1
|
Raczkowska E, Serek P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry-A Review. Nutrients 2024; 16:2757. [PMID: 39203893 PMCID: PMC11357471 DOI: 10.3390/nu16162757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Fruit pomace, a by-product of the fruit industry, includes the skins, seeds, and pulp most commonly left behind after juice extraction. It is produced in large quantities: apple residues alone generate approximately 4 million tons of waste annually, which is a serious problem for the processing industry but also creates opportunities for various applications. Due to, among other properties, their high content of dietary fiber and polyphenolic compounds, fruit residues are used to design food with functional features, improving the nutritional value and health-promoting, technological, and sensory properties of food products. This article presents the health-promoting (antioxidant, antidiabetic, anti-inflammatory, and antibacterial) properties of fruit pomace. Moreover, the possibilities of their use in the food industry are characterized, with particular emphasis on bread, sweet snack products, and extruded snacks. Attention is paid to the impact of waste products from the fruit industry on the nutritional value and technological and sensory characteristics of these products. Fruit pomace is a valuable by-product whose use in the food industry can provide a sustainable solution for waste management and contribute to the development of functional food products with targeted health-promoting properties.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| | | |
Collapse
|
2
|
Erem F. Investigation of the effects of corn flour, Spirulina powder, and buffalo yogurt on the quality characteristics of gluten-free muffins. FOOD SCI TECHNOL INT 2024:10820132241248486. [PMID: 38676328 DOI: 10.1177/10820132241248486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
This study aimed to investigate the properties of buckwheat flour-based gluten-free muffins formulated by using corn flour (CF), Spirulina powder (SP), and buffalo yogurt (BY) levels as the factors in the Box-Behnken experimental design. The color values, total soluble polyphenol content (TPC), radical scavenging activity (RSA), specific volume, moisture content, and baking loss results were evaluated as the response variables in the design. The buckwheat flour in the control sample was substituted with CF and SP. Cow yogurt was used in the control muffin instead of milk and was substituted with BY at different levels in other samples. Among the response variables, TPC and RSA values were selected for the optimization studies. Decreasing the CF and SP levels in the formulations resulted in observing higher TPC and RSA values. Three optimal formulations were obtained by response surface methodology. Both cow and buffalo yogurt did not change the properties of the muffins adversely compared to milk. Increasing the SP content made the muffins firmer and caused a decrease in the L*, a*, b*, and browning index values of the muffins. However, sensory scores of SP-containing muffins were also satisfactory.
Collapse
Affiliation(s)
- Fundagül Erem
- Department of Food Engineering, Faculty of Engineering, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye
| |
Collapse
|
3
|
A review on valorization of different byproducts of mango (Mangifera indica L.) for functional food and human health. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Tirado-Kulieva VA, Gutiérrez-Valverde KS, Villegas-Yarlequé M, Camacho-Orbegoso EW, Villegas-Aguilar GF. Research trends on mango by-products: a literature review with bibliometric analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01400-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Date Components as Promising Plant-Based Materials to Be Incorporated into Baked Goods—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Date (Phoenix dactylifera L. Arecaceae) fruits and their by-products are rich in nutrients. The health benefits of dates and their incorporation into value-added products have been widely studied. The date-processing industry faces a significant sustainability challenge as more than 10% (w/w) of the production is discarded as waste or by-products. Currently, food scientists are focusing on bakery product fortification with functional food ingredients due to the high demand for nutritious food with more convenience. Utilizing date components in value-added bakery products is a trending research area with increasing attention. Studies where the researchers tried to improve the quality of bakery goods by incorporating date components have shown positive results, with several drawbacks that need attention and further research. The objective of this review is to present a comprehensive overview of the utilization of date components in bakery products and to identify gaps in the current knowledge. This review will help focus further research in the area of valorization of date by-products and thereby contribute to the generation of novel functional bakery products that meet consumer expectations and industry standards, thus generating income for the relevant industry and considerable alleviation of the environmental burden this waste and by-products contribute to. Only a few studies have been focused on utilizing date by-products and their extracts for baked goods, while a research area still remaining under-explored is the effect of incorporation of date components on the shelf life of bakery products.
Collapse
|
6
|
SUBIRIA-CUETO R, CORIA-OLIVEROS AJ, WALL-MEDRANO A, RODRIGO-GARCÍA J, GONZÁLEZ-AGUILAR GA, MARTINEZ-RUIZ NDR, ALVAREZ-PARRILLA E. Antioxidant dietary fiber-based bakery products: a new alternative for using plant-by-products. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.57520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
The Wound-Healing Effect of Mango Peel Extract on Incision Wounds in a Murine Model. Molecules 2022; 27:molecules27010259. [PMID: 35011491 PMCID: PMC8746551 DOI: 10.3390/molecules27010259] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Mangifera indica can generate up to 60% of polluting by-products, including peels. However, it has been shown that flavonoids and mangiferin are mainly responsible for the antioxidant, anti-inflammatory, and antibacterial activities closely related to the wound-healing process. The chemical composition of MEMI (methanolic extract of M. indica) was analyzed by HPLC-DAD, as well as concentrations of total phenol (TPC) and flavonoids (TFC) and antioxidant activity (SA50). Wound-healing efficacy was determined by measurements of wound contraction, histological analysis, and tensiometric method; moreover, anti-inflammatory, antibacterial, and acute dermal toxicity (OECD 402) were also evaluated. Phenol, resorcinol, conjugated resorcinol, and mangiferin were detected. TPC, TFC, and SA50 were 136 mg GAE/g, 101.66 mg QE/g, and 36.33 µg/mL, respectively. Tensile strength and wound contraction closure did not show significant differences between MEMI and dexpanthenol groups. Histological analysis (after 14 days) shows a similar architecture between MEMI treatment and normal skin. MEMI exhibits a reduction in edema. Staphylococcus epidermidis had an MIC of 2 mg/mL, while Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli reached 4 mg/mL. The MEMI showed no signs of toxicity. Therefore, this study demonstrates multiple targets that flavonoids and mangiferin of MEMI may present during the healing process.
Collapse
|
8
|
Marçal S, Pintado M. Mango peels as food ingredient / additive: nutritional value, processing, safety and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Herrera-Cazares LA, Ramírez-Jiménez AK, Luzardo-Ocampo I, Antunes-Ricardo M, Loarca-Piña G, Wall-Medrano A, Gaytán-Martínez M. Gastrointestinal metabolism of monomeric and polymeric polyphenols from mango (Mangifera indica L.) bagasse under simulated conditions. Food Chem 2021; 365:130528. [PMID: 34325350 DOI: 10.1016/j.foodchem.2021.130528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/30/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
Mango bagasse (MB) is an agro-industrial by-product rich in bioactive polyphenols with potential application as a functional ingredient. This study aimed to delineate the metabolic fate of monomeric/polymeric MB polyphenols subjected to simulated gastrointestinal digestion. The main identified compounds by LC/MS-TOF-ESI were phenolic acids [gallic acid (GA) and derivates, and chlorogenic acid], gallotannins and derivatives [di-GA (DA) and 3GG-to-8GG], benzophenones [galloylated maclurins (MGH, MDH)], flavonoids [Quercetin (Quer) and (QuerH)] and xanthones [mangiferin isomers]. The bioaccessibility depended on the polyphenols' structure, being Quer, 5G to 8G the main drivers. The results suggested that the gastrointestinal fate of MB polyphenols is mainly governed by benzophenones and gallotannins degalloylation and spontaneous xanthone isomerization in vitro to sustain GA bioaccessibility.
Collapse
Affiliation(s)
- Luz Abril Herrera-Cazares
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Centro, 76010 Santiago de Querétaro, Qro., Mexico
| | - Aurea K Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Centro, 76010 Santiago de Querétaro, Qro., Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Guadalupe Loarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Centro, 76010 Santiago de Querétaro, Qro., Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, 32310 Ciudad Juárez, Chihuahua, Mexico
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Centro, 76010 Santiago de Querétaro, Qro., Mexico.
| |
Collapse
|
10
|
Larrosa APQ, Otero DM. Flour made from fruit by‐products: Characteristics, processing conditions, and applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ana Paula Q. Larrosa
- Departamento de Engenharia de Alimentos Centro de Tecnologia Universidade Estadual de Maringá Maringá Brazil
| | - Deborah M. Otero
- Departamento de Ciência de Alimentos Escola de Nutrição Universidade Federal da Bahia Salvador Brazil
| |
Collapse
|
11
|
Bioactive Compounds and Stability of a Typical Italian Bakery Products " Taralli" Enriched with Fermented Olive Paste. Molecules 2019; 24:molecules24183258. [PMID: 31500173 PMCID: PMC6766877 DOI: 10.3390/molecules24183258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
Olive paste (OP) is a novel by-product of olive mill industry composed of water, olive pulp, and skin. Due to its richness in bioactive compounds, OP exploitation for human consumption has recently been proposed. Starter driven fermented OP is characterized by a well-balanced lipid profile, rich in mono and polyunsaturated fatty acids, and a very good oxidative stability due to the high concentration of fat-soluble antioxidants. These characteristics make OP particularly suitable as a functional ingredient for food/feed industry, as well as for the formulation of nutraceutical products. New types of taralli were produced by adding 20% of fermented OP from black olives (cv Cellina di Nardò and Leccino) to the dough. The levels of bioactive compounds (polyphenols, triterpenic acids, tocochromanols, and carotenoids), as well as the fatty acid profile, were monitored during 180 days of storage and compared with control taralli produced with the same flour without OP supplementation. Taralli enriched with fermented OP showed significantly higher levels of bioactive compounds than conventional ones. Furthermore, enriched taralli maintained a low amount of saturated fatty acids and high levels of polyphenols, triterpenic acids, tocochromanols, and carotenoids, compared to the initial value, up to about 90 days in the usual conditions of retailer shelves.
Collapse
|
12
|
Velderrain-Rodríguez GR, Acevedo-Fani A, González-Aguilar GA, Martín-Belloso O. Encapsulation and stability of a phenolic-rich extract from mango peel within water-in-oil-in-water emulsions. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Positive and negative effects of polyphenol incorporation in baked foods. Food Chem 2019; 284:90-99. [PMID: 30744873 DOI: 10.1016/j.foodchem.2019.01.096] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 01/02/2023]
Abstract
Polyphenols are hot research topics worldwide owing to their physiological and pharmaceutical activities. Polyphenols and polyphenol-enriched by-products have been widely used in bakery foods because of their neutraceutical properties. This review summarizes the classification, biosynthesis, main source and analysis of polyphenols and intensively discusses the effects of their incorporation in baked foods. The positive effects of polyphenol incorporation include elevation of antioxidant activity of baked foods, scavenging of food-borne toxins produced during thermal processing and decreasing postprandial serum glucose level. Meanwhile, polyphenol incorporation negatively influences colour, texture and flavour of baked foods and bioavailability of the added polyphenols. Most polyphenols are thermally sensitive and reactive. Thus far, few studies have investigated on neoformed compounds from the reaction of polyphenols or their oxidised products (quinones) with other food components. Before launching polyphenol-incorporated bakery foods in the market, future work should focus on full toxicological evaluation of newly derived compounds from polyphenols.
Collapse
|
14
|
Nath P, Kale SJ, Kaur C, Chauhan OP. Phytonutrient composition, antioxidant activity and acceptability of muffins incorporated with red capsicum pomace powder. Journal of Food Science and Technology 2018; 55:2208-2219. [PMID: 29892122 DOI: 10.1007/s13197-018-3138-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/26/2018] [Accepted: 03/18/2018] [Indexed: 11/30/2022]
Abstract
Enzymatic liquefaction (EL) ensures fast extraction and enhanced recovery of bioactives from red capsicum along with reduced degradation of these compounds remained in the pomace. Hence, red capsicum pomace obtained as byproduct after EL was freeze dried to produce capsicum pomace powder (CP). CP had almost 80% of bioactives (total carotenoids 91.23 ± 2.35 mg/100 g) and antioxidant activity (DPPH 1.61 ± 0.12 µmol TE/g) compared to fresh pomace. CP was further used to develop muffins. Different concentrations (2-10%) of CP were mixed in wheat flour for preparation of muffins. Wheat flour was fortified with CP at different levels (2-10%) and subsequently, effect of CP fortification on height, texture, bioactives and sensory quality of muffins was observed. CP fortification improved the quality in terms of color, flavor and texture. During storage, hardness values (34.42-32.56 N) showed decreasing trend with increase in CP content. Overall, 6% CP fortification was found most acceptable without causing significant change in porosity and crust uniformity of fortified muffins. Thus, present study demonstrated that fortification of muffins with 6% CP as functional ingredient offers an opportunity to develop quality muffins with enhanced antioxidant activity (DPPH 13.04 ± 0.02 µmol TE/g) and total carotenoids (3.46 ± 2.41 mg/100 g).
Collapse
Affiliation(s)
- Prerna Nath
- 1ICAR-Central Institute of Postharvest Engineering and Technology, Punjab, 152116 India
| | - S J Kale
- 1ICAR-Central Institute of Postharvest Engineering and Technology, Punjab, 152116 India
| | - Charanjit Kaur
- 2ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| | - O P Chauhan
- 3Fruits and Vegetables Technology Division, Defence Food Research Laboratory, Mysore, 570011 India
| |
Collapse
|
15
|
Saleh ASM, Wang P, Wang N, Yang S, Xiao Z. Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: Research advances and application challenges. Crit Rev Food Sci Nutr 2018; 59:207-227. [PMID: 28846456 DOI: 10.1080/10408398.2017.1363711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cereal grains are a major source of human food and their production has steadily been increased during the last several decades to meet the demand of our increasing world population. The modernized society and the expansion of the cereal food industry created a need for highly efficient processing technologies, especially flour production. Earlier scientific research efforts have led to the invention of the modern steel roller mill, and the refined flour of wheat has become a basic component in most of cereal-based foods such as breads and pastries because of the unique functionality of wheat protein. On the other hand, epidemiological studies have found that consumption of whole cereal grains was health beneficial. The health benefit of whole cereal grain is attributed to the combined effects of micronutrients, phytochemicals, and dietary fibre, which are mainly located in the outer bran layer and the germ. However, the removal of bran and germ from cereal grains during polishing and milling results in refined flour and food products with lower bioactive compounds and dietary fibre contents than those from whole grain. Also, the level of bioactive compounds in cereal food is influenced by other food preparation procedures such as baking, cooking, extrusion, and puffing. Therefore, food scientists and nutritionists are searching for strategies and processing technologies to enhance the content and bioavailability of nutrients, bioactive compounds, and dietary fibre of cereal foods. The objective of this article was to review the research advances on technologies for the enhancement of bioactive compounds and dietary fibre contents of cereal and cereal-based foods. Bioactivities or biological effects of enhanced cereal and cereal-based foods are presented. Challenges facing the application of the proposed technologies in the food industry are also discussed.
Collapse
Affiliation(s)
- Ahmed S M Saleh
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,b Department of Food Science and Technology , Faculty of Agriculture, Assiut University , Assiut , Egypt
| | - Peng Wang
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,c College of Food Science , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Na Wang
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,d College of Food , Shenyang Agricultural University , Shenyang , Liaoning , China
| | - Shu Yang
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,d College of Food , Shenyang Agricultural University , Shenyang , Liaoning , China
| | - Zhigang Xiao
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,c College of Food Science , Northeast Agricultural University , Harbin , Heilongjiang , China
| |
Collapse
|
16
|
Gómez M, Martinez MM. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit Rev Food Sci Nutr 2017; 58:2119-2135. [DOI: 10.1080/10408398.2017.1305946] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain
| | - Mario M. Martinez
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
17
|
Gold-Smith F, Fernandez A, Bishop K. Mangiferin and Cancer: Mechanisms of Action. Nutrients 2016; 8:E396. [PMID: 27367721 PMCID: PMC4963872 DOI: 10.3390/nu8070396] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/30/2016] [Accepted: 06/22/2016] [Indexed: 01/30/2023] Open
Abstract
Mangiferin, a bioactive compound derived primarily from Anacardiaceae and Gentianaceae families and found in mangoes and honeybush tea, has been extensively studied for its therapeutic properties. Mangiferin has shown promising chemotherapeutic and chemopreventative potential. This review focuses on the effect of mangiferin on: (1) inflammation, with respect to NFκB, PPARү and the immune system; (2) cell cycle, the MAPK pathway G₂/M checkpoint; (3) proliferation and metastasis, and implications on β-catenin, MMPs, EMT, angiogenesis and tumour volume; (4) apoptosis, with a focus on Bax/Bcl ratios, intrinsic/extrinsic apoptotic pathways and telomerase activity; (5) oxidative stress, through Nrf2/ARE signalling, ROS elimination and catalase activity; and (6) efficacy of chemotherapeutic agents, such as oxaliplatin, etoposide and doxorubicin. In addition, the need to enhance the bioavailability and delivery of mangiferin are briefly addressed, as well as the potential for toxicity.
Collapse
Affiliation(s)
- Fuchsia Gold-Smith
- Auckland Cancer Society Research Center, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Alyssa Fernandez
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Karen Bishop
- Auckland Cancer Society Research Center, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
18
|
Characterization of physicochemical properties in whole wheat bread after incorporation of ripe mango peel. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9335-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Introduction to the special issue Byproducts from agri-food industry: New strategies for their revalorization. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|