1
|
Yang C, Ge X, Ge C, Zhao P, Liang S, Xiao Z. Taste characterization and molecular docking study of novel umami flavor peptides in Yanjin black bone Chicken meat. Food Chem 2025; 464:141695. [PMID: 39461308 DOI: 10.1016/j.foodchem.2024.141695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Five polypeptides with a potential umami taste were isolated and purified from Yanjin black bone chicken. However, the flavor characteristics and umami mechanism have not been clarified. The umami properties of these five peptides were investigated in this work using a range of analytical techniques, computer simulation, and sensory evaluation. HE-10 and TP-7 exhibited the strongest umami flavors. Furthermore, dose-response experiments showed that the umami peptides enhanced umami by generating peptide mineral chelates. Environmental scanning electron microscopy (ESEM) microstructural analyses supported this finding. The molecular docking results indicated that the five polypeptides bind to four critical amino acid residues, namely Glu217, Glu148, Asp216, and His145, of the T1R1/T1R3 receptor. The binding occurred through van der Waals, electrostatic interactions, hydrogen bonding, and hydrophobic interactions. The main surface forces implicated include aromatic interactions, hydrogen bonding, hydrophilicity, and solvent accessibility.
Collapse
Affiliation(s)
- Chaohui Yang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuehai Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- Yunnan Agricultural University, Kunming 650201, China
| | - Ping Zhao
- Yunnan Agricultural University, Kunming 650201, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Feng J, Huang Z, Cui C, Zhao M, Feng Y. Synthesis, taste characteristics and taste mechanism of N-lactoyl leucine from soy sauce using sensory analysis and UPLC-MS/MS. Food Chem 2024; 454:139670. [PMID: 38820630 DOI: 10.1016/j.foodchem.2024.139670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Recently, amino acid derivatives gradually gained attention, but studies on N-lactoyl-leucine (Lac-Leu) and N-lactoyl-isoleucine (Lac-Ile) are limited. This study aims to explore the contributions of Lac-Leu and Lac-Ile to soy sauce. Lac-Leu and Lac-Ile were synthesized via enzymatic synthesis method catalyzed by Tgase. The mixed solutions containing Lac-Leu were found to have greater taste improvement than those containing Lac-Ile. Sensory evaluation indicated the sour, bitter, and astringent taste of Lac-Leu in water as well as its kokumi, astringent, and umami-enhancing taste in MSG solution. The taste threshold and umami-enhancing threshold of Lac-Leu measured by TDA and cTDA, respectively, were 0.08 mg/mL and 0.16 mg/mL. Molecular docking of Lac-Leu and Lac-Ile with the kokumi receptor CaSR and the umami receptors T1R1 and T1R3 indicated that Lac-Leu had higher affinities with receptors than Lac-Ile. These findings demonstrated the underlying contribution Lac-Leu made to soy sauce, indicating its potential to improve the flavor quality of soy sauce.
Collapse
Affiliation(s)
- Junwei Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
3
|
Poddar S, Yu J. Angiotensin-Converting Enzyme and Renin-Inhibitory Activities of Protein Hydrolysates Produced by Alcalase Hydrolysis of Peanut Protein. Int J Mol Sci 2024; 25:7463. [PMID: 39000571 PMCID: PMC11242875 DOI: 10.3390/ijms25137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Hypertension is a major controllable risk factor associated with cardiovascular disease (CVD) and overall mortality worldwide. Most people with hypertension must take medications that are effective in blood pressure management but cause many side effects. Thus, it is important to explore safer antihypertensive alternatives to regulate blood pressure. In this study, peanut protein concentrate (PPC) was hydrolyzed with 3-5% Alcalase for 3-10 h. The in vitro angiotensin-converting enzyme (ACE) and renin-inhibitory activities of the resulting peanut protein hydrolysate (PPH) samples and their fractions of different molecular weight ranges were determined as two measures of their antihypertensive potentials. The results show that the crude PPH produced at 4% Alcalase for 6 h of hydrolysis had the highest ACE-inhibitory activity with IC50 being 5.45 mg/mL. The PPH samples produced with 3-5% Alcalase hydrolysis for 6-8 h also displayed substantial renin-inhibitory activities, which is a great advantage over the animal protein-derived bioactive peptides or hydrolysate. Remarkably higher ACE- and renin-inhibitory activities were observed in fractions smaller than 5 kDa with IC50 being 0.85 and 1.78 mg/mL. Hence, the PPH and its small molecular fraction produced under proper Alcalase hydrolysis conditions have great potential to serve as a cost-effective anti-hypertensive ingredient for blood pressure management.
Collapse
Affiliation(s)
- Sukanya Poddar
- Food and Nutritional Sciences Program, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Jianmei Yu
- Food and Nutritional Sciences Program, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
4
|
Xiang Q, Xia Y, Fang S, Zhong F. Enzymatic debittering of cheese flavoring and bitterness characterization of peptide mixture using sensory and peptidomics approach. Food Chem 2024; 440:138229. [PMID: 38159315 DOI: 10.1016/j.foodchem.2023.138229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Peptides in cheese flavoring produced through proteolysis plus fermentation generated bitterness. Bitterness of individual peptide can be quantified using quantitative structure-activity relationship, where molecular mass (M), hydrophobicity, residues, C-terminal hydrophobic amino acids (C-HAAs), and N-terminal basic ones (N-BAAs) are crucial. However, their accumulative influence on the overall bitterness of peptide mixture remains unknown. This study delved into extensive proteolysis to debitter and to correlate the multi-influencing factors of peptides and the collective bitterness. As hydrolysis increased from 7.5 % to 28.0 %, bitterness reduced from 5.0 to 0.3-2.7 scores, contingent on proteases used, in which FU was optimal. The overall bitterness cannot be predicted through the summation of individual peptide bitterness, which depended on M (0.5-3 kDa) and 5-23 residues, followed by N-BAAs and C-HAAs. Analysis of enzymatic cleavage sites and substrate characteristics revealed, to more effectively debitter bovine milk protein hydrolysates, proteases specifically cleaving Pro, Leu, Phe, and Val were desired.
Collapse
Affiliation(s)
- Qin Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yixun Xia
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiaxing Institute of Future Food, Jiaxing 314015, China
| | - Sicong Fang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Zare N, Sedighi M, Jalili H, Zare H, Maftoon Azad N. Evaluation of fig-milk dessert bioactive properties as a potential functional food. Food Sci Nutr 2024; 12:2692-2701. [PMID: 38628184 PMCID: PMC11016442 DOI: 10.1002/fsn3.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 04/19/2024] Open
Abstract
The fig-milk dessert, a traditional and nutritionally rich treat infused with bioactive compounds, was subjected to a comprehensive analysis in this study. The novelty of this research lies in the investigation of the in vitro antioxidant, anticancer, and antimicrobial potential of the fig-milk dessert. This was accomplished through the utilization of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, Annexin/propidium iodide staining, microtiter plate-based assay and agar well diffusion, respectively, for the first time. Additionally, the study assessed the total phenols and flavonoid content of the extract using the Folin-Ciocalteu assay and the aluminum chloride method, respectively. The findings revealed that the cooking method exerted a significant influence on the bioactive properties and nutritional composition of the dessert. Among the samples analyzed, CM1, consisting of figs steamed for 2 min and milk heated to 70°C, exhibited remarkable characteristics. This sample demonstrated the highest peptide concentration (1290 mg/L), superior antioxidant and anticancer activities, and favorable sensory attributes. Specifically, CM1 induced apoptosis in 84% of AGS cells and inhibited 68% of free radicals in the DPPH assay. It is noteworthy that the fig-milk dessert did not exhibit any antibacterial properties. These discerning results carry substantial implications for the development of functional dairy products endowed with both nutritional and potential therapeutic properties.
Collapse
Affiliation(s)
- Niloofar Zare
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of PharmacyBirjand University of Medical SciencesBirjandIran
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Hasan Jalili
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
| | - Hamid Zare
- Fig Research Station, Fars Agricultural and Natural Resources Research and Education Center, AREEOEstahbanIran
| | - Neda Maftoon Azad
- Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education CenterAgricultural Research, Education and Extension Organization (AREEO)ShirazIran
| |
Collapse
|
6
|
Iwaniak A, Minkiewicz P, Darewicz M. Bioinformatics and bioactive peptides from foods: Do they work together? ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 108:35-111. [PMID: 38461003 DOI: 10.1016/bs.afnr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
We live in the Big Data Era which affects many aspects of science, including research on bioactive peptides derived from foods, which during the last few decades have been a focus of interest for scientists. These two issues, i.e., the development of computer technologies and progress in the discovery of novel peptides with health-beneficial properties, are closely interrelated. This Chapter presents the example applications of bioinformatics for studying biopeptides, focusing on main aspects of peptide analysis as the starting point, including: (i) the role of peptide databases; (ii) aspects of bioactivity prediction; (iii) simulation of peptide release from proteins. Bioinformatics can also be used for predicting other features of peptides, including ADMET, QSAR, structure, and taste. To answer the question asked "bioinformatics and bioactive peptides from foods: do they work together?", currently it is almost impossible to find examples of peptide research with no bioinformatics involved. However, theoretical predictions are not equivalent to experimental work and always require critical scrutiny. The aspects of compatibility of in silico and in vitro results are also summarized herein.
Collapse
Affiliation(s)
- Anna Iwaniak
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland.
| | - Piotr Minkiewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| |
Collapse
|
7
|
Li R, Hu Y, Xu Y, Zhou J, Li Y, Liu Q, Yu B. Safety assessment, whole genome sequence, and metabolome analysis of Streptococcus thermophilus CICC 20372 for bone cement fermentation. Arch Microbiol 2023; 206:21. [PMID: 38095705 DOI: 10.1007/s00203-023-03737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Bone is a kind of meat processing by-product with high nutritional value but low in calorie, which is a typical food in China and parts of East Asian countries. Microbial fermentation by lactic acid bacteria showed remarkable advantages to increase the absorption of nutrients from bone cement by human body. Streptococcus thermophilus CICC 20372 is proven to be a good starter for bone cement fermentation. No genes encoding virulence traits or virulence factors were found in the genome of S. thermophilus CICC 20372 by a thorough genomic analysis. Its notable absence of antibiotic resistance further solidifies the safety. Furthermore, the genomic analysis identified four types of gene clusters responsible for the synthesis of antimicrobial metabolites. A comparative metabolomic analysis was performed by cultivating the strain in bone cement at 37 °C for 72 h, with the culture in de Man, Rogosa, and Sharpe (MRS) medium as control. Metabolome analysis results highlighted the upregulation of pathways involved in 2-oxocarboxylic acid metabolism, ATP-binding cassette (ABC) transporters, amino acid synthesis, and nucleotide metabolism during bone cement fermentation. S. thermophilus CICC 20372 produces several metabolites with health-promoting function during bone cement fermentation, including indole-3-lactic acid, which is demonstrated ameliorative effects on intestinal inflammation, tumor growth, and gut dysbiosis. In addition, lots of nucleotide and organic acids were accumulated at higher levels, which enriched the fermented bone cement with a variety of nutrients. Collectively, these features endow S. thermophilus CICC 20372 a great potential strain for bone food processing.
Collapse
Affiliation(s)
- Rongshan Li
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Hohhot, 011500, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yangfan Hu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Xu
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Hohhot, 011500, China
| | - Jinlong Zhou
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Hohhot, 011500, China
| | - Yunfang Li
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Hohhot, 011500, China
| | - Qing Liu
- General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Song C, Wang Z, Li H, Cao W, Chen Z, Zheng H, Gao J, Lin H, Zhu G. Recent advances in taste transduction mechanism, analysis methods and strategies employed to improve the taste of taste peptides. Crit Rev Food Sci Nutr 2023; 65:695-714. [PMID: 37966171 DOI: 10.1080/10408398.2023.2280246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Taste peptides are oligopeptides that enhance both aroma and taste of food, and they are classified into five categories based on their taste characteristics: salty, sour, umami, sweet, bitter, and kokumi peptide. Recently, taste peptides have attracted the attention of several fields of research in food science and commercial applications. However, research on taste receptors of taste peptides and their taste transduction mechanisms are not clearly understood and we present a comprehensive review about these topics here. This review covers the aspects of taste peptides perceived by their receptors in taste cells, the proposed transduction pathway, as well as structural features of taste peptides. Apart from traditional methods, molecular docking, peptidomic analysis, cell and animal models and taste bud biosensors can be used to explore the taste mechanism of taste peptides. Furthermore, synergistic effect, Maillard reaction, structural modifications and changing external environment are employed to improve the taste of taste peptides. Consequently, we discussed the current challenges and future trends in taste peptide research. Based on the summarized developments, taste peptides derived from food proteins potentially appear to be important taste substances. Their applications meet the principles of "safe, nutritious and sustainable" in food development.
Collapse
Affiliation(s)
- Chunyong Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhijun Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Hanqi Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Guoping Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
| |
Collapse
|
9
|
Jia R, He Y, Liao G, Yang Z, Gu D, Pu Y, Huang M, Wang G. Identification of umami peptides from Wuding chicken by Nano-HPLC-MS/MS and insights into the umami taste mechanisms. Food Res Int 2023; 172:113208. [PMID: 37689849 DOI: 10.1016/j.foodres.2023.113208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Wuding chicken is popular with consumers in China because of its umami taste. This study aimed to identify novel umami peptides from Wuding chicken and explore the taste mechanism of umami peptides. The molecular masses and amino acid compositions of peptides in Wuding chicken were identified by nano-scale liquid chromatography-tandem mass spectrometry (Nano-HPLC-MS/MS). The taste characteristics of the peptides synthesized by the solid-phase method were evaluated by sensory evaluation combined with electronic tongue technology. The secondary structure of the peptides was further analyzed by circular dichroism (CD), and the relationship between the structure and taste of the peptides was elucidated by molecular docking. The results showed that eight potential umami peptides were identified, among which FVT (FT-3), LDF (LF-3), and DLAGRDLTDYLMKIL (DL-15) had distinct umami tastes, and FT-3 had the highest umami intensity, followed by LF-3 and DL-15. The relative contents of β-sheets in the three umami peptides were 55.20%, 57.30%, and 47.70%, respectively, which were the key components of Wuding chicken umami peptides. In addition to LF-3 embedded in the cavity-binding domain of the TIR1, both FT-3 and DL-15 were embedded in the venus flytrap domain (VFTD) of the T1R3 to bind the umami receptor T1R1/T1R3. The main binding forces between the umami peptides and the umami receptor T1R1/T1R3 relied on hydrogen bonds and hydrophobic interactions, and the key amino acid residues of the combination of umami peptides and the umami receptor T1R1/T1R3 were Glu292, Asn235, and Tyr262.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ying He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| | - Zijiang Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Dahai Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yuehong Pu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
10
|
Zhang J, Toldrá F, Zhang W, Yin Y, Zhu Z. Study on the effects and mechanisms of ultrasound on the peptide profile and taste of unsmoked bacon using peptidomics and bioinformatics. Food Chem 2023; 414:135764. [PMID: 36842205 DOI: 10.1016/j.foodchem.2023.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
The ultrasound-induced impacts on the peptide characteristics and taste of unsmoked bacon have been evaluated through the use of peptidomics and bioinformatics approaches. Furthermore, the effect of such ultrasound-induced changes on the main endogenous proteases responsible for peptide generation was also investigated. In fact, the activity of main endogenous proteases was significantly increased after ultrasonic treatment during the processing of unsmoked bacon, and contributed to an increased number and an enhanced LFQ intensity of peptides. Besides, such increased amount of peptides and LFQ intensity with up to 500 W ultrasonic treatment were beneficial for the taste improvement of the final products as shown by taste prediction analysis. Nevertheless, an excessive ultrasonic power like 750 W hindered protein hydrolysis and further exerted a negative effect on peptide generation. Therefore, ultrasound under controlled conditions could be considered as a promising way to improve the taste of unsmoked bacon.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zihan Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
11
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
12
|
A mechanistic investigation on kokumi-active γ-Glutamyl tripeptides – A computational study to understand molecular basis of their activity and to identify novel potential kokumi-tasting sequences. Food Res Int 2022; 162:111932. [DOI: 10.1016/j.foodres.2022.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
|
13
|
Liu B, Li N, Chen F, Zhang J, Sun X, Xu L, Fang F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Compr Rev Food Sci Food Saf 2022; 21:5153-5170. [PMID: 36287032 DOI: 10.1111/1541-4337.13050] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Recent scientific evidence indicates that protein hydrolysates contain bioactive peptides that have potential benefits for human health. However, the bitter-tasting hydrophobic peptides in protein hydrolysates negatively affect the sensory quality of resulting products and limit their utilization in food and pharmaceutical industries. The approaches to reduce, mask, and remove bitter taste from protein hydrolysates have been extensively reported. This review paper focuses on the advances in the knowledge regarding the structure-bitterness relationship of peptides, the release mechanism of bitter peptides, and the debittering methods for protein hydrolysates. Bitter tastes generating with enzymatic hydrolysis of protein is influenced by the type, concentration, and bitter taste threshold of bitterness peptides. A "bell-shaped curve" is used to describe the relationship between the bitterness intensity of the hydrolysates and the degree of hydrolysis. The bitter receptor perceives bitter potencies of bitter peptides by the hydrophobicity recognition zone. The intensity of bitterness is influenced by hydrophobic and electronic properties of amino acids and the critical spatial structure of peptides. Compared to physicochemical debittering (i.e., selective separation, masking of bitter taste, encapsulation, Maillard reaction, and encapsulation) and other biological debittering (i.e., enzymatic hydrolysis, enzymatic deamidation, plastein reaction), enzymatic hydrolysis is a promising debittering approach as it combines protein hydrolyzation and debittering into a one-step process, but more work should be done to advance the knowledge on debittering mechanism of enzymatic hydrolysis and screening of suitable proteases. Further study can focus on combining physicochemical and biological approaches to achieve high debittering efficiency and produce high-quality products.
Collapse
Affiliation(s)
- Boye Liu
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Nana Li
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210014, People's Republic of China
| | - Xiaorui Sun
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Lei Xu
- Nestlé Product Technology Center, Nestlé Health Science, Bridgewater, NJ, 08807, USA
| | - Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
Hu Y, Xiao N, Ye Y, Shi W. Fish proteins as potential precursors of taste-active compounds: an in silico study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6404-6413. [PMID: 35562847 DOI: 10.1002/jsfa.12006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fish protein is a good source of amino acids and peptides with sensory properties. Theoretically, the type of protein affects the taste quality of the protein hydrolysates. To better use fish protein in the food ingredients industry, an in silico approach was adopted to evaluate the potential of fish protein to release taste-active compounds. RESULTS Six types of protein from seven commercial fishes were screened from the Uniprot knowledge base. The results showed that a remarkable number of umami fragments presented in myosin and parvalbumin (PB), such as glutamic acid (Glu), aspartic acid (Asp), and Asp- and Glu- containing peptides, whereas sweet amino acids and bitter peptides (e.g., Pro- and Gly- containing peptides) were mainly found in collagen (CGI) in all fish samples. After the in silico proteolysis by papain, a difference in the profile of taste-active fragments was observed among the six types of proteins. Amino acids were the main hydrolysis products of these proteins, especially umami, sweet, and bitter amino acids, significantly contributing to the taste formation of protein hydrolysates. Besides, the myosin and CGI hydrolysates were abundant in taste active peptides both in types and quantities. CONCLUSION Myosin is a promising protein source for producing umami fragments, and CGI seems to be a good precursor of sweet and bitter fragments. Different types of protein have an essential effect on the taste of protein hydrolysates. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yiting Ye
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
15
|
Sharififar F, Ashrafzadeh A, Kavirimanesh Khanaman M. A Review of Natural Peptide Sweeteners. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Sun X, Zheng J, Liu B, Huang Z, Chen F. Characteristics of the enzyme-induced release of bitter peptides from wheat gluten hydrolysates. Front Nutr 2022; 9:1022257. [PMID: 36267904 PMCID: PMC9577220 DOI: 10.3389/fnut.2022.1022257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Bitter peptides in the enzymatic hydrolysates were prepared and purified from wheat gluten using aqueous ethanol solutions and macroporous resin, which has opened a new road for the extraction and separation of bitter peptides. This report contains the release regularity of bitter peptides and the factors affecting the change of bitter intensity during enzymatic hydrolysis, providing a scientific basis for the research on debitterizing method. In this study, the effects of different degrees of hydrolysis (DH) and enzyme active sites on the bitter peptide content and bitter taste thresholds were discussed. The relationship between amino acid composition, molecular weight distribution, surface hydrophobicity and bitter taste thresholds was extensively researched. The results showed the exposure of hydrophobic amino acids and the bitterness intensity of the hydrolysates increased as the DH increased, and the bitterness of wheat gluten hydrolysates (WGHs) hydrolyzed by Alcalase was stronger than that of Trypsin. According to correlation analysis, the proportion of total hydrophobic amino acid is the first factor that affects the sensory properties of bitter peptide, and the release content of bitter peptides and the content of total bitter amino acids are the second, following by the content of peptide in the molecular weight range of 500–1,000 Da and the surface hydrophobicity. The amino acid sequence of bitter peptides from WGHs were identified and predicted using high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) and bioinformatics. It was found that the molecular weight of most of the peptides was below 1,500 Da, and the Q value was higher than 5.86 kJ/mol.
Collapse
Affiliation(s)
- Xiaorui Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jiayi Zheng
- School of International Education, Henan University of Technology, Zhengzhou, China
| | - Boye Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,*Correspondence: Boye Liu
| | - Zehua Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,Fusheng Chen
| |
Collapse
|
17
|
Munawaroh HSH, Gumilar GG, Berliana JD, Aisyah S, Nuraini VA, Ningrum A, Susanto E, Martha L, Kurniawan I, Hidayati NA, Koyande AK, Show PL. In silico proteolysis and molecular interaction of tilapia (Oreochromis niloticus) skin collagen-derived peptides for environmental remediation. ENVIRONMENTAL RESEARCH 2022; 212:113002. [PMID: 35305983 DOI: 10.1016/j.envres.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Fish skin collagen hydrolyzate has demonstrated the potent inhibition of dipeptidyl peptidase-IV (DPP-IV), one of the treatments for type-2 diabetes mellitus (type-2 DM), but the precise mechanism is still unclear. This study used in silico method to evaluate the potential of the active peptides from tilapia skin collagen (Oreochromis niloticus) for DPP-IV inhibitor. The methodology includes collagen hydrolysis using BIOPEP, which is the database of bioactive peptides; active peptide selection; toxicity, allergenicity, sensory analysis of active peptides; and binding of active peptides to DPP-IV compared with linagliptin. The result indicated that in silico enzymatic hydrolysis of collagen produced active peptides with better prediction of biological activity than intact collagen. There are 13 active peptides were predicted as non-toxic and non-allergenic, some of which have a bitter, salty, and undetectable taste. Docking simulations showed all active peptides interacted with DPP-IV through hydrogen bonds, van der Waals force, hydrophobic interaction, electrostatic force, π-sulfur, and unfavorable interaction, where WF (Trp-Phe), VW (Val-Trp), WY (Trp-Tyr), and WG (Trp-Gly) displayed higher binding affinities of 0.8; 0.5; 0.4; and 0.3 kcal/mol compared with linagliptin. In this study, we successfully demonstrated antidiabetic type-2 DM potential of the active peptides from tilapia skin collagen. The obtained data provided preliminary data for further research in the utilization of fish skin waste as a functional compound to treat the type-2 DM patients. Alternatively, this treatment can be synergistically combined with the available antidiabetic drugs to improve the insulin secretion of the type-2 DM patients.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Jerlita Dea Berliana
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Siti Aisyah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Vidia Afina Nuraini
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, 5528, Indonesia
| | - Eko Susanto
- Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
| | - Larasati Martha
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi City, Gunma, 371-8514, Japan
| | - Isman Kurniawan
- School of Computing, Telkom University, Jalan Terusan Buah Batu, Bandung, 40257, Indonesia
| | - Nur Akmalia Hidayati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia.
| |
Collapse
|
18
|
Physicochemical, Functional, and Technological Properties of Protein Hydrolysates Obtained by Microbial Fermentation of Broiler Chicken Gizzards. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fermentation is an economical method for obtaining protein hydrolysates. The purpose of the scientific research was to perform a comprehensive analysis of the physicochemical, technological, and functional properties of protein hydrolysates obtained by microbial fermentation. The research results showed that hydrolysates fermented with propionic acid bacteria and bifidobacteria have better physicochemical and technological indicators compared to the control sample. Significant increases in water-holding and fat-holding capacities (by 1.8–2.1 times and 1.5–2.5 times, respectively), as well as fat-emulsifying ability (by 12.8–29.8%) in experimental samples were found. Hydrolysates obtained by fermentation effectively inhibit the growth of Escherichia coli and Staphylococcus aureus. The thermal analysis showed a sufficiently high-thermal stability of the obtained protein hydrolysates. In hydrolysates fermented by bacterial culture, the removal of physico-mechanical and osmotically bound moisture occurred at temperatures of 110 °C and 115 °C, respectively, and in whey protein hydrolysate at a temperature of 100 °C. The release of chemically bound moisture was observed at a temperature of 170 °C for fermented hydrolysates and at 155 °C for the control sample. The results proved that fermented protein products are characterized by high functional properties, antioxidant and antimicrobial activity, and can be used as natural food additives and preservatives.
Collapse
|
19
|
Characterization of Peanut Protein Hydrolysate and Structural Identification of Umami-Enhancing Peptides. Molecules 2022; 27:molecules27092853. [PMID: 35566204 PMCID: PMC9102854 DOI: 10.3390/molecules27092853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Umami peptides are naturally found in various foods and have been proven to be essential components contributing to food taste. Defatted peanut powder hydrolysate produced by a multiprotease (Flavorzyme, Alcalase, and Protamex) was found to elicit an umami taste and umami-enhancing effect. The taste profiles, hydrolysis efficiency, amino acids, molecular weight distribution, Fourier transform infrared spectroscopy (FT-IR), and separation fractions obtained by ultrafiltration were evaluated. The results showed that peanut protein was extensively hydrolyzed to give mainly (up to 96.84%) free amino acids and peptides with low molecular weights (<1000 Da). Furthermore, β-sheets were the major secondary structure. Fractions of 1−3000 Da and <1000 Da prominently contributed to the umami taste and umami enhancement. To obtain umami-enhancing peptides, these two fractions were further purified by gel filtration chromatography, followed by sensory evaluation. These peptides were identified as ADSYRLP, DPLKY, EAFRVL, EFHNR, and SDLYVR by ultra-performance liquid chromatography (UPLC), and had estimated thresholds of 0.107, 0.164, 0.134, 0.148, and 0.132 mmol/L, respectively. According to the results of this work, defatted peanut powder hydrolysate had an umami taste and umami-enhancing effect, and is a potential excellent umami peptide precursor material for the food industry.
Collapse
|
20
|
Zioga E, Tøstesen M, Kjærulf Madsen S, Shetty R, Bang-Berthelsen CH. Bringing plant-based Cli-meat closer to original meat experience: insights in flavor. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
21
|
Zhang N, Liu H, Zhou X, Wang W, Fan Y, Liu Y. Taste and stability characteristics of two key umami peptides from pufferfish (Takifugu obscurus). Food Chem 2022; 371:131124. [PMID: 34563972 DOI: 10.1016/j.foodchem.2021.131124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023]
Abstract
Takifugu obscurus (T. obscurus) is known for its umami taste. Two taste-active peptides, Pro-Val-Ala-Arg-Met-Cys-Arg (PR-7) and Tyr-Gly-Gly-Thr-Pro-Pro-Phe-Val (YV-8), were proved as key compounds that contributed to the typical taste of T. obscurus. However, whether these peptides have the potential as umami supplements is unknown. The purpose of this study was to investigate the taste characteristics of PR-7 and YV-8, as well as stability at different pH values by sensory evaluation, instrumental analysis and quantum chemical calculation. The results indicated that PR-7 and YV-8 presented umami taste at near neutral pH (6.5-8.0) and had umami-enhancing effects. PR-7 also exhibited significant kokumi activity. Additionally, two peptides showed remarkable stability after different pH treatments, especially YV-8; this may be related to its stable structural property. All the results suggest that both peptides have great potential to be applied in complex foods to provide desirable taste, and act as a feasible alternative to monosodium l-glutamate.
Collapse
Affiliation(s)
- Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hai Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xirui Zhou
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuxia Fan
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
22
|
Gallego M, Toldrá F, Mora L. Quantification and in silico analysis of taste dipeptides generated during dry-cured ham processing. Food Chem 2022; 370:130977. [PMID: 34509941 DOI: 10.1016/j.foodchem.2021.130977] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Small peptides such as dipeptides contribute to a great extent to the characteristic taste of dry-cured hams. In this study, hydrophilic interaction liquid chromatography (HILIC) combined to tandem mass spectrometry was used to separate, identify, and quantify seven dipeptides in dry-cured hams sampled at different processing times (6, 12, 18, and 24 months). Results showed an increased concentration of dipeptides DA, DG, EE, ES, and EV with the length of processing, obtaining values up to 23 μg/g of dry-cured ham, which suggests an intense action of muscle enzymes dipeptidyl peptidases during the process. The dipeptide VG significantly decreased from 7 to 4 μg/g of dry-cured ham as the processing increased from 6 to 24 months, whereas the dipeptide PA showed low values between 380 and 550 ng/g of dry-cured ham at all the sampling times. Additionally, in silico analyses reported the sensory characteristics of the studied dipeptides, mostly giving bitter and umami taste, and predicted their allergenicity, toxicity, and physicochemical properties. These results could be useful for further studies related to the pleasant taste of dry-cured hams.
Collapse
Affiliation(s)
- Marta Gallego
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
23
|
Investigation of Microbial Hydrolysis of Hen Combs with Bacterial Concentrates. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
When slaughtering and processing poultry, large quantities of meat by-products are generated; therefore, the development of the newest methods for processing secondary raw materials is an urgent problem. Animal proteins have relevant technological applications and are also considered as a potential source of bioactive peptides. Current technologies suggested that protein substances can be isolated from meat co-products through microbial hydrolysis. The purpose of the study was to optimize the technological parameters of microbial hydrolysis of hen combs and to analyze the modification of the microstructure and properties of hydrolyzed by-products under the action of bacterial enzymes. Hen’s combs were hydrolyzed by bifidobacteria and concentrated Propionix liquid. A multifactorial experiment was used to determine the optimal conditions for the hydrolysis process. As a result of the study, multiple regression equations and response surfaces were obtained, which describe the process of hydrolysis of hen combs to identify the optimal hydrolysis parameters. Temperature, amount of bacterial concentrate and hydrolysis period are factors that have a significant impact on the degree of hydrolysis. The results of microscopic and dispersed analysis confirm the good hydrolyzability of combs due to changes in structural components and an increase in the amount of smaller protein particles.
Collapse
|
24
|
Zhao F, Qian J, Liu H, Wang C, Wang X, Wu W, Wang D, Cai C, Lin Y. Quantification, identification and comparison of oligopeptides on five tea categories with different fermentation degree by Kjeldahl method and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry. Food Chem 2022; 378:132130. [PMID: 35033704 DOI: 10.1016/j.foodchem.2022.132130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 11/04/2022]
Abstract
Peptides with different lengths or amino sequences could have specific tastes or bio-activities. So far, either the quantity or pattern differences of peptide among various of teas were unknown. Here, firstly, we developed a method for tea oligopeptide quantification and made comparison of their contents. Secondly, we applied ultra-high performance liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry (UHPLC-Quadrupole-Orbitrap-UHRMS) to sequence oligopeptides. As a result, the total amount of oligopeptides in white tea and dark tea were higher, followed by black tea and green tea, finally with oolong tea. It suggested that withering which undergoes with endogenous protease and post-fermented that undergoes with a participation of exotic micro-organisms were key in oligopeptide enrichment. Thirdly, a total of 902 abundant identified peptides, most of which were tripeptide, tetrapeptide, pentapeptide, and hexapeptide were screened against several existing peptide databases. There were a series of taste peptides and bio-active peptides existing.
Collapse
Affiliation(s)
- Feng Zhao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Key Laboratory of Chinese Pharmacies of Fujian Provincial Department of Science and Technology, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory for Research and Development of Traditional Chinese Medicine Resources, Fuzhou, Fujian 350122, China.
| | - Jiang Qian
- Technology Center of Fuzhou Customs District P. R. China, Fuzhou, Fujian 350002, China
| | - Hui Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chi Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaojuan Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wenxi Wu
- Fujian Hengzheng Testing Technology Co., Ltd., Fuzhou, Fujian 350002, China
| | - Danhong Wang
- Technology Center of Fuzhou Customs District P. R. China, Fuzhou, Fujian 350002, China
| | - Chunping Cai
- Technology Center of Fuzhou Customs District P. R. China, Fuzhou, Fujian 350002, China
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Key Laboratory of Chinese Pharmacies of Fujian Provincial Department of Science and Technology, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory for Research and Development of Traditional Chinese Medicine Resources, Fuzhou, Fujian 350122, China.
| |
Collapse
|
25
|
Shuli Z, Linlin L, Li G, Yinghu Z, Nan S, Haibin W, Hongyu X. Bioinformatics and Computer Simulation approaches to the discovery and analysis of Bioactive Peptides. Curr Pharm Biotechnol 2022; 23:1541-1555. [PMID: 34994325 DOI: 10.2174/1389201023666220106161016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
The traditional process of separating and purifying bioactive peptides is laborious and time-consuming. Using a traditional process to identify is difficult, and there is a lack of fast and accurate activity evaluation methods. How to extract bioactive peptides quickly and efficiently is still the focus of bioactive peptides research. In order to improve the present situation of the research, bioinformatics techniques and peptidome methods are widely used in this field. At the same time, bioactive peptides have their own specific pharmacokinetic characteristics, so computer simulation methods have incomparable advantages in studying the pharmacokinetics and pharmacokinetic-pharmacodynamic correlation models of bioactive peptides. The purpose of this review is to summarize the combined applications of bioinformatics and computer simulation methods in the study of bioactive peptides, with focuses on the role of bioinformatics in simulating the selection of enzymatic hydrolysis and precursor proteins, activity prediction, molecular docking, physicochemical properties, and molecular dynamics. Our review shows that new bioactive peptide molecular sequences with high activity can be obtained by computer-aided design. The significance of the pharmacokinetic-pharmacodynamic correlation model in the study of bioactive peptides is emphasized. Finally, some problems and future development potential of bioactive peptides binding new technologies are prospected.
Collapse
Affiliation(s)
- Zhang Shuli
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Liu Linlin
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Gao Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Zhao Yinghu
- School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi, 030051, China
| | - Shi Nan
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Wang Haibin
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Xu Hongyu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| |
Collapse
|
26
|
Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Due to the rapid growth in the global population, the consumption of animal-based food products/food compounds has been associated with negative implications for food sustainability/security. As a result, there is an increasing demand for the development of plant-based food and compounds as alternatives. Meanwhile, a growing number of studies report the health benefits of food protein-based peptides prepared via enzymatic hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive, anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some peptides hinders their application in food products as ingredients. This article aims to provide the latest findings on plant-based bioactive peptides, particularly their health benefits, manufacturing methods, detection and qualification of their bitterness properties, as well as debittering methods to reduce or eliminate this negative sensory characteristic. However, there is still a paucity of research on the biological property of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides to meet the health targets of the Sustainable Development Goals can only be realised if advances are made in the industrial-scale bioprocessing and debittering of these peptides.
Collapse
|
27
|
Characterization of Umami Dry-Cured Ham-Derived Dipeptide Interaction with Metabotropic Glutamate Receptor (mGluR) by Molecular Docking Simulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dry-cured ham-derived dipeptides, generated along a dry-curing process, are of high importance since they play a role in flavor development of dry-cured ham. The objective of this study was to analyze the residues of the less-studied metabotropic glutamate receptor 1 (mGluR1) implicated in the recognition of umami dry-cured ham dipeptides by molecular docking simulation using the AutoDock Suite tool. AH, DA, DG, EE, ES, EV, and VG (and glutamate) were found to attach the enzyme with inhibition constants ranging from 12.32 µM (AH) to 875.75 µM (ES) in the case if Rattus norvegicus mGluR1 and 17.44 µM (VG) to 294.68 µM (DG) in the case of Homo sapiens, in the open–open conformations. Main interactions were done with key receptor residues Tyr74, Ser186, Glu292, and Lys409; and Ser165, Ser186, and Asp318, respectively, for the two receptors in the open–open conformations. However, more residues may be involved in the complex stabilization. Specifically, AH, EE and ES relatively established a higher number of H-bonds, but AH, EV, and VG presented relatively lower Ki values in all cases. The results obtained here could provide information about structure and taste relationships and constitute a theoretical reference for the interactions of novel umami food-derived peptides.
Collapse
|
28
|
Bo W, Chen L, Qin D, Geng S, Li J, Mei H, Li B, Liang G. Application of quantitative structure-activity relationship to food-derived peptides: Methods, situations, challenges and prospects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Toldrá F, Reig M, Mora L. Management of meat by- and co-products for an improved meat processing sustainability. Meat Sci 2021; 181:108608. [PMID: 34171788 DOI: 10.1016/j.meatsci.2021.108608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Large amounts of meat by- and co-products are generated during slaughtering and meat processing, and require rational management of these products for an ecological disposal. Efficient solutions are very important for sustainability and innovative developments create high added-value from meat by-products with the least environmental impact, handling and disposal costs, in its transition to bioeconomy. Some proteins have relevant technological uses for gelation, foaming and emulsification while protein hydrolyzates may contribute to a better digestibility and palatability. Protein hydrolysis generate added-value products such as bioactive peptides with relevant physiological effects of interest for applications in the food, pet food, pharmaceutical and cosmetics industry. Inedible fats are increasingly used as raw material for the generation of biodiesel. Other applications are focused on the development of new biodegradable plastics that can constitute an alternative to petroleum-based plastics. This manuscript presents the latest developments for adding value to meat by- and co-products and discusses opportunities for making meat production and processing more sustainable.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Milagro Reig
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
30
|
Wang F, Yang W, Zhou B. Molecular-level understanding of the hTAS2R1 receptor-bitter tasting tetra-peptide binding: a structural biology study based on computational approaches. NEW J CHEM 2021. [DOI: 10.1039/d1nj04014f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective computational approaches for bitter-tasting peptides have been developed and analyzed in the present work.
Collapse
Affiliation(s)
- Fangfang Wang
- School of Life Science, Linyi University, Linyi 276000, China
| | - Wei Yang
- Warshel Institute for Computational Biology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Biotechnology, University of Science and Technology of China, Hefei 230026, China
- Biomedicine Discovery Institute, Monash University, Melbourne 3800, VIC, Australia
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Basic Medical, Guizhou Medical University, Guizhou 550004, China
| |
Collapse
|
31
|
Zhou X, Cui H, Zhang Q, Hayat K, Yu J, Hussain S, Tahir MU, Zhang X, Ho CT. Taste improvement of Maillard reaction intermediates derived from enzymatic hydrolysates of pea protein. Food Res Int 2020; 140:109985. [PMID: 33648220 DOI: 10.1016/j.foodres.2020.109985] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Maillard reaction intermediates (MRIs) derived from enzymatic hydrolysates of pea protein, mainly initial Maillard reaction products, were prepared at a low temperature (80 °C) and the reaction time was determined by variable-temperature Maillard reaction. Electronic tongue and sensory evaluation were used to analyze the taste qualities of pea protein hydrolysates and their MRIs. Both evaluations showed that bitterness of enzymatic hydrolysates of pea protein reduced but umami taste increased through Maillard reaction. The intensities of umami and saltiness were positively correlated with the concentration of MRIs. Even when the dosage of MRIs was 0.1% (w/w), MRIs could achieve a 20% reduction in NaCl content without decreasing saltiness, which could be great potential substitutes for salt reduction. On the other hand, the increased MRIs promoted aldosterone secretion in saliva, which might enhance human perception of saltiness.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Qiang Zhang
- Anhui Qiangwang Flavouring Food Co., Ltd., No. 1 Shengli Road, Jieshou, Anhui, PR China
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jingyang Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Usman Tahir
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
32
|
Tong X, Lian Z, Miao L, Qi B, Zhang S, Li Y, Wang H, Jiang L. An innovative two-step enzyme-assisted aqueous extraction for the production of reduced bitterness soybean protein hydrolysates with high nutritional value. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Iwaniak A, Minkiewicz P, Pliszka M, Mogut D, Darewicz M. Characteristics of Biopeptides Released In Silico from Collagens Using Quantitative Parameters. Foods 2020; 9:E965. [PMID: 32708318 PMCID: PMC7404701 DOI: 10.3390/foods9070965] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The potential of collagens to release biopeptides was evaluated using the BIOPEP-UWM-implemented quantitative criteria including the frequency of the release of fragments with a given activity by selected enzyme(s) (AE), relative frequency of release of fragments with a given activity by selected enzyme(s) (W), and the theoretical degree of hydrolysis (DHt). Cow, pig, sheep, chicken, duck, horse, salmon, rainbow trout, goat, rabbit, and turkey collagens were theoretically hydrolyzed using: stem bromelain, ficin, papain, pepsin, trypsin, chymotrypsin, pepsin+trypsin, and pepsin+trypsin+chymotrypsin. Peptides released from the collagens having comparable AE and W were estimated for their likelihood to be bioactive using PeptideRanker Score. The collagens tested were the best sources of angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitors. AE and W values revealed that pepsin and/or trypsin were effective producers of such peptides from the majority of the collagens examined. Then, the SwissTargetPrediction program was used to estimate the possible interactions of such peptides with enzymes and proteins, whereas ADMETlab was applied to evaluate their safety and drug-likeness properties. Target prediction revealed that the collagen-derived peptides might interact with several human proteins, especially proteinases, but with relatively low probability. In turn, their bioactivity may be limited by their short half-life in the body.
Collapse
Affiliation(s)
- Anna Iwaniak
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Piotr Minkiewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Monika Pliszka
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Damir Mogut
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| |
Collapse
|
34
|
Soybean (Glycine max) Protein Hydrolysates as Sources of Peptide Bitter-Tasting Indicators: An Analysis Based on Hybrid and Fragmentomic Approaches. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study was to analyze soybean proteins as sources of peptides likely to be bitter using fragmentomic and hybrid approaches involving in silico and in vitro studies. The bitterness of peptides (called parent peptides) was theoretically estimated based on the presence of bitter-tasting motifs, particularly those defined as bitter-tasting indicators. They were selected based on previously published multilinear stepwise regression results. Bioinformatic-assisted analyses covered the hydrolysis of five major soybean-originating protein sequences using bromelain, ficin, papain, and proteinase K. Verification of the results in experimental conditions included soy protein concentrate (SPC) hydrolysis, RP-HPLC (for monitoring the proteolysis), and identification of peptides using RP-HPLC-MS/MS. Discrepancies between in silico and in vitro results were observed when identifying parent peptide SPC hydrolysate samples. However, both analyses revealed that conglycinins were the most abundant sources of parent peptides likely to taste bitter. The compatibility percentage of the in silico and in vitro results was 3%. Nine parent peptides with the following sequences were identified in SPC hydrolysates: LSVISPK, DVLVIPLG, LIVILNG, NPFLFG, ISSTIV, PQMIIV, PFPSIL, DDFFL, and FFEITPEK (indicators are in bold). The fragmentomic idea of research might provide a supportive method for predicting the bitterness of hydrolysates. However, this statement needs to be confirmed experimentally.
Collapse
|
35
|
Bechaux J, Gatellier P, Le Page JF, Drillet Y, Sante-Lhoutellier V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct 2020; 10:6244-6266. [PMID: 31577308 DOI: 10.1039/c9fo01546a] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Livestock generates high quantities of residues, which has become a major socioeconomic issue for the meat industry. This review focuses on the identification of bioactive peptides (BPs) in animal byproducts and meat wastes. Firstly, the main bioactivities that peptides can have will be described and the methods for their evaluation will be discussed. Secondly, the various origins of these BPs will be studied. Then, the techniques and tools for the generation of BPs will be detailed in order to discuss, in the final part, how peptides could be used and assimilated. BPs possess diverse biological activities and can be strategic candidates for substituting synthetic molecules. In silico potentiality studies are a helpful tool to understand and predict BPs released from proteins and their potential activities. However, in vitro validation is often required. Although BP use is compelled by strict regulations in relation to the field of application, they are also limited by their low bioavailability and bioaccessibility. Therefore, it is important to test peptide stability during gastrointestinal digestion. Protective strategies have been discussed since their use could improve the stability and effectiveness of BPs.
Collapse
Affiliation(s)
- Julia Bechaux
- INRA, UR 370, Qualité des Produits Animaux (QuaPA), Site de Theix, 63122, Saint-Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
36
|
Iwaniak A, Minkiewicz P, Hrynkiewicz M, Bucholska J, Darewicz M. Hybrid Approach in the Analysis of Bovine Milk Protein Hydrolysates as a Source of Peptides Containing Di- and Tripeptide Bitterness Indicators. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/113532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
37
|
Kheeree N, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A. ACE inhibitory peptides derived from de-fatted lemon basil seeds: optimization, purification, identification, structure–activity relationship and molecular docking analysis. Food Funct 2020; 11:8161-8178. [DOI: 10.1039/d0fo01240h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The study determines optimized process conditions to maximize ACE inhibitory peptide production. The two novel hexa-peptides (LGRNLPPI and GPAGPAGL) from de-fatted lemon basil seeds (DLBS) was achieved.
Collapse
Affiliation(s)
- Norhameemee Kheeree
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics
- Faculty of Tropical Medicine
- Mahidol University
- Bangkok 10400
- Thailand
| | | | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
38
|
Li X, Xie X, Wang J, Xu Y, Yi S, Zhu W, Mi H, Li T, Li J. Identification, taste characteristics and molecular docking study of novel umami peptides derived from the aqueous extract of the clam meretrix meretrix Linnaeus. Food Chem 2019; 312:126053. [PMID: 31884298 DOI: 10.1016/j.foodchem.2019.126053] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022]
Abstract
To understand the delicious taste of the clam M. meretrix Linnaeus, the putative umami peptides from the aqueous extract of the cooked clam were obtained by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography. The isolated peptide fraction with the most intense umami taste was screened by sensory and electronic tongue analysis. Seven novel peptides, GLLPDGTPR, RPNPFENR, STMLLESER, ANPGPVRDLR, QVAIAHRDAK, VLPTDQNFILR, and VTADESQQDVLK, were identified and synthesized to verify their taste characteristics. The taste activity prediction and the sensory evaluation of the synthetic peptides revealed that those peptides were umami and umami-enhancing peptides. Docking of the synthesized peptides with the umami taste receptor T1R1/T1R3 indicated that the peptides could enter the binding pocket in the Venus flytrap domain of the T1R3 cavity, wherein Asp196 and Glu128 may play key roles in the synergism of umami taste and hydrogen bonding and electrostatic interactions are important interaction forces.
Collapse
Affiliation(s)
- Xuepeng Li
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Xiaoxia Xie
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Jinxiang Wang
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China.
| | - Yongxia Xu
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Wenhui Zhu
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Hongbo Mi
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Tingting Li
- College of Life Science, Dalian Nationalities University, Dalian 116029, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China.
| |
Collapse
|
39
|
BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int J Mol Sci 2019; 20:ijms20235978. [PMID: 31783634 PMCID: PMC6928608 DOI: 10.3390/ijms20235978] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
The BIOPEP-UWM™ database of bioactive peptides (formerly BIOPEP) has recently become a popular tool in the research on bioactive peptides, especially on these derived from foods and being constituents of diets that prevent development of chronic diseases. The database is continuously updated and modified. The addition of new peptides and the introduction of new information about the existing ones (e.g., chemical codes and references to other databases) is in progress. New opportunities include the possibility of annotating peptides containing D-enantiomers of amino acids, batch processing option, converting amino acid sequences into SMILES code, new quantitative parameters characterizing the presence of bioactive fragments in protein sequences, and finding proteinases that release particular peptides.
Collapse
|
40
|
Wang F, Zhou B. Quantitative structure-activity relationship models for bitter-tasting tripeptides based on integrated descriptors. Struct Chem 2019. [DOI: 10.1007/s11224-019-01432-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Iwaniak A, Darewicz M, Mogut D, Minkiewicz P. Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103486] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
42
|
Gallego M, Mora L, Toldrá F. The relevance of dipeptides and tripeptides in the bioactivity and taste of dry-cured ham. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0002-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
The evaluation of overall umami intensity in Takifugu obscurus and Ctenopharyngodon idella based on the Steven’s law. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00259-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Liu TT, Xia N, Wang QZ, Chen DW. Identification of the Non-Volatile Taste-Active Components in Crab Sauce. Foods 2019; 8:foods8080324. [PMID: 31394849 PMCID: PMC6722521 DOI: 10.3390/foods8080324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022] Open
Abstract
Crab sauce is a traditional umami seasoning in the coastal cities in South East China. The putative non-volatile taste-active components in crab sauce were measured, and their impacts on the taste were evaluated on the basis of the taste activity value (TAV), omission test, addition test and equivalent umami concentration (EUC). The EUC used to evaluate the synergistic effect of the flavor nucleotides and umami amino acids was 19.3 g monosodium glutamate (MSG)/100 mL, which illuminated that crab sauce had a very intense umami taste. The key non-volatile taste-active components in crab sauce demonstrated by the omission test and addition test were glutamic acid (Glu), aspartic acid (Asp), glycine (Gly), alanine (Ala), lysine (Lys), histidine (His), 5'-inosine monophosphate (IMP), 5'-guanosine monophosphate (GMP), NaCl, KCl, serine (Ser) and valine (Val), and most of these components also had a higher TAV. So, the TAV could be a high-efficiency tool to predict the taste-active components, and the TAV combined with the omission test and addition test could be a very useful method to determine the taste-active components in crab sauce.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Department of Food Science, Guangxi University, Nanning 530004, China
| | - Ning Xia
- Department of Food Science, Guangxi University, Nanning 530004, China
| | - Qin-Zhi Wang
- Department of Food Science, Guangxi University, Nanning 530004, China
| | - De-Wei Chen
- Department of Food Science, Guangxi University, Nanning 530004, China.
| |
Collapse
|
45
|
Fu Y, Bak KH, Liu J, De Gobba C, Tøstesen M, Hansen ET, Petersen MA, Ruiz-Carrascal J, Bredie WLP, Lametsch R. Protein hydrolysates of porcine hemoglobin and blood: Peptide characteristics in relation to taste attributes and formation of volatile compounds. Food Res Int 2019; 121:28-38. [PMID: 31108750 DOI: 10.1016/j.foodres.2019.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 01/20/2023]
Abstract
The objective of this study was to investigate the impact of endo- and exo-peptidase treatment on certain structural characteristics of peptides and volatile compounds of porcine hemoglobin and whole blood hydrolysates. Porcine hemoglobin and whole blood were hydrolyzed by endo- and exo-peptidases. The presence of exopeptidases reduced the bitterness and altered the volatile profiles of protein hydrolysates. Exopeptidase treatment can release terminal amino acids from peptides, which in turn may contribute to formation of volatile compounds by Maillard reactions. In contrast, endopeptidases conferred a slightly bitter taste and different volatile profiles. For hemoglobin hydrolysates, principal component analysis revealed that proteases were categorized into three groups based on endo- or exo-peptidase activity. Whole blood is a more complex raw material, yet the proteases were still categorized in a similar fashion. This work contributes to understanding structural characteristics responsible for taste and volatile profiles of protein hydrolysates.
Collapse
Affiliation(s)
- Yu Fu
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Kathrine H Bak
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Jing Liu
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Cristian De Gobba
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Marie Tøstesen
- Danish Crown Ingredients, Flæsketorvet 41, 1711 Copenhagen V, Denmark
| | - Erik T Hansen
- Danish Crown Ingredients, Flæsketorvet 41, 1711 Copenhagen V, Denmark
| | - Mikael A Petersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Jorge Ruiz-Carrascal
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Wender L P Bredie
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
46
|
Hrynkiewicz M, Iwaniak A, Bucholska J, Minkiewicz P, Darewicz M. Structure⁻Activity Prediction of ACE Inhibitory/Bitter Dipeptides-A Chemometric Approach Based on Stepwise Regression. Molecules 2019; 24:E950. [PMID: 30857128 PMCID: PMC6429184 DOI: 10.3390/molecules24050950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/22/2022] Open
Abstract
Forward and backward stepwise regression (FR and BR, respectively) was applied for the structure⁻bioactivity prediction of angiotensin converting enzyme (ACE)-inhibitory/bitter-tasting dipeptides. The datasets used in this study consisted of 28 sequences and numerical variables reflecting dipeptides' physicochemical nature. The data were acquired from the BIOPEP-UWM, Biological Magnetic Resonance Databank, ProtScale, and AAindex databases. The calculations were computed using STATISTICA®13.1. FR/BR models differed in R² (0.91/0.76, respectively). The impact of C-atC(-) and N-Molw(+) on the dual function of dipeptides was observed. Positive (+) and negative (-) correlations with log IC50 are presented in parens. Moreover, C-Bur(+), N-atH(+), and N-Pol(-) were also found to be important in the FR model. The additional statistical significance of N-bul(-), N-Bur(-), and N-Hdr(+) was reported in the BR model. These attributes reflected the composition of the dipeptides. We report that the "ideal" bitter ACE inhibitor should be composed of P, Y, F (C-end) and G, V, I, L (N-end). Functions: log Rcaf. = f (observed log IC50) and log Rcaf. = f (predicted log IC50) revealed no direct relationships between ACE inhibition and the bitterness of the dipeptides. It probably resulted from some structural discrepancies between the ACE inhibitory/bitter peptides and/or the measure of activity describing one of the two bioactivities. Our protocol can be applicable for the structure⁻bioactivity prediction of other bioactivities peptides.
Collapse
Affiliation(s)
- Monika Hrynkiewicz
- Faculty of Food Science, Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Anna Iwaniak
- Faculty of Food Science, Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Justyna Bucholska
- Faculty of Food Science, Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Piotr Minkiewicz
- Faculty of Food Science, Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Małgorzata Darewicz
- Faculty of Food Science, Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| |
Collapse
|
47
|
Quantitation and sensory properties of three newly identified pyroglutamyl oligopeptides in sake. Biosci Biotechnol Biochem 2019; 83:357-364. [DOI: 10.1080/09168451.2018.1530095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ABSTRACT
Three new peptides: (pGlu)L-ethyl, (pGlu)LFGP-ethyl and (pGlu)LFNP-ethyl, were identified in the search for pyroglutamyl oligopeptide ethyl esters in sake. The ethyl esterified peptides in sake were quantitated using stable isotope dilution analysis and additional quantitation of (pGlu)L was performed using an external standard method. The concentrations of (pGlu)L-ethyl and (pGlu)L in 33 commercial sake samples ranged from 0.16 to 1.57 mg/L and 1.49 to 7.55 mg/L, respectively. The sensory properties of the pyroglutamyl oligopeptide ethyl esters and corresponding non-esterified peptides were examined: the estimated difference threshold of (pGlu)L (2.0 mg/L) and (pGlu)L-ethyl (0.267 mg/L) was exceeded in 32 and 26 samples, respectively. Estimated thresholds of (pGlu)LFGP-ethyl and (pGlu)LFNP-ethyl were often lower than the levels in quantitated sake samples. The sensory effects of these pyroglutamyl dipeptides on a model sake quality may be negative because of their unpleasant taste, however, (pGlu)LFNP-ethyl may be positive because of its mild taste.
Collapse
|
48
|
Lu X, Zhang L, Sun Q, Song G, Huang J. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res Int 2019; 116:707-716. [DOI: 10.1016/j.foodres.2018.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/13/2018] [Accepted: 09/02/2018] [Indexed: 01/25/2023]
|
49
|
Fu Y, Chen J, Bak KH, Lametsch R. Valorisation of protein hydrolysates from animal by‐products: perspectives on bitter taste and debittering methods: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Fu
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| | - Jingru Chen
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
- College of Food Science and Nutritional Engineering China Agricultural University No. 17 Qinghua East Road, Haidian District Beijing 100083 China
| | - Kathrine H. Bak
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| | - René Lametsch
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| |
Collapse
|
50
|
Rani S, Pooja K, Pal GK. Exploration of rice protein hydrolysates and peptides with special reference to antioxidant potential: Computational derived approaches for bio-activity determination. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|