM) were characterized by Fourier transform infrared spectroscope (FT-IR), X-Ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The characterization results showed that SA was successfully encapsulated by SiO2. Thermogravimetric analysis (TGA) exhibited better thermal stability of the MEPCM than SA. The enthalpy values of MEPCM were found to be unchanged even after 30 heating–cooling cycles by differential scanning calorimetry (DSC). The latent heats of melting and solidification of 50 g SA containing MEPCM were found to be highest i.e. 182.53 J/g and 160.12 J/g, respectively among all microencapsulated samples. The encapsulation efficiency values were calculated using thermal data and the efficiency was found to be highest i.e. 86.68% in the same sample.
Collapse
Affiliation(s)
- Shafiq Ishak
- Department of Architectural Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan, 15588, Korea
| | - Soumen Mandal
- Intelligent Construction Automation Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Han-Seung Lee
- Department of Architectural Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan, 15588, Korea.
| | - Jitendra Kumar Singh
- Innovative Durable Building and Infrastructure Research Center, Department of Architectural Engineering, Hanyang University, 1271 Sa-3-dong, Sangnok-gu, Ansan, 15588, Korea.
| |
Collapse
|
25
|
Jiang N, Dev Kumar G, Chen J, Mishra A, Mis Solval K. Comparison of concurrent and mixed-flow spray drying on viability, growth kinetics and biofilm formation of Lactobacillus rhamnosus GG microencapsulated with fish gelatin and maltodextrin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109200] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Raveau R, Fontaine J, Lounès-Hadj Sahraoui A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020; 9:E365. [PMID: 32245234 PMCID: PMC7143296 DOI: 10.3390/foods9030365] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
Naturally produced by aromatic plants, essential oils (EO) contain a wide range of volatile molecules, including mostly secondary metabolites, which possess several biological activities. Essential oils properties such as antioxidant, antimicrobial and anti-inflammatory activities are known for a long time and hence widely used in traditional medicines, cosmetics and food industries. However, despite their effects against many phytopathogenic fungi, oomycetes and bacteria as well as weeds, their use in agriculture remains surprisingly scarce. The purpose of the present review is to gather and discuss up-to-date biological activities of EO against weeds, plant pathogenic fungi, oomycetes and bacteria, reported in the scientific literature. Innovative methods, potentially valuable to improve the efficiency and reliability of EO, have been investigated. In particular, their use towards a more sustainable agriculture has been discussed, aiming at encouraging the use of alternative products to substitute synthetic pesticides to control weeds and plant diseases, without significantly affecting crop yields. An overview of the market and the recent advances on the regulation of these products as well as future challenges to promote their development and wider use in disease management programs is described. Because of several recent reviews on EO insecticidal properties, this topic is not covered in the present review.
Collapse
Affiliation(s)
| | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228 Calais cedex, France; (R.R.); (J.F.)
| |
Collapse
|
27
|
Carballido L, Dabrowski ML, Dehli F, Koch L, Stubenrauch C. Monodisperse liquid foams via membrane foaming. J Colloid Interface Sci 2020; 568:46-53. [PMID: 32078937 DOI: 10.1016/j.jcis.2020.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS It is possible to generate fairly monodisperse liquid foams by a dispersion cell, which was originally designed for the generation of fairly monodisperse emulsions. If this is the case, scaling-up the production of monodisperse liquid and solid foams will be no longer a problem. EXPERIMENTS We used the dispersion cell - a batch process - and examined the influence of stirrer speed, membrane pore diameter and injection rate on the structure of the resulting liquid foams. We used an aqueous surfactant solution as scouting system. Once the experimental conditions were known we generated gelatin-based liquid foams and methacrylate-based foamed emulsions. FINDINGS We found that (a) the bubble size of the generated liquid foams can be adjusted by varying the membrane pore diameter, (b) no stirrer should be used to obtain monodisperse foams, and (c) the bubble size is not influenced by the air injection rate. Since (i) the output for all investigated systems is up to two orders of magnitude larger compared to microfluidics and (ii) the membrane technology can very easily be scaled-up if run in a continuous process, the use of membrane foaming is expected to be heavily used for the generation of monodisperse liquid and solid foams, respectively.
Collapse
Affiliation(s)
- Laura Carballido
- Institute of Physical Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | | | - Friederike Dehli
- Institute of Physical Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Lukas Koch
- Institute of Physical Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Cosima Stubenrauch
- Institute of Physical Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| |
Collapse
|
28
|
Kaade W, Ferrando M, Khanmohammed A, Torras C, De Lamo-Castellví S, Güell C. Low-energy high-throughput emulsification with nickel micro-sieves for essential oils encapsulation. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Bakry AM, Huang J, Zhai Y, Huang Q. Myofibrillar protein with κ- or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Weiss J, Salminen H, Moll P, Schmitt C. Use of molecular interactions and mesoscopic scale transitions to modulate protein-polysaccharide structures. Adv Colloid Interface Sci 2019; 271:101987. [PMID: 31325651 DOI: 10.1016/j.cis.2019.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Mixed protein-polysaccharide structures have found widespread applications in various fields, such as in foods, pharmaceuticals or personal care products. A better understanding and a more precise control over the molecular interactions between the two types of macromolecules leading to an engineering of nanoscale and colloidal building blocks have fueled the design of novel structures with improved functional properties. However, these building blocks often do not constitute the final matrix. Rather, further process operations are used to transform the initially formed structural entities into bulk matrices. Systematic knowledge on the relation between molecular structure design and subsequent mesoscopic scale transitions induced by processing is scarce. This article aims at establishing a connection between these two approaches. Therefore, it reviews not only studies on the underlying molecular interaction phenomena leading to either a segregative or associative phase behavior and nanoscale or colloidal structures, but also looks at the less systematically studied approach of using macroscopic processing operations such as shearing, heating, crosslinking, and concentrating/drying to transform the initially generated structures into bulk matrices. Thereby, a more comprehensive look is taken at the relationship between different influencing factors, namely solvent conditions (i.e. pH, ionic strength), biopolymer characteristics (i.e. type, charge density, mixing ratio, biopolymer concentration), and processing parameters (i.e. temperature, mechanical stresses, pressure) to generate bulk protein-polysaccharide matrices with different morphological features. The need for a combinatorial approach is then demonstrated by reviewing in detail current mixed protein-polysaccharide applications that increasingly make use of this. In the process, open scientific questions that will need to be addressed in the future are highlighted.
Collapse
Affiliation(s)
- Jochen Weiss
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Hanna Salminen
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Pascal Moll
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Christophe Schmitt
- Nestec Research, Nestlé Institute of Material Sciences, Department of Chemistry, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| |
Collapse
|
31
|
Taheri A, Jafari SM. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Adv Colloid Interface Sci 2019; 269:277-295. [PMID: 31132673 DOI: 10.1016/j.cis.2019.04.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 11/28/2022]
Abstract
Gums, which for the most part are water-soluble polysaccharides, can interact with water to form viscous solutions, emulsions or gels. Their desirable properties, such as flexibility, biocompatibility, biodegradability, availability of reactive sites for molecular interactions and ease of use have led to their extremely large and broad applications in formation of nanostructures (nanoemulsions, nanoparticles, nanocomplexes, and nanofibers) and have already served as important wall materials for a variety of nano encapsulated food ingredients including flavoring agents, vitamins, minerals and essential fatty acids. The most common gums used in nano encapsulation systems include Arabic gum, carrageenan, xanthan, tragacanth plus some new sources of non-traditional gums, such as cress seed gum and Persian/or Angum gum identified as potential building blocks for nanostructured systems. New preparation techniques and sources of non-traditional gums are still being examined for commercialization in the food nanotechnology area as low-cost and reproducible sources. In this study, different nanostructures of gums and their preparation methods have been discussed along with a review of gum nanostructure applications for various food bioactive ingredients.
Collapse
Affiliation(s)
- Afsaneh Taheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
32
|
Esfahani R, Jafari SM, Jafarpour A, Dehnad D. Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Anvari M, Joyner (Melito) HS. Concentrated emulsions as novel fat replacers in reduced-fat and low-fat Cheddar cheeses. Part 2. Large amplitude oscillatory shear behavior. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
|
35
|
Complex coacervates from gelatin and octenyl succinic anhydride modified kudzu starch: Insights of formulation and characterization. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.01.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Lis Arias MJ, Coderch L, Martí M, Alonso C, García Carmona O, García Carmona C, Maesta F. Vehiculation of Active Principles as a Way to Create Smart and Biofunctional Textiles. MATERIALS 2018; 11:ma11112152. [PMID: 30388791 PMCID: PMC6266968 DOI: 10.3390/ma11112152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022]
Abstract
In some specific fields of application (e.g., cosmetics, pharmacy), textile substrates need to incorporate sensible molecules (active principles) that can be affected if they are sprayed freely on the surface of fabrics. The effect is not controlled and sometimes this application is consequently neglected. Microencapsulation and functionalization using biocompatible vehicles and polymers has recently been demonstrated as an interesting way to avoid these problems. The use of defined structures (polymers) that protect the active principle allows controlled drug delivery and regulation of the dosing in every specific case. Many authors have studied the use of three different methodologies to incorporate active principles into textile substrates, and assessed their quantitative behavior. Citronella oil, as a natural insect repellent, has been vehicularized with two different protective substances; cyclodextrine (CD), which forms complexes with it, and microcapsules of gelatin-arabic gum. The retention capability of the complexes and microcapsules has been assessed using an in vitro experiment. Structural characteristics have been evaluated using thermogravimetric methods and microscopy. The results show very interesting long-term capability of dosing and promising applications for home use and on clothes in environmental conditions with the need to fight against insects. Ethyl hexyl methoxycinnamate (EHMC) and gallic acid (GA) have both been vehicularized using two liposomic-based structures: Internal wool lipids (IWL) and phosphatidylcholine (PC). They were applied on polyamide and cotton substrates and the delivery assessed. The amount of active principle in the different layers of skin was determined in vitro using a Franz-cell diffusion chamber. The results show many new possibilities for application in skin therapeutics. Biofunctional devices with controlled functionality can be built using textile substrates and vehicles. As has been demonstrated, their behavior can be assessed using in vitro methods that make extrapolation to their final applications possible.
Collapse
Affiliation(s)
- Manuel J Lis Arias
- Textile Research Institute of Terrassa (INTEXTER-UPC), 08222 Terrassa, Spain.
| | - Luisa Coderch
- Catalonia Advanced Chemistry Institute (IQAC-CSIC), 08034 Barcelona, Spain.
| | - Meritxell Martí
- Catalonia Advanced Chemistry Institute (IQAC-CSIC), 08034 Barcelona, Spain.
| | - Cristina Alonso
- Catalonia Advanced Chemistry Institute (IQAC-CSIC), 08034 Barcelona, Spain.
| | | | | | - Fabricio Maesta
- Textile Engineering Dept., Federal Technological University of Paraná, Apucarana 86812-460, Brazil.
| |
Collapse
|
37
|
Chang C, Nickerson MT. Encapsulation of omega 3-6-9 fatty acids-rich oils using protein-based emulsions with spray drying. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:2850-2861. [PMID: 30065394 PMCID: PMC6046026 DOI: 10.1007/s13197-018-3257-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
Abstract
With an increased awareness of the link between the consumption of omega 3-6-9 fatty acid-rich oils and health, the food industry has been developing innovative strategies for raising their levels within the diet. Microencapsulation is one approach used to protect those oils from oxidative deterioration and to improve their ingredient properties (e.g., handling and sensory). Spray drying is the most commonly used technique to develop microcapsules. The preparation of protein-stabilized emulsions is a fundamental step in the process in order to produce microcapsules with good physical properties, effective protection and controlled release behaviors. This review describes types of emulsions prepared by animal and plant proteins, discusses the relationship between emulsion properties and microcapsule properties, and identifies key parameters to evaluate physical properties (e.g., moisture content, water activity, particle size, surface oil and entrapment efficiency), oxidative stability and release behavior of spray-dried microcapsules for industrial application.
Collapse
Affiliation(s)
- C. Chang
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
38
|
Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Li Y, Zhang X, Zhao Y, Ding J, Lin S. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties. Food Res Int 2018; 107:596-604. [DOI: 10.1016/j.foodres.2018.02.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
|
40
|
Gómez-Mascaraque LG, Fabra MJ, Castro-Mayorga JL, Sánchez G, Martínez-Sanz M, López-Rubio A. Nanostructuring Biopolymers for Improved Food Quality and Safety. BIOPOLYMERS FOR FOOD DESIGN 2018. [PMCID: PMC7150097 DOI: 10.1016/b978-0-12-811449-0.00002-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Food-grade biopolymers, apart from their inherent nutritional properties, can be tailored designed for improving food quality and safety, either serving as delivery vehicles for bioactive molecules, or as novel packaging components, not only improving the transport properties of biobased packaging structures, but also imparting active antibacterial and antiviral properties. In this chapter, the potential of different food-grade biopolymers (mainly proteins and carbohydrates but also some biopolyesters) to serve as encapsulating matrices for the protection of sensitive bioactives or as nanostructured packaging layers to improve transport properties and control the growth of pathogenic bacteria and viruses are described based on some developments carried out by the authors, as well as the most prominent works found in literature in this area.
Collapse
Affiliation(s)
| | - Maria J. Fabra
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
| | | | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain,University of Valencia, Valencia, Spain
| | - Marta Martínez-Sanz
- Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW, Australia
| | - Amparo López-Rubio
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
| |
Collapse
|
41
|
Esquerdo VM, Silva PP, Dotto GL, Pinto LA. Nanoemulsions From Unsaturated Fatty Acids Concentrates of Carp Oil Using Chitosan, Gelatin, and Their Blends as Wall Materials. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Vanessa M. Esquerdo
- Industrial Technology Laboratory School of Chemistry and Food Federal University of Rio Grande, FURG; Italia Avenue, km 08 96203-900, Rio Grande RS Brazil
| | - Patrick P. Silva
- Industrial Technology Laboratory School of Chemistry and Food Federal University of Rio Grande, FURG; Italia Avenue, km 08 96203-900, Rio Grande RS Brazil
| | - Guilherme L. Dotto
- Industrial Technology Laboratory School of Chemistry and Food Federal University of Rio Grande, FURG; Italia Avenue, km 08 96203-900, Rio Grande RS Brazil
- Chemical Engineering Department Federal University of Santa Maria, UFSM; Roraima Avenue, 1000 97105-900, Santa Maria RS Brazil
| | - Luiz A.A. Pinto
- Industrial Technology Laboratory School of Chemistry and Food Federal University of Rio Grande, FURG; Italia Avenue, km 08 96203-900, Rio Grande RS Brazil
| |
Collapse
|
42
|
Anvari M, Joyner Melito HS. Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions. Food Res Int 2017; 102:1-7. [PMID: 29195927 DOI: 10.1016/j.foodres.2017.09.085] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 01/31/2023]
Abstract
Concentrated emulsions containing both proteins and polysaccharides are the basis for many commercial products; however, the effects of protein-polysaccharide interactions on the functional properties of these complex systems are often poorly understood from a fundamental standpoint. Hence, the objective of this study was to determine the effects of fish gelatin (FG)-gum arabic (GA) complexation at different aqueous phase pH (3.6, 5.0, and 9.0) on concentrated emulsion structure-function relationships. Concentrated emulsions were prepared using FG-GA mixtures and characterized by rheometry and confocal scanning laser microscopy (CSLM). CSLM images showed that all samples were O/W emulsions; emulsions with lower pH showed smaller oil droplets, greater homogeneity in size distribution, and higher stability. This was attributed to an increased number of FG-GA complexes in the emulsification. Electrostatic attractive interactions and charge neutralization created biopolymer associations with increased emulsification capacity. Samples with FG-GA mixtures at lower pH showed higher elastic moduli under small deformation and exhibited greater deviation between apparent and complex viscosities under the Cox-Merz rule, indicating increased gel network extension and greater intermolecular connectivity between adsorbed layers of adjacent oil droplets. These results can be used to incorporate protein-polysaccharide complexes as a suitable emulsifier in materials comprising concentrated emulsions.
Collapse
Affiliation(s)
- Mohammad Anvari
- School of Food Science, University of Idaho, 875 Perimeter Dr., MS 2312, Moscow, ID 83844, United States
| | - Helen S Joyner Melito
- School of Food Science, University of Idaho, 875 Perimeter Dr., MS 2312, Moscow, ID 83844, United States.
| |
Collapse
|
43
|
Hadian M, Hosseini SMH, Farahnaky A, Mesbahi GR. Optimization of functional nanoparticles formation in associative mixture of water-soluble portion of Farsi gum and beta-lactoglobulin. Int J Biol Macromol 2017; 102:1297-1303. [DOI: 10.1016/j.ijbiomac.2017.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/27/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
|
44
|
Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation. Pharm Res 2017; 34:1296-1308. [PMID: 28342057 DOI: 10.1007/s11095-017-2146-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this work is to develop a scalable continuous system suitable for the formulation of polymeric nanoparticles using membrane-assisted nanoprecipitation. One of the hurdles to overcome in the use of nanostructured materials as drug delivery vectors is their availability at industrial scale. Innovation in process technology is required to translate laboratory production into mass production while preserving their desired nanoscale characteristics. METHODS Membrane-assisted nanoprecipitation has been used for the production of Poly[(D,L lactide-co-glycolide)-co-poly ethylene glycol] diblock) (PLGA-PEG) nanoparticles using a pulsed back-and-forward flow arrangement. Tubular Shirasu porous glass membranes (SPG) with pore diameters of 1 and 0.2 μm were used to control the mixing process during the nanoprecipitation reaction. RESULTS The size of the resulting PLGA-PEG nanoparticles could be readily tuned in the range from 250 to 400 nm with high homogeneity (PDI lower than 0.2) by controlling the dispersed phase volume/continuous phase volume ratio. Dexamethasone was successfully encapsulated in a continuous process, achieving an encapsulation efficiency and drug loading efficiency of 50% and 5%, respectively. The dexamethasone was released from the nanoparticles following Fickian kinetics. CONCLUSIONS The method allowed to produce polymeric nanoparticles for drug delivery with a high productivity, reproducibility and easy scalability.
Collapse
|
45
|
Biopolymer-based coacervates: Structures, functionality and applications in food products. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics. SUSTAINABILITY 2016. [DOI: 10.3390/su8101046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Pham TTH, Rombouts WH, Fokkink R, Stuart MCA, Cohen Stuart MA, Kleijn JM. Nanoparticle-Templated Formation and Growth Mechanism of Curved Protein Polymer Fibrils. Biomacromolecules 2016; 17:2392-8. [PMID: 27250876 DOI: 10.1021/acs.biomac.6b00486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigated the growth of biosynthetic protein polymers with templated curvature on pluronic nanospheres. The protein has a central silk-like block containing glutamic residues (S(E)) and collagen-like end-blocks (C). The S(E) blocks stack into filaments when their charge is removed (pH <5). Indeed, at low pH curved and circular fibers are formed at the surface of the nanospheres, which keep their shape after removal of the pluronics. The data reveal the mechanism of the templated fibril-growth: The growth of protein assemblies is nucleated in solution; small protein fibrils adsorb on the nanospheres, presumably due to hydrogen bond formation between the silk-like blocks and the pluronic PEO blocks. The surface of the pluronic particles templates further growth. At relatively low protein/pluronic weight ratios, only a fraction of the nanospheres bears protein fibers, pointing to a limiting amount of nuclei in solution. Because the nanospheres capture fibrils at an early stage of growth, they can be used to separate growth and nucleation rates in protein fibril formation. Moreover, the nanoparticle-templated growth of stable curved fibers opens ways to build proteinaceous nanocapsules from designed protein polymers.
Collapse
Affiliation(s)
- Thao T H Pham
- Physical Chemistry and Soft Matter, Wageningen University , P.O. Box 8038, NL-6700 EK Wageningen, The Netherlands
| | - Wolf H Rombouts
- Physical Chemistry and Soft Matter, Wageningen University , P.O. Box 8038, NL-6700 EK Wageningen, The Netherlands
| | - Remco Fokkink
- Physical Chemistry and Soft Matter, Wageningen University , P.O. Box 8038, NL-6700 EK Wageningen, The Netherlands
| | - Marc C A Stuart
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University , P.O. Box 8038, NL-6700 EK Wageningen, The Netherlands
| | - J Mieke Kleijn
- Physical Chemistry and Soft Matter, Wageningen University , P.O. Box 8038, NL-6700 EK Wageningen, The Netherlands
| |
Collapse
|
48
|
Extending Emulsion Functionality: Post-Homogenization Modification of Droplet Properties. Processes (Basel) 2016. [DOI: 10.3390/pr4020017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
49
|
Bazzarelli F, Piacentini E, Poerio T, Mazzei R, Cassano A, Giorno L. Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.09.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Azarikia F, Wu BC, Abbasi S, McClements DJ. Stabilization of biopolymer microgels formed by electrostatic complexation: Influence of enzyme (laccase) cross-linking on pH, thermal, and mechanical stability. Food Res Int 2015; 78:18-26. [DOI: 10.1016/j.foodres.2015.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/26/2022]
|