1
|
Alves LP, Oliveira KDS, dos Santos ACG, de Melo DF, Moreira LMCDC, Oshiro Junior JA, da Silva DTC, Cavalcanti ALDM, Damasceno BPGDL. Cellulose Acetate Microparticles Synthesized from Agave sisalana Perrine for Controlled Release of Simvastatin. Polymers (Basel) 2024; 16:1898. [PMID: 39000753 PMCID: PMC11243862 DOI: 10.3390/polym16131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Simvastatin (SIM) is widely prescribed to treat hyperlipidemia, despite its limitations, such as a short half-life and low oral bioavailability. To overcome these drawbacks, the development of a controlled-release formulation is desirable. This study aims to develop a microparticulate system based on cellulose acetate (ACT) obtained from Agave sisalana Perrine to promote a controlled SIM release. SIM-loaded microparticles (SMP) were prepared using the solvent emulsification-evaporation method. Several parameters were evaluated, including particle size, surface charge, morphology, encapsulation efficiency, thermochemical characteristics, crystallinity, and in vitro release profile. ACT exhibited favorable flow properties after acetylation, with a degree of substitution values superior to 2.5, as confirmed by both the chemical route and H-NMR, indicating the formation of cellulose triacetate. The obtained SMP were spherical with an average size ranging from 1842 to 1857 nm, a zeta potential of -4.45 mV, and a high SIM incorporation efficiency (98%). Thermal and XRD analyses revealed that SIM was homogeneously dispersed into the polymeric matrix in its amorphous state. In vitro studies using dialysis bags revealed that the controlled SIM release from microparticles was higher under simulated intestinal conditions and followed the Higuchi kinetic model. Our results suggest that ACT-based microparticles are a promising system for SIM delivery, which can improve its bioavailability, and result in better patient compliance.
Collapse
Affiliation(s)
- Larissa Pereira Alves
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Kevin da Silva Oliveira
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Ana Cláudia Gonçalves dos Santos
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Demis Ferreira de Melo
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Lívia Maria Coelho de Carvalho Moreira
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - João Augusto Oshiro Junior
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
| | - Dayanne Tomaz Casimiro da Silva
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Airlla Laana de Medeiros Cavalcanti
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| |
Collapse
|
2
|
Berraquero-García C, Martínez-Sánchez L, Guadix EM, García-Moreno PJ. Encapsulation of Tenebrio molitor Hydrolysate with DPP-IV Inhibitory Activity by Electrospraying and Spray-Drying. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:840. [PMID: 38786796 PMCID: PMC11123797 DOI: 10.3390/nano14100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
This study investigates the encapsulation of Tenebrio molitor hydrolysate exhibiting DPP-IV inhibitory activity by spray-drying and electrospraying techniques. First, we optimized the feed formulation and processing conditions required to obtain nano-microcapsules by electrospraying when using Arabic gum as an encapsulating agent and pullulan and Tween 20 as additives. The optimum formulation was also dried by spray-drying, where the removal of the additives was also assayed. Morphology analysis reveals that electrosprayed capsules have a smaller size (1.2 ± 0.5 µm vs. 12.4 ± 8.7 µm) and greater uniformity compared to those obtained by spray-drying. Regarding the surface nitrogen content and DPP-IV inhibitory activity, our results show no significant difference between the electrosprayed capsules and spray-dried capsules containing additives (IC50 of ~1.5 mg protein/mL). Therefore, it was concluded that adding additives during spray-drying allows for a similar encapsulation efficiency and reduced degradation during processing, as achieved by electrospraying technique but providing higher productivity. On the other hand, spray-dried capsules without additives displayed a higher surface nitrogen content percentage, which was mainly due to the absence of Tween 20 in the feed formulation. Consequently, these capsules presented a higher IC50 value (IC50 of 1.99 ± 0.03 mg protein/mL) due to the potential degradation of surface-exposed peptides.
Collapse
Affiliation(s)
| | | | | | - Pedro J. García-Moreno
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (L.M.-S.); (E.M.G.)
| |
Collapse
|
3
|
Zhang D, Cao G, Bu N, Huang L, Lin H, Mu R, Pang J, Wang L. Multi-functional konjac glucomannan/chitosan bilayer films reinforced with oregano essential oil loaded β-cyclodextrin and anthocyanins for cheese preservation. Int J Biol Macromol 2023:125365. [PMID: 37330095 DOI: 10.1016/j.ijbiomac.2023.125365] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
In this work, a multifunctional bilayer film was prepared by solvent casting method. Elderberry anthocyanins (EA) were incorporated into konjac glucomannan (KGM) film as the inner indicator layer (KEA). β-cyclodextrin (β-CD) loaded with oregano essential oil (OEO) inclusion complexes (β-CD@OEO) was prepared and incorporated into chitosan (CS) film as the outer hydrophobic and antibacterial layer (CS-β-CD@OEO). The impacts of β-CD@OEO on the morphological, mechanical, thermal, water vapor permeability and water resistance properties, pH sensitivity, antioxidant, and antibacterial activities of bilayer films were thoroughly evaluated. The incorporation of β-CD@OEO into bilayer films can significantly improve the mechanical properties (tensile strength (TS): 65.71 MPa and elongation at break (EB): 16.81 %), thermal stability, and water resistance (Water contact angle (WCA): 88.15°, water vapor permeability (WVP): 3.53 g mm/m2 day kPa). In addition, the KEA/CS-β-CD@OEO bilayer films showed color variations in acid-base environments, which could be used as pH-responsive indicators. The KEA/CS-β-CD@OEO bilayer films also presented controlled release of OEO, good antioxidant, and antimicrobial activity, which exhibited good potential for the preservation of cheese. To sum up, KEA/CS-β-CD@OEO bilayer films have potential applications in the field of food packaging industry.
Collapse
Affiliation(s)
- Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
4
|
Berraquero-García C, Pérez-Gálvez R, Espejo-Carpio FJ, Guadix A, Guadix EM, García-Moreno PJ. Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying. Foods 2023; 12:foods12102005. [PMID: 37238822 DOI: 10.3390/foods12102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell-core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion.
Collapse
Affiliation(s)
| | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
5
|
Ebrahimi A, Hamishehkar H, Amjadi S. Development of gelatin-coated nanoliposomes loaded with β-cyclodextrin/vitamin D 3 inclusion complex for nutritional therapy. Food Chem 2023; 424:136346. [PMID: 37201470 DOI: 10.1016/j.foodchem.2023.136346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The aim of this study was to synthesize of β-cyclodextrin/Vitamin D3 (βCD/VitD3) inclusion complex and encapsulation of this complex with gelatin-coated nanoliposomes (NLPs). Fourier transform infrared spectroscopy confirmed the formation of βCD/VitD3 inclusion complex. In the next step, different gelatin concentrations (1, 2, and 4 mg/mL) were used to surface coat the blank NLPs. The concentration of 2 mg/mL of gelatin was chosen as the optimal concentration for coating the complex-loaded NLPs by considering particle size, morphology, and zeta potential. The particle size and zeta potential of the coated complex-loaded NLPs were 117 ± 2.55 nm and 19.8 ± 1.25 mV, respectively. The images taken by transmission electron microscopy confirmed the formation of a biopolymer layer of gelatin around the NLPs' vesicles. The complex encapsulation efficiency inside the NLPs was 81.09%. The βCD/VitD3 complex loaded NLPs and its coated form exhibited a controlled release profile in simulated gastrointestinal condition.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee and Biotechnology Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| |
Collapse
|
6
|
Handayani NA, Mulia K, Kartohardjono S, Krisanti EA. Fortifying jelly foods with microencapsulated anti-anaemic compounds, ferrous gluconate, ascorbic acid and folic acid. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:147-159. [PMID: 36618066 PMCID: PMC9813336 DOI: 10.1007/s13197-022-05599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
Low ferrous iron bioavailability presents a challenge for food fortification programmes. In this study, jelly foods were fortified with spray-dried chitosan microparticles that had been loaded with ferrous gluconate (FeG) and folic acid (FA) to alleviate iron deficiency anaemia and FA deficiency anaemia, respectively. The presence of FA and ascorbic acid (AA) increased the in vitro iron bioavailability of the FeG-AA-FA microparticles up to sixfold. Furthermore, the iron bioavailability of the fortified jelly foods increased more than 5 folds compared to that of the FeG-AA-FA microparticles. The use of lower temperature during the preparation of fortified jelly foods is recommended to avoid the microparticles' decomposition and a Maillard browning reaction. These findings can help food technologists and product developers select formulations with higher ferrous bioavailability to reduce the prevalence of anaemia. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05599-7.
Collapse
Affiliation(s)
- Noer Abyor Handayani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro Kampus Undip Tembalang, Semarang, Central Java Indonesia
| | - Kamarza Mulia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| | - Sutrasno Kartohardjono
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| | - Elsa Anisa Krisanti
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| |
Collapse
|
7
|
Li J, Hou X, Jiang L, Xia D, Chen A, Li S, Li Q, Gu X, Mo X, Zhang Z. Optimization and characterization of Sichuan pepper (Zanthoxylum bungeanum Maxim) resin microcapsule encapsulated with β-cyclodextrin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Wang H, Hu L, Peng L, Du J, Lan M, Cheng Y, Ma L, Zhang Y. Dual encapsulation of β-carotene by β-cyclodextrin and chitosan for 3D printing application. Food Chem 2022; 378:132088. [PMID: 35033713 DOI: 10.1016/j.foodchem.2022.132088] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Dual encapsulation of β-carotene (CAT) by β-cyclodextrin (CCLD) and chitosan (CS) are prepared via self-assembly process by special addition order and concentration. CCLD and CS alone could not effectively stabilize CAT, while CAT could be encapsulated in cavity of CCLD and the inclusion complex could be further strengthened by CS, due to hydrogen-bonding between CCLD and CS via groups including NH2 and OH. The dispersion system based on dual encapsulation of CAT had outstanding shear-thinning behavior, proper pseudoplastic properties, satisfactory yield stress, excellent thermal stability and great thixotropy, illustrating high potential for 3D printing. 3D printing of CAT-encapsulated system with high-content CS on paper and bread proves its excellent extrudability and printability, with possible potential in nutrition personalization. The designed host encapsulation structure by CCLD and CS plays a guiding role in incorporating functional materials including bioactives, probiotics, enzymes, vitamins, etc., and provides a reference in innovative food technology.
Collapse
Affiliation(s)
- Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee, Chongqing 400715, PR China.
| | - Ludan Hu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Lin Peng
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Jie Du
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Miaochuan Lan
- College of Food Science, Southwest University, Chongqing 400715, PR China; Luzhou Vocational and Technical College, Sichuan 646699, PR China
| | - Yang Cheng
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Kalantari S, Roufegarinejad L, Pirsa S, Gharekhani M, Tabibiazar M. β-Cyclodextrin-assisted extraction of phenolic compounds from pomegranate (Punica granatum L.) peel: A new strategy for anthocyanin copigmentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Sodium caseinate-coated and β-cyclodextrin/vitamin E inclusion complex-loaded nanoliposomes: A novel stabilized nanocarrier. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Glutathione Encapsulation in Core-Shell Drug Nanocarriers (Polymersomes and Niosomes) Prevents Advanced Glycation End-products Toxicities. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Comparison Between β-Cyclodextrin-Amygdalin Nanoparticle and Amygdalin Effects on Migration and Apoptosis of MCF-7 Breast Cancer Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Lopes I, Michelon M, Duarte L, Prediger P, Cunha R, Picone C. Effect of chitosan structure modification and complexation to whey protein isolate on oil/water interface stabilization. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Samborska K, Boostani S, Geranpour M, Hosseini H, Dima C, Khoshnoudi-Nia S, Rostamabadi H, Falsafi SR, Shaddel R, Akbari-Alavijeh S, Jafari SM. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Ribas Fonseca L, Porto Santos T, Czaikoski A, Lopes Cunha R. Modulating properties of polysaccharides nanocomplexes from enzymatic hydrolysis of chitosan. Food Res Int 2020; 137:109642. [PMID: 33233221 DOI: 10.1016/j.foodres.2020.109642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022]
Abstract
Synthesis of nanocomplexes is a simple and low-cost technique for the production of encapsulation systems aiming industrial applications, based on the interaction of at least two oppositely charged molecules. Gellan gum (anionic) is a water-soluble biopolymer resistant to stomach pH conditions, therefore an interesting alternative as an encapsulating matrix. Chitosan (cationic) is also widely used due to its biocompatibility and mucoadhesive properties, although its low water solubility is an important step to be overcome for the production of the complexes. To improve this property, many techniques have been employed, but most of them use unsustainable techniques and chemical agents. The enzymatic hydrolysis of chitosan using proteases emerges as an alternative to these drawbacks and, therefore, this study aimed to evaluate the electrostatic nanocomplexation of native (C) or hydrolyzed (HC) chitosan (by porcine pepsin protease) with gellan gum (G). Polysaccharides and nanocomplexes formed with different G:C or G:HC ratio were evaluated by zeta potential measurements, particle size distribution, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Transmission Electron Microscopy (STEM), intrinsic viscosity and turbidity analyses. Chitosan hydrolysis allowed the formation of a smaller (445.3 nm in pH 4.5) and more soluble structure (3 kDa), which positively influenced the formation of the complexes. The ratios G:HC of 7:3 and 8:2 formed complexes with lower values of zeta potential (13.9 mV and -5.0 mV, respectively), particle size (635.8 nm and 533.6 nm, respectively) and polydispersity (0.28 and 0.23) compared to complexes formed with native chitosan. Overall, our results show that enzymatic hydrolysis of chitosan favored the formation of electrostatic complexes with reduced size and low polydispersity, which can be used as efficient encapsulating matrices for improved targeted delivery and controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Larissa Ribas Fonseca
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Tatiana Porto Santos
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Aline Czaikoski
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
16
|
Lima LR, Andrade FK, Alves DR, de Morais SM, Vieira RS. Anti-acetylcholinesterase and toxicity against Artemia salina of chitosan microparticles loaded with essential oils of Cymbopogon flexuosus, Pelargonium x ssp and Copaifera officinalis. Int J Biol Macromol 2020; 167:1361-1370. [PMID: 33217462 DOI: 10.1016/j.ijbiomac.2020.11.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Essential oils (EOs) are bioactive compounds with therapeutic potential for use as alternatives or as support to conventional treatments. However, EOs present limitations, such as sensibility to environmental factors, which can be overcome through microencapsulation. The objective of this study was to produce, by spray drying, chitosan microparticles (CMs) loaded with EO of Lemongrass (Cymbopogon flexuosus), Geranium (Pelargonium x ssp) and Copaiba (Copaifera officinalis). Physicochemical and biological characterization of these microparticles showed that CMs presented spherical morphology, had an average size range of 2-3 μm with positive zeta potential (ZP) values, and enhanced thermal stability, compared to free EO. The encapsulation efficiency (EE) ranged from 4.8-58.6%, depending on the oil's properties. In vitro EO release from CMs was determined at different pHs, with 94% release observed in acid media. All microparticles were non-hemolytic at concentrations of up to 0.1 mg·mL-1. EOs and CMs presented acetylcholinesterase (AChE) inhibition activity (IC 50 ranged from 11.92 to 28.18 μg·mL-1). Geranium and Copaiba EOs presented higher toxicity against Artemia salina, and greater inhibition of acetylcholinesterase, indicating potential bioactivity for Alzheimer's disease (AD). Our findings demonstrate that CM systems may show promise for the controlled release of these EOs.
Collapse
Affiliation(s)
- Laysa Rocha Lima
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fabia Karine Andrade
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniela Ribeiro Alves
- Laboratory of Chemistry of Natural Products, Center for Science and Technology, State University of Ceará, Fortaleza, CE, Brazil
| | - Selene Maia de Morais
- Laboratory of Chemistry of Natural Products, Center for Science and Technology, State University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
17
|
Essential oils encapsulated in chitosan microparticles against Candida albicans biofilms. Int J Biol Macromol 2020; 166:621-632. [PMID: 33137389 DOI: 10.1016/j.ijbiomac.2020.10.220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
The aim of the study was to produce and characterize chitosan microparticles loaded with essential oils (CMEOs), evaluate the essential oil (EO) release profile and the CMEOs' anti-Candida activity. The chitosan microparticles (CMs) loaded with lemongrass essential oil (LEO) and geranium essential oil (GEO) were produced by the spray-drying method and characterized regarding CMEO morphological and physicochemical parameters and EO encapsulation efficiency (EE) and release profile. The planktonic activity was quantified by broth microdilution, and the activity against biofilm was quantified by biomass formation measurement. The LEO and GEO compositions were analyzed by gas chromatography combined with mass spectrometry (GC/MS), finding the main components citral (83.17%) and citronellol (24.53%). The CMs and CMEOs showed regular distribution and spherical shape (1 to 15 μm), without any morphological and physical modifications after EO incorporation. EE% ranged from 12 to 39%. In vitro release tests demonstrated the EO release rates, after 144 h, were 33% and 55% in PBS and HCl media, respectively. The minimum inhibitory concentration (MIC) values for CMEOs were lower than for CMs and pure EOs (P < 0.05). The higher CMEO biofilm inhibition percentage demonstrates the efficiency of microparticles against Candida biofilm. These results indicate that CMEOs are promising compounds that have antibiofilm activity against C. albicans.
Collapse
|
18
|
Coimbra PPS, Cardoso FDSN, Gonçalves ÉCBDA. Spray-drying wall materials: relationship with bioactive compounds. Crit Rev Food Sci Nutr 2020; 61:2809-2826. [DOI: 10.1080/10408398.2020.1786354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pedro Paulo Saldanha Coimbra
- Laboratory of Bioactives, Food and Nutrition Post-Graduate Program, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
19
|
Cyclic Voltammetry and Oxidation Rate Studies of Ferrous Gluconate Complex Solutions for Preparation of Chitosan-Tripolyphosphate Microparticles. J CHEM-NY 2020. [DOI: 10.1155/2020/3417204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A proper understanding of the properties of iron could increase the effectiveness of programmes for alleviating iron deficiency. Recently, encapsulation has been considered an appropriate method for protecting iron from injurious reactions. However, several events may occur during encapsulation processes, including changes in the iron’s oxidation state. Oxidation of ferrous iron is not desirable since the intestines can only absorb iron in the ferrous form. In this study, a cyclic voltammetry method was applied to investigate the likelihood of ferrous gluconate oxidation for the preparation of chitosan-tripolyphosphate microparticles. Then, the electrochemical properties of ferrous gluconate were confirmed experimentally. The oxidation rate of ferrous gluconate is also discussed in this paper. All the experimental solutions were formulated in detail to produce conditions similar to those of microparticle production. Cyclic voltammetry analysis was conducted using a configuration of three electrodes connected to an electrochemical analyser. Graphite, platinum wire, and Ag/AgCl were employed as the auxiliary, working, and reference electrodes, respectively. The cyclic voltammetry results show that the observed potential for each anodic peak shifted negatively in the presence of chitosan and sodium tripolyphosphate. Moreover, the rate of ferrous oxidation tended to increase during 75 min of experiments due to the presence of chitosan and sodium tripolyphosphate. These behaviours indicate the transformation of ferrous iron to ferric iron during iron microparticle preparation. Furthermore, these findings suggest that spray drying is a preferable method to minimise the oxidation reaction.
Collapse
|
20
|
Tutunchi P, Roufegarinejad L, Hamishehkar H, Alizadeh A. Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chem 2019; 297:124994. [PMID: 31253277 DOI: 10.1016/j.foodchem.2019.124994] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Improving the extraction efficiency and stability of red beet compounds has gained the attention of researchers due to their high nutritional and health benefits. In this study, β-cyclodextrin (β-CD) enhanced ultrasound assisted extraction was used for the extraction of red beet extract, and lyophilized extracts were characterized with FTIR and DSC analyses. The samples extracted with aqueous 5% β-CD solutions revealed the highest content of betanin (2.243 ± 0.04 mg) and total phenolic compounds (20.03 ± 1.28 mg GAE/g DW), and the highest DPPH inhibition activity (59.87 ± 4.94%). Additionally, complexation with β-CD significantly enhanced the stability of betanin, phenolic compounds and antiradical activity in the stored beverage and gummy candy models at various pH and temperature conditions during 28 days. In conclusion, β-CD-enhanced ultrasound assisted extraction is a suitable approach to extracting and stabilizing the red beet compounds for application in food, nutraceutical, and medical fields.
Collapse
Affiliation(s)
- Parizad Tutunchi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Leila Roufegarinejad
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Alizadeh
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
21
|
Huang D, Liu Y, Liu Y, Di D, Wang H, Yang W. Preparation of metal–organic frameworks with bimetallic linkers and corresponding properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj00433e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of metal–organic frameworks (MOFs) with bimetallic linkers were synthesized through a facile reflux route.
Collapse
Affiliation(s)
- Dongdong Huang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
| | - Yi Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Yongfeng Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Hao Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Wu Yang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| |
Collapse
|