1
|
Xiang T, Yang R, Li L, Lin H, Kai G. Research progress and application of pectin: A review. J Food Sci 2024. [PMID: 39394044 DOI: 10.1111/1750-3841.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Pectin, an acidic polysaccharide, is naturally present primarily in the cell walls and inner layers of higher plants. Pectin is extensively used in food, pharmaceutical, cosmetic, and other industries owing to its exceptional attributes encompassing superior gelation, emulsification, antioxidant activity, stability, biocompatibility, and nontoxicity. Due to the increasing demand for pectin, there is a short supply in the domestic pectin market. Currently, the domestic production of pectin is heavily reliant on imports, thus emphasizing the urgent need to enhance its local manufacturing capabilities. Due to the diverse sources of pectin and variations in extraction and purification methods, its content, physicochemical properties, and biological activity are influenced, consequently impacting the market application of pectin. Therefore, this paper comprehensively reviews the extraction and purification process of pectin, in vivo metabolism, and biological activities (including antitumor, immunomodulatory, anti-inflammatory, antioxidant, hypoglycemic and hypolipidemic effects, antimicrobial properties, accelerated wound healing potential, promotion of gastrointestinal peristalsis, and alleviation of constipation as well as cholesterol-lowering effect). Furthermore, it explores the diverse applications of pectin in food science, biomedicine, and other interdisciplinary fields. This review serves as a valuable resource for enhancing the efficiency of pectin content improvement and exploring the potential value and application of pectin in a more scholarly and scientifically rigorous manner.
Collapse
Affiliation(s)
- Tingting Xiang
- Institute of Postharvest Technology of Agricultural Products, Department of Food Science and Engineering, College of Food Science, College of Fujian Agriculture and Forestry University, Fuzhou, China
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiwen Yang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, Department of Food Science and Engineering, College of Food Science, College of Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Butt HS, Ulriksen ES, Rise F, Wangensteen H, Duus JØ, Inngjerdingen M, Inngjerdingen KT. Structural elucidation of novel pro-inflammatory polysaccharides from Daphne mezereum L. Carbohydr Polym 2024; 324:121554. [PMID: 37985118 DOI: 10.1016/j.carbpol.2023.121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Daphne mezereum L., an important medicinal plant in Scandinavian folk medicine, was used to treat ailments such as diarrhea, swelling and stomach pain. A range of natural compounds have been isolated, but little attention has been given to the polysaccharides in this plant. Previous work in our group have shown that a polysaccharide enriched fraction from the bark of D. mezereum exhibited pro-inflammatory effects. To pursue this further, the aim of the present work was to isolate and characterize these polysaccharides. From the ethanol-precipitate of a water extract, one neutral (DMP-NF) and one acidic (DMP-AF) fraction was isolated by anion-exchange chromatography. GC, GC-MS and 1D- and 2D-NMR were used to characterize the polysaccharide structures. DMP-NF appeared to be a mixture of arabinan, arabinogalactan and hemicelluloses such as xyloglucan, mannan and xylan. DMP-AF contained a pectic polysaccharide mainly consisting of an unusually long homogalacturonan backbone. Enzymatic treatment by pectinase of DMP-AF yielded DMP-ED, which contained a rhamnogalacturonan-I backbone with arabinan, galactan and arabinogalactan side chains. Both DMP-NF and DMP-ED induced IFN-γ and TNF-α secretion in peripheral blood mononuclear cells (PBMCs), DMP-ED being the most potent fraction. DMP-AF was less active, which might be due to a less sterically available rhamnogalacturonan-I domain.
Collapse
Affiliation(s)
- Hussain Shakeel Butt
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Emilie Steinbakk Ulriksen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, P.O. Box 1057, Blindern, NO-0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway
| | - Jens Øllgaard Duus
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, P.O. Box 1057, Blindern, NO-0316 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
3
|
Dallazen JL, Ciapparini PG, Maria-Ferreira D, da Luz BB, Klosterhoff RR, Felipe LPG, Silva BJG, Cordeiro LMC, Werner MFDP. Arabinan-rich pectic polysaccharide fraction from Malpighia emarginata fruits alleviates inflammatory pain in mice. Food Res Int 2024; 176:113743. [PMID: 38163695 DOI: 10.1016/j.foodres.2023.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Malpighia emarginata (Malpighiaceae), popularly known as "acerola", is a tropical and subtropical fruit native to the Americas. Despite its high vitamin C content, which gives it a high antioxidant property, soluble dietary fibers, such as polysaccharides, are also abundant constituents of acerola (10% of the dried fruit). The acerola cold-water soluble (ACWS) fraction presented anti-fatigue and antioxidant effects in vivo and in vitro. To infer further systemic effects of ACWS, this study aimed to investigate the antinociceptive, anti-inflammatory, and antioxidant effects of ACWS in murine models of pain. In formalin-induced nociception, ACWS (0.1, 1, and 10 mg/kg) reduced only the inflammatory phase, and also (10 and 30 mg/kg) attenuated the acetic acid-induced writhing and leukocyte migration in the peritoneal cavity. The mechanical allodynia and paw edema induced by intraplantar injection of carrageenan were greatly reduced by ACWS (10 mg/kg). At the inflammatory pick induced by carrageenan (4 h), ACWS significantly reduced myeloperoxidase activity, TNF-α, IL-1β, and PGE2 levels, and restored IL-10 levels. ACWS also exhibited antioxidant properties by decreasing lipid hydroperoxides content, increasing GSH levels, and restoring superoxide dismutase and catalase activities in the carrageenan model and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. Collectively, these results support the antinociceptive, anti-inflammatory, and antioxidant effects of ACWS and reveal a promising candidate for the treatment of inflammatory pain conditions.
Collapse
Affiliation(s)
| | | | - Daniele Maria-Ferreira
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | | | | | | | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Brazil
| | | |
Collapse
|
4
|
Sultana N. Biological Properties and Biomedical Applications of Pectin and Pectin-Based Composites: A Review. Molecules 2023; 28:7974. [PMID: 38138464 PMCID: PMC10745545 DOI: 10.3390/molecules28247974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Pectin has recently drawn much attention in biomedical applications due to its distinctive chemical and biological properties. Polymers like pectin with cell-instructive properties are attractive natural biomaterials for tissue repair and regeneration. In addition, bioactive pectin and pectin-based composites exhibit improved characteristics to deliver active molecules. Pectin and pectin-based composites serve as interactive matrices or scaffolds by stimulating cell adhesion and cell proliferation and enhancing tissue remodeling by forming an extracellular matrix in vivo. Several bioactive properties, such as immunoregulatory, antibacterial, anti-inflammatory, anti-tumor, and antioxidant activities, contribute to the pectin's and pectin-based composite's enhanced applications in tissue engineering and drug delivery systems. Tissue engineering scaffolds containing pectin and pectin-based conjugates or composites demonstrate essential features such as nontoxicity, tunable mechanical properties, biodegradability, and suitable surface properties. The design and fabrication of pectic composites are versatile for tissue engineering and drug delivery applications. This article reviews the promising characteristics of pectin or pectic polysaccharides and pectin-based composites and highlights their potential biomedical applications, focusing on drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Naznin Sultana
- Texas Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
5
|
Khatib M, Cecchi L, Bellumori M, Zonfrillo B, Mulinacci N. Polysaccharides and Phenolic Compounds Recovered from Red Bell Pepper, Tomato and Basil By-Products Using a Green Extraction by Extractor Timatic ®. Int J Mol Sci 2023; 24:16653. [PMID: 38068976 PMCID: PMC10706253 DOI: 10.3390/ijms242316653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Fruits and vegetables processing produces significant amounts of by-products rich in valuable bioactive compounds such as polyphenols and dietary fiber. Food by-product re-use promotes the eco-sustainability of several crops. This study aimed to apply green extractions of bioactive compounds from by-products of basil, tomato, and red bell pepper production. Tests were performed by applying extraction procedures both at laboratory scale and using the Timatic® extractor. Water and ethanol 10% and 20% were used for extraction of red bell pepper and tomato, testing different temperatures (30, 50, and 90 °C; water at 90 °C and ethanol 20% were applied for basil. The obtained phenolic extracts were analyzed by HPLC-DAD-MS. Polysaccharides of tomato and red bell pepper were extracted at laboratory scale and chemically characterized using 1H-NMR to define the methylation and acylation degree, and DLS to estimate the hydrodynamic volume. Laboratory extraction tests allowed efficient scaling-up of the process on the Timatic® extractor. Phenolic content in the dried extracts (DE) ranged 8.0-11.2 mg/g for tomato and red bell pepper and reached 240 mg/g for basil extracts. Polysaccharide yields (w/w on DM) reached 6.0 and 10.4% for dried tomato and red bell pepper, respectively. Dry extracts obtained using the Timatic® extractor and water can be useful sources of bioactive phenols. The study provided new data on tomato and red bell pepper polysaccharides that may be useful for future applications.
Collapse
Affiliation(s)
- Mohamad Khatib
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
- National Interuniversity Consortium of Materials Science & Technology, Via Giusti 9, 50121 Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Italy;
| | - Maria Bellumori
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| | - Beatrice Zonfrillo
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| | - Nadia Mulinacci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| |
Collapse
|
6
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
7
|
Guo Q, Hou X, Cui Q, Li S, Shen G, Luo Q, Wu H, Chen H, Liu Y, Chen A, Zhang Z. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Crit Rev Food Sci Nutr 2023; 64:6714-6736. [PMID: 36756885 DOI: 10.1080/10408398.2023.2173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pectin is a complex polysaccharide found in plant cell walls and interlayers. As a food component, pectin is benefit for regulating intestinal flora. Metabolites of intestinal flora, including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), are involved in blood glucose regulation. SCFAs promote insulin synthesis through the intestine-GPCRs-derived pathway and hepatic adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to promote hepatic glycogen synthesis. On the one hand, BAs stimulate intestinal L cells and pancreatic α cells to secrete Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) through receptors G protein-coupled receptor (TGR5) and farnesoid X receptor (FXR). On the other hand, BAs promote hepatic glycogen synthesis through AMPK pathway. LPS inhibits the release of inflammatory cytokines through Toll-like receptors (TLRs)-myeloid differentiation factor 88 (MYD88) pathway and mitogen-activated protein kinase (MAPK) pathway, thereby alleviating insulin resistance (IR). In brief, both SCFAs and BAs promote GLP-1 secretion through different pathways, employing strategies of increasing glucose consumption and decreasing glucose production to maintain normal glucose levels. Notably, pectin can also directly inhibit the release of inflammatory cytokines through the -TLRs-MYD88 pathway. These data provide valuable information for further elucidating the relationship between pectin-intestinal flora-glucose metabolism.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
8
|
Khorasaniha R, Olof H, Voisin A, Armstrong K, Wine E, Vasanthan T, Armstrong H. Diversity of fibers in common foods: Key to advancing dietary research. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Choi J, Ki CS. Ultrasonication, immune activity, and photocrosslinked microgel formation of pectic polysaccharide isolated from root bark of Ulmus davidiana var. japonica (Rehder) Nakai. Int J Biol Macromol 2022; 211:535-544. [PMID: 35569684 DOI: 10.1016/j.ijbiomac.2022.05.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022]
Abstract
The root bark of Ulmus davidiana var. japonica (Rehder) Nakai (Japanese elm) has been used for inflammatory disease treatments. In this work, we isolated pectic polysaccharides from the root bark of U. davidiana (UDP) and explored the immune activities of intact and ultrasonicated UDP on human macrophages. The UDP-treated macrophages showed a proinflammatory response, indicating classical activation via Toll-like receptor-mediated recognition. For hydrogel formation, the ultrasonicated UDP was modified with methacrylate groups, then subjected to photocrosslinking. The formed bulk hydrogel was pulverized into microgels by homogenization, and the microgel size was modulated for macrophage phagocytosis. The UDP microgel-treated macrophages displayed microgel internalization and classical activation that involved upregulation of M1 polarization markers (IL6, TNF-α, and CCR7), indicating that the microgel can be used as a carrier for macrophage-targeted drug delivery.
Collapse
Affiliation(s)
- Jaeho Choi
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Seok Ki
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Yue F, Xu J, Zhang S, Hu X, Wang X, Lü X. Structural features and anticancer mechanisms of pectic polysaccharides: A review. Int J Biol Macromol 2022; 209:825-839. [PMID: 35447258 DOI: 10.1016/j.ijbiomac.2022.04.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
The anticancer activity of pectic polysaccharides (PPs) was proved by numerous studies, and which also indicated that the bioactivity of PPs was closely related to its complicated structures. Based on the summary and analysis about structure characteristics and corresponding enzymatic process of the reported PPs, the anticancer mechanism and related structural features were systematically clarified. It was found that not only the direct effects on the cancer cells by proliferation inhibition or apoptosis, but also the regulation of immune system, gut microbiota and gut metabolism as indirect effects, jointly played important roles in the anticancer of PPs. Nevertheless, during the study of PPs as promising anticancer components, the exact structure-function relationship, digestion process in vivo, and comprehensive action mechanism are still not well understanding. With the unveiling of the proposed issues, it is believed that PPs are promising to be exploited as effective cancer therapy/adjunctive therapy drugs or functional foods.
Collapse
Affiliation(s)
- Fangfang Yue
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Jiaxin Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Sitan Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xinyu Hu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
12
|
Ornelas AC, Ferguson S, DePlaza M, Adekunle T, Basha R. Anti-Cancer Pectins and Their Role in Colorectal Cancer Treatment. ONCO THERAPEUTICS 2022; 9:43-55. [PMID: 37309487 PMCID: PMC10259824 DOI: 10.1615/oncotherap.v9.i2.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A class of plant polysaccharides, pectin is known to display several medicinal properties including in cancer. There is some evidence that pectin from some fruits can reduce the severity of colorectal cancer (CRC) due to its antiproliferative, anti-inflammatory, antimetastatic and pro-apoptotic properties. Pectin fermentation in the colon induces antiproliferative activity via butyrate. Research also showed that pectin acts as a potent inducer of programmed cell death and cell-cycle arrest, thereby selectively targeting cancer cells. Pectin can limit oxidative stress to maintain cellular homeostasis while increasing reactive oxygen species damage to activate cancer cell death. Pectin regulates various signaling cascades, e.g., signal transduction and transcriptional activator and mitogen-activated protein kinase signaling, that contribute to its anticancer activity. By curbing inflammation-activated signaling and bolstering immune-protective mechanisms pectin can eradicate CRC. Due to its chemical structure, pectin can also inhibit galectin-3 and suppress tumor growth and metastasis. Prior reports also suggested that pectin is beneficial to use alongside the CRC standard care. Pectin can increase sensitivity to conventional CRC drugs, alleviate unwanted side effects and reduce drug resistance. Although some preclinical studies are promising, early clinical trials are showing some evidence for pectin's efficacy in tumor growth inhibition and preventing metastasis in some cancers; however, the clinical use of pectin in CRC therapy is not yet well established. Further studies are needed to confirm the efficacy of pectin treatment as a valid clinical therapy for CRC in humans.
Collapse
Affiliation(s)
| | - Sam Ferguson
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Maya DePlaza
- Texas College of Osteopathic Medicine, The University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | - Tkai Adekunle
- Department of Biology, Savannah State University, Savannah, GA 31404, USA
| | - Riyaz Basha
- Department of Pediatrics and Women’s Health, Texas College of Osteopathic Medicine, The University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
13
|
Sun Y, Zhang Z, Cheng L, Zhang X, Liu Y, Zhang R, Weng P, Wu Z. Polysaccharides confer benefits in immune regulation and multiple sclerosis by interacting with gut microbiota. Food Res Int 2021; 149:110675. [PMID: 34600677 DOI: 10.1016/j.foodres.2021.110675] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Pharmacological and clinical studies have consistently demonstrated that polysaccharides exhibit great potential on immune regulation. Polysaccharides can interact directly or indirectly with the immune system, triggering cell-cell communication and molecular recognition, leading to immunostimulatory responses. Gut microbiota is adept at foraging polysaccharides as energy sources and confers benefits in the context of immunity and chronic autoimmune disease, such as multiple sclerosis. A compelling set of interconnectedness between the gut microbiota, natural polysaccharides, and immune regulation has emerged. In this review, we highlighted the available avenues supporting the existence of these interactions, with a focus on cytokines-mediated and SCFAs-mediated pathways. Additionally, the neuroimmune mechanisms for gut microbiota communication with the brain in multiple sclerosis are also discussed, which will lay the ground for ameliorate multiple sclerosis via polysaccharide intervention.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhepeng Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Lu Cheng
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
14
|
Hu H, Zhang S, Pan S. Characterization of Citrus Pectin Oligosaccharides and Their Microbial Metabolites as Modulators of Immunometabolism on Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8403-8414. [PMID: 34313419 DOI: 10.1021/acs.jafc.1c01445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We characterized the structure of prepared citrus pectin oligosaccharides (POS) and investigated the immunometabolism-modulating effects of POS and their microbial metabolites on human macrophages. Both POS and metabolites activated immune responses and exhibited anti-inflammatory properties in the presence of lipopolysaccharide (LPS) via regulating expressions of inflammatory cytokines and nuclear factor-kappa B. Cholesterol efflux was also facilitated via increased gene expressions of the liver X receptor-α-adenosine triphosphate-binding cassette transporter (ABC) A1/ABCG1 pathway and suppressed cholesterol synthesis via suppressing expressions of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Microbial degradation prevented POS from attenuating palmitoyl-3-cysteine-serine-lysine-4-induced inflammation and promoting M2 polarization, but it is capable of inhibiting cholesterol uptake-related genes CD36 and SR-A. These findings indicate that immunometabolism-modulating effects of POS are not solely microbiota-dependent effects. Both POS and their microbial metabolites are potential immunometabolism modulators via different mechanisms.
Collapse
Affiliation(s)
- Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm 14152, Sweden
| | - Shanshan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
15
|
Kumar M, Tomar M, Saurabh V, Sasi M, Punia S, Potkule J, Maheshwari C, Changan S, Radha, Bhushan B, Singh S, Anitha T, Alajil O, Satankar V, Dhumal S, Amarowicz R, Kaur C, Sharifi-Rad J, Kennedy JF. Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides. Carbohydr Polym 2021; 269:118319. [PMID: 34294331 DOI: 10.1016/j.carbpol.2021.118319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022]
Abstract
Pectin is a plant-based heteropolysaccharide macromolecule predominantly found in the cell wall of plants. Pectin is commercially extracted from apple pomace, citrus peels and sugar beet pulp and is widely used in the food industry as a stabilizer, emulsifier, encapsulant, and gelling agent. This review highlights various parameters considered important for describing the inherent properties and biofunctionalities of pectins in food systems. These inherent descriptors include monosaccharide composition, galacturonic acid content, degree of esterification, molecular weight, structural morphology, functional group analysis, and functional properties, such as water and oil holding capacity, emulsification, foaming capacity, foam stability, and viscosity. In this study, we also delineate their potential as a nutraceutical, prebiotic, and carrier for bioactive compounds. The biofunctionalities of pectin as an anticancer, antioxidant, lipid-lowering, and antidiabetic agent are also conceptually elaborated in the current review. The multidimensional characteristics of pectin make it a potential candidate for use in food and biomedical science.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Maharishi Tomar
- Seed Technology Division, ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Minnu Sasi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 10012, India
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jayashree Potkule
- Chemical and Biochemical Processing Division, ICAR-Central institute for Research on Cotton Technology, Mumbai 400019, India
| | - Chirag Maheshwari
- Department of Agriculture Energy and Power, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Bharat Bhushan
- ICAR - Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab 141 004, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, Tamil Nadu, India
| | - Omar Alajil
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Varsha Satankar
- Ginning Training Centre, ICAR-Central Institute for Research on Cotton Technology, Nagpur 440023, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India.
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - J F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
16
|
Xiong B, Zhang W, Wu Z, Liu R, Yang C, Hui A, Huang X, Xian Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int J Biol Macromol 2021; 181:824-834. [PMID: 33836194 DOI: 10.1016/j.ijbiomac.2021.03.202] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Currently, there are few studies on acid-soluble pectin from okra, especially in biological activity for antioxidant and anti-inflammatory. In this study, the antioxidant properties of acid-soluble okra pectin components and their anti-inflammatory were explored. Firstly, two acid-soluble okra pectic fractions, namely crude acid-soluble okra pectin (CAOP) and acid-soluble okra pectin (AOP), were obtained and exhibited structural and compositional variation. The two pectic fractions contained a low degree of esterification (42.0-46.5%) and a relatively high uronic acid content (31.6-37.3%). AOP was composed of galacturonic acid (79.1 mol/%), galactose (4.3 mol/%), rhamnose (14.5 mol/%) and xylose (2.1 mol/%), and the molecular weight was 92.8 kDa. Morphological and thermal properties of acid-soluble okra pectin components were also investigated. Compared to CAOP, AOP expressed better antioxidant activity, and suppressed the NO production in LPS-induced RAW 264.7 macrophages. All the above results indicated that AOP had the potential to act as a natural antioxidant or a functional anti-inflammatory food, which would broaden the development and utilization of okra resources.
Collapse
Affiliation(s)
- Baoyi Xiong
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xusheng Huang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Zhaojun Xian
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| |
Collapse
|
17
|
Isolation, purification and structural characterization of two pectin-type polysaccharides from Coreopsis tinctoria Nutt. and their proliferation activities on RAW264.7 cells. Glycoconj J 2021; 38:251-259. [PMID: 33687639 DOI: 10.1007/s10719-021-09982-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/07/2020] [Accepted: 02/17/2021] [Indexed: 01/03/2023]
Abstract
Coreopsis tinctoria Nutt. (C.tinctoria) is an annual herb of the Compositae family with many health benefits, such as clearing heat, antioxidant and anticancer activity. In this paper, two polysaccharides were isolated from C.tinctoria, named CTAP-1 and CTAP-2, respectively. Structure of CTAP-1and CTAP-2 were elucidated by high-performance gel permeation chromatography, chemical derivative analyses, GC-MS and NMR techniques. Results reveal that they both CTAP-1 and CTAP-2 consisted of predominant amounts of galacturonic acid residues along with small amounts of arabinose, rhamnose and galactose.Both them contain homogalacturonan and rhammnogalcturan I regions in different ratio, suggesting their pectin-type features. The proliferation activities of CTAP-1 and CTAP-2 on RAW264.7 cells in vitro were detected. Results show both them have the significant proliferation effect on RAW264.7 cells when the concentration from 40 to 200 µg/mL. Given their structural characteristics and proliferation activities, the pectins are expected to be potential natural immune modulators, which need further study.
Collapse
|
18
|
Trandel MA, Johanningsmeier S, Schultheis J, Gunter C, Perkins-Veazie P. Cell Wall Polysaccharide Composition of Grafted 'Liberty' Watermelon With Reduced Incidence of Hollow Heart Defect. FRONTIERS IN PLANT SCIENCE 2021; 12:623723. [PMID: 33747004 PMCID: PMC7970038 DOI: 10.3389/fpls.2021.623723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Grafting watermelon scions to interspecific squash hybrids has been found to increase fruit firmness. Triploid (seedless) watermelon are prone to hollow heart (HH), an internal fruit disorder characterized by a crack in the placental tissue expanding to a cavity. Although watermelon with lower tissue firmness tend to have a higher HH incidence, associated differences in cell wall polysaccharide composition are unknown. Grafting "Liberty" watermelon to "Carnivor" (interspecific hybrid rootstock, C. moschata × C. maxima) reduced HH 39% and increased tissue firmness by 3 N. Fruit with and without severe HH from both grafted and non-grafted plants were analyzed to determine differences in cell wall polysaccharides associated with grafting and HH. Alcohol insoluble residues (AIR) were sequentially extracted from placental tissue to yield water soluble (WSF), carbonate soluble (CSF), alkali soluble (ASF), or unextractable (UNX) pectic fractions. The CSF was lower in fruit with HH (24.5%) compared to those without HH (27.1%). AIRs were also reduced, hydrolyzed, and acetylated for GC-MS analysis of monosaccharide composition, and a portion of each AIR was methylated prior to hydrolysis and acetylation to produce partially methylated alditol acetates for polysaccharide linkage assembly. No differences in degree of methylation or galacturonic and glucuronic acid concentrations were found. Glucose and galactose were in highest abundance at 75.9 and 82.4 μg⋅mg-1 AIR, respectively, followed by xylose and arabinose (29.3 and 22.0 μg⋅mg-1). Mannose was higher in fruit with HH (p < 0.05) and xylose was highest in fruit from grafted plants (p < 0.05). Mannose is primarily found in heteromannan and rhamnogalacturonan I side chains, while xylose is found in xylogalacturonan or heteroxylan. In watermelon, 34 carbohydrate linkages were identified with galactose, glucose, and arabinose linkages in highest abundance. This represents the most comprehensive polysaccharide linkage analysis to date for watermelon, including the identification of several new linkages. However, total pectin and cell wall composition data could not explain the increased tissue firmness observed in fruit from grafted plants. Nonetheless, grafting onto the interspecific hybrid rootstock decreased the incidence of HH and can be a useful method for growers using HH susceptible cultivars.
Collapse
Affiliation(s)
- Marlee A. Trandel
- Postharvest Laboratory, Department of Horticultural Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, Kannapolis, NC, United States
| | - Suzanne Johanningsmeier
- United States Department of Agriculture – Agricultural Research Service (USDA-ARS), Food Science Market Quality and Handling Research Unit, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Jonathan Schultheis
- Vegetable Extension, Department of Horticultural Sciences, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Chris Gunter
- Vegetable Extension, Department of Horticultural Sciences, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Penelope Perkins-Veazie
- Postharvest Laboratory, Department of Horticultural Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, Kannapolis, NC, United States
| |
Collapse
|
19
|
Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydr Polym 2021; 255:117388. [DOI: 10.1016/j.carbpol.2020.117388] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
|
20
|
Wang N, Jia G, Wang X, Liu Y, Li Z, Bao H, Guo Q, Wang C, Xiao D. Fractionation, structural characteristics and immunomodulatory activity of polysaccharide fractions from asparagus (Asparagus officinalis L.) skin. Carbohydr Polym 2021; 256:117514. [DOI: 10.1016/j.carbpol.2020.117514] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/15/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023]
|
21
|
Wu D, Ye X, Linhardt RJ, Liu X, Zhu K, Yu C, Ding T, Liu D, He Q, Chen S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr Rev Food Sci Food Saf 2021; 20:2015-2039. [PMID: 33594822 DOI: 10.1111/1541-4337.12723] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.
Collapse
Affiliation(s)
- Dongmei Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Xuwei Liu
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), INRAE, Avignon, France
| | - Kai Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Polysaccharides from Pleurotus eryngii: Selective extraction methodologies and their modulatory effects on THP-1 macrophages. Carbohydr Polym 2021; 252:117177. [DOI: 10.1016/j.carbpol.2020.117177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023]
|
23
|
Beukema M, Faas MM, de Vos P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp Mol Med 2020; 52:1364-1376. [PMID: 32908213 PMCID: PMC8080816 DOI: 10.1038/s12276-020-0449-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
Pectins are dietary fibers with different structural characteristics. Specific pectin structures can influence the gastrointestinal immune barrier by directly interacting with immune cells or by impacting the intestinal microbiota. The impact of pectin strongly depends on the specific structural characteristics of pectin; for example, the degree of methyl-esterification, acetylation and rhamnogalacturonan I or rhamnogalacturonan II neutral side chains. Here, we review the interactions of specific pectin structures with the gastrointestinal immune barrier. The effects of pectin include strengthening the mucus layer, enhancing epithelial integrity, and activating or inhibiting dendritic cell and macrophage responses. The direct interaction of pectins with the gastrointestinal immune barrier may be governed through pattern recognition receptors, such as Toll-like receptors 2 and 4 or Galectin-3. In addition, specific pectins can stimulate the diversity and abundance of beneficial microbial communities. Furthermore, the gastrointestinal immune barrier may be enhanced by short-chain fatty acids. Moreover, pectins can enhance the intestinal immune barrier by favoring the adhesion of commensal bacteria and inhibiting the adhesion of pathogens to epithelial cells. Current data illustrate that pectin may be a powerful dietary fiber to manage and prevent several inflammatory conditions, but additional human studies with pectin molecules with well-defined structures are urgently needed.
Collapse
Affiliation(s)
- Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
24
|
Sabater C, Molina-Tijeras JA, Vezza T, Corzo N, Montilla A, Utrilla P. Intestinal anti-inflammatory effects of artichoke pectin and modified pectin fractions in the dextran sulfate sodium model of mice colitis. Artificial neural network modelling of inflammatory markers. Food Funct 2020; 10:7793-7805. [PMID: 31781703 DOI: 10.1039/c9fo02221j] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anti-inflammatory properties of artichoke pectin and modified fractions (arabinose- and galactose-free) used at two doses (40 and 80 mg kg-1) in mice with colitis induced by dextran sulfate sodium have been investigated. Expression of pro-inflammatory markers TNF-α and ICAM-I decreased in groups of mice treated with original and arabinose-free artichoke pectin while IL-1β and IL-6 liberation was reduced only in mice groups treated with original artichoke pectin. A decrease in iNOS and TLR-4 expression was observed for most treatments. Intestinal barrier gene expression was also determined. MUC-1 and Occludin increased in groups treated with original artichoke pectin while MUC-3 expression also increased in arabinose-free pectin treatment. Galactose elimination led to a loss of pectin bioactivity. Characteristic expression profiles were established for each treatment through artificial neural networks showing high accuracy rates (≥90%). These results highlight the potential amelioration of inflammatory bowel disease on mice model colitis through artichoke pectin administration.
Collapse
Affiliation(s)
- Carlos Sabater
- Instituto de Investigación en Ciencias de la Alimentación CIAL, (CSIC-UAM) CEI (UAM+CSIC), C/Nicolás Cabrera, 9, E-28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Minzanova ST, Mironov VF, Arkhipova DM, Khabibullina AV, Mironova LG, Zakirova YM, Milyukov VA. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers (Basel) 2018; 10:E1407. [PMID: 30961332 PMCID: PMC6401843 DOI: 10.3390/polym10121407] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023] Open
Abstract
Pectin is a polymer with a core of alternating α-1,4-linked d-galacturonic acid and α-1,2-l-rhamnose units, as well as a variety of neutral sugars such as arabinose, galactose, and lesser amounts of other sugars. Currently, native pectins have been compared to modified ones due to the development of natural medicines and health products. In this review, the results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized. The potential of pectins to contribute to the enhancement of drug delivery systems has been observed.
Collapse
Affiliation(s)
- Salima T Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Daria M Arkhipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Anna V Khabibullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Lubov G Mironova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Yulia M Zakirova
- Kazan (Volga region) Federal University, Kazan University, KFU, Kazan 420008, Russia.
| | - Vasili A Milyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| |
Collapse
|
26
|
Effects of High Consumption of Vegetables on Clinical, Immunological, and Antioxidant Markers in Subjects at Risk of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5417165. [PMID: 30402206 PMCID: PMC6196889 DOI: 10.1155/2018/5417165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/02/2018] [Indexed: 12/21/2022]
Abstract
High intakes of vegetables have been associated with a lower incidence of cardiovascular diseases (CVD). However, the effect of vegetables on immune function and antioxidant status in human studies have provided contrasting results. In the present study, after a week of run-in period, 38 subjects at risk of CVD were randomly assigned to one of the following 4-week interventions: low vegetable consumption (800 g of vegetables/week) or high vegetable consumption (4200 g of vegetables/week). Vegetables included carrots, topinambur (Jerusalem artichoke, Helianthus tuberosus), tomatoes, red cabbage, and sweet peppers. Blood and salivary samples were collected before and after intervention periods. In addition to clinical, immunological, and antioxidant markers, leukocyte and lymphocyte expression of the gut-homing β7 integrin was evaluated. No significant changes were detected in clinical, immunological, and antioxidant markers in biological samples, except for an increase in white blood cell count for the low vegetable consumption group (p < 0.05). The study provides additional evidence about the uncertainty of providing a clear evidence for vegetables in modulating markers of immune function and antioxidant status. Further studies are needed in order to unravel the mechanism of effect of vegetable consumption in cardiovascular prevention.
Collapse
|
27
|
Ahmadi Gavlighi H, Tabarsa M, You S, Surayot U, Ghaderi-Ghahfarokhi M. Extraction, characterization and immunomodulatory property of pectic polysaccharide from pomegranate peels: Enzymatic vs conventional approach. Int J Biol Macromol 2018; 116:698-706. [DOI: 10.1016/j.ijbiomac.2018.05.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023]
|
28
|
Tan H, Chen W, Liu Q, Yang G, Li K. Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Front Immunol 2018; 9:1504. [PMID: 30013563 PMCID: PMC6036268 DOI: 10.3389/fimmu.2018.01504] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big challenge for exploring new effective medicine for treating CC. Natural product promoting human health has become a hot topic and attracted many researchers recently. Pectin, a complex polysaccharide in plant cell wall, mainly consists of four major types of polysaccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of which can be degraded into various pectin oligosaccharides (POS) and may provide abundant resource for exploring potential anticancer drugs. POS have been regarded as a novel class of potential functional food with multiple health-promoting properties. POS have antibacterial activities against some aggressive and recurrent bacterial infection and exert beneficial immunomodulation for controlling CC risk. However, the molecular functional role of POS in the prevention of CC risk and progression remains doubtful. The review focuses on antioxidant and anti-inflammatory roles of POS for promoting human health by regulating some potential oxidative and inflammation-activated pathways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling pathways increases the antioxidant and antiinflammatory activities, which will result in the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS may inhibit CC development by affecting antioxidant and antiinflammatory signaling pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant and anti-inflammatory properties and promote CC progression. Specific structural and structurally modified POS may be associated with their functions and should be deeply explored in the future. The present review paper lacks the important information for the linkage between the specific structure of POS and its function. To further explore the effects of prebiotic potential of POS and their derivatives on human immunomodulation in the prevention of CC, the specific POS with a certain degree of polymerization or purified polymers are highly demanded to be performed in clinical practice.
Collapse
Affiliation(s)
- Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|