1
|
Li J, Xu H, Li H, Xie Y, Ding K, Xu S, Wang Z, Wang R, Yi C, Ding S. Co-fermentation of Lactiplantibacillus and Streptococcusccus enriches the key-contribution volatile and non-volatile components of jujube juice. Food Res Int 2024; 196:115093. [PMID: 39614506 DOI: 10.1016/j.foodres.2024.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Lactic acid bacteria (LAB) fermentation can enhance the quality and flavor characteristics of fruit juice. Herein, the impact of individual Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) or Streptococcus thermophilus (S. thermophilus) and co-fermentation of them on jujube juice was compared, and their quality characteristics, volatile and non-volatile compounds were investigated. The results showed that the co-fermentation of selected LAB strains effectively improved the quality of fermented jujube juice (FJJ) as expected, and the types and content of volatile organic compounds (VOCs) increased in FJJs. Among them, the co-fermented sample posed relatively high content of aroma-active compounds with OAV ≥1 (nonanal, decanal, etc), benzaldehyde and acids compared with others, contributing to a more attractive and pleasant flavor. Moreover, non-targeted metabolomic analysis identified 114 and 79 differential metabolites (DMs) between co-fermented and L. plantarum fermented or S. thermophilus fermented samples, respectively. Notably, carboxylic acids and their derivative metabolites as well as organic acids were the crucial components affecting the quality of FJJ. Furthermore, metabolic pathways of DMs of different samples were predominantly enriched in "biosynthesis" and "metabolism", such as aline, leucine, and isoleucine biosynthesis pathway. Therefore, co-fermentation could enrich the acids, essential amino acid, and VOCs, thereby improving its quality and flavor characteristics. The correlation analysis revealed that most of key VOCs were positively or negatively correlated with D-galacturonate, indicating the importance of D-galactose pathway. Thus, this study provided a theoretical foundation for enhancing the quality and flavor of jujube juice through LAB co-fermentation, offering valuable insights for improving the juice processing.
Collapse
Affiliation(s)
- Jing Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huan Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zijun Wang
- DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Cuiping Yi
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Zhang H, Wang H, Chen Q, Cao Y, Huang J, Li Y, Yao X, Kong B. Effect of glycine and Pediococcus pentosaceus R1 combined application on the physicochemical properties, oxidative stability, and taste profile of Harbin dry sausages. Meat Sci 2024; 217:109614. [PMID: 39089084 DOI: 10.1016/j.meatsci.2024.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
This study investigated the effects of the application of glycine (Gly) and Pediococcus pentosaceus R1(Pp), alone or in combination, on the physicochemical properties, oxidative stability, and taste quality of Harbin dry sausages. The results demonstrated that after nine days of fermentation, the Gly + Pp group exhibited significantly (P < 0.05) lower moisture content (19.04%), water activity (0.686), and pH (4.78) values, alongside notably (P < 0.05) higher lactic acid bacteria count (8.11 log CFU/g sausage) and redness value (17.2), compared to the other three groups (P < 0.05). In addition, the dry sausages in the Gly + Pp group exhibited the lowest peroxide value (0.34 meq/kg sausage), thiobarbituric acid reactive substances (0.46 MAD/kg sausage), and protein carbonyl content (1.26 nmol/kg protein) during fermentation, followed by the Gly group, Pp group, and control group. Electronic tongue (e-tongue) and sensory evaluations revealed that the combined treatment with P. pentosaceus R1 and Gly resulted in superior taste characteristics. Besides, partial least squares regression (PLSR) analysis illustrated that the taste qualities characterized using the e-tongue were accordant with the sensory evaluation consequences, and total free amino acids (FAAs) and organic acids contributed to the dry sausages' taste properties. In conclusion, the combined application of Gly and P. pentosaceus R1 enhanced the physicochemical properties, oxidative stability, and taste profile of Harbin dry sausages.
Collapse
Affiliation(s)
- Huan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710016, China; Linyi Xincheng Jinluo Meat Products Group Co., Ltd, Linyi, Shandong 276036, China
| | - Huizhu Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710016, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yungang Cao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710016, China
| | - Junrong Huang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710016, China
| | - Yuexin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xianqi Yao
- Linyi Xincheng Jinluo Meat Products Group Co., Ltd, Linyi, Shandong 276036, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Chen L, Yin S, Dong S, Xu P, Liu Y, Xiang X, Huang Q, Ye L. A new insight into the key matrix components for aftertaste in Ampelopsis grossedentata (vine tea) infusion: From the intensity and duration of taste profiles using non-targeted metabolomics and molecular simulation. Food Chem 2024; 450:139236. [PMID: 38640537 DOI: 10.1016/j.foodchem.2024.139236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024]
Abstract
The aftertaste with a prolonged duration in ampelopsis grossedentata infusion (AGTI) is easily perceived, however, its formation mechanism is unclear. Therefore, aftertaste-A and richness were confirmed as the characteristic aftertaste of AGTI through sensory evaluation and electronic tongue. Moreover, 5-KETE, theobromine, etc., metabolites were identified as the differential components between AGTI and green tea infusion. Among them, p-coumaroyl quinic acid, xanthine etc., and proline, dihydromyricetin, etc., components contributed more to the formation of aftertaste-A and richness, respectively. Further, the bonding between characteristic metabolites for aftertaste in AGTI with their receptors were shown to be more stable using molecular docking, compared to metabolites related to typical taste profiles. The aftertaste in AGTI was more easily perceived by saltiness components or in NaCl system by molecular simulation. This study offers novel insight into the interaction mechanism of aftertaste in tea infusion and will contribute to further study on aftertaste for other foods.
Collapse
Affiliation(s)
- Le Chen
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Shengxin Yin
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Shiqin Dong
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Peng Xu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Lin Ye
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China
| |
Collapse
|
4
|
Qin Y, Li W, Zhang W, Zhang B, Yao D, Zeng C, Cao J, Li L, Huang R. Characterization the microbial diversity and metabolites of four varieties of Dry-Cured ham in western Yunnan of China. Food Chem X 2024; 22:101257. [PMID: 38495458 PMCID: PMC10943036 DOI: 10.1016/j.fochx.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, high-throughput sequencing and metabolomics analysis were conducted to analyze the microbial and metabolites of dry-cured Sanchuan ham, Laowo ham, Nuodeng ham, and Heqing ham that have fermented for two years produced from western Yunnan China. Results showed that at the genus level, the dominant bacteria in the four types of ham were Halomonas and Staphylococcus, while the dominant fungi were Aspergillus and Yamadazyma. A total 422 different metabolites were identified in four types of ham, mainly amino acids, peptides, fatty acids, and their structural analogs, which were involved in pantothenate and coenzyme A biosynthesis, caffeine, and tyrosine metabolism. The dominant microorganisms of the four types of ham were mainly related to the metabolism of fatty acids and amino acids. This research enhances the identification degree of these four types of dry-cured ham and provides a theoretical basis for developing innovative and distinctive ham products.
Collapse
Affiliation(s)
- Yu Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wenwen Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wenwen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Beibei Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Dengjie Yao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Chunyin Zeng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Lirong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Rui Huang
- Zhongken Huashan Mu Daity Co., LTD, Weinan, Shaanxi Province 714000, China
| |
Collapse
|
5
|
Li C, Zou Y, Liao G, Zheng Z, Chen G, Zhong Y, Wang G. Identification of characteristic flavor compounds and small molecule metabolites during the ripening process of Nuodeng ham by GC-IMS, GC-MS combined with metabolomics. Food Chem 2024; 440:138188. [PMID: 38100964 DOI: 10.1016/j.foodchem.2023.138188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
To investigate effects of metabolites and volatile compounds on the quality of Nuodeng ham, gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography-Q exactive orbitrap-mass spectrometry (UHPLC-QE-MS), and gas chromatography-ion transfer spectroscopy (GC-IMS) were used to analyze the differences of free fatty acids, small molecule metabolites and volatile compounds of Nuodeng ham at different ripening stages (the first, second and third year sample). 40 free fatty acids were detected. 757 and 300 metabolites were detected in positive and negative ion modes, respectively. 48 differential metabolites (VIP ≥ 1.5, P < 0.05) might important components affecting flavor differences of Nuodeng ham. Metabolic pathways revealed that fermenting-ripening of ham was associated with 31 metabolic pathways, among, 19 pathways were significant (Impact > 0.01, P < 0.05). 58 volatile compounds were identified, combined with PCA and PLS-DA, 15 flavor markers were screened out. These findings provide a scientific basis for further research on the flavor formation mechanism of Nuodeng ham.
Collapse
Affiliation(s)
- Cong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yingling Zou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| | - Zhijie Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghui Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yanru Zhong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
6
|
Wang H, Yin X, Zhang L, Wang X, Zhang J, Wen R, Cao J. Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham. Foods 2024; 13:776. [PMID: 38472889 PMCID: PMC10930425 DOI: 10.3390/foods13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
To expound on the correlation between the microorganism communities and the formation of off-odour in Xuanwei ham, the microorganism communities and volatile compounds were investigated in the biceps femoris (BF) and semimembranosus (SM) of Xuanwei ham with different quality grades (normal ham and spoiled ham). The single molecule real-time sequencing showed that differential bacteria and fungi were more varied in normal hams than in spoiled hams. Headspace solid-phase microextraction-gas chromatography (HS-SPME-GC-MS) results indicated that aldehydes and alcohols were significantly higher in spoiled hams than those in normal hams (p < 0.05). The off-odour of spoiled hams was dominated by ichthyic, malodourous, sweaty, putrid, sour, and unpleasant odours produced by compounds such as trimethylamine (SM: 13.05 μg/kg), hexanal (BF: 206.46 μg/kg), octanal (BF: 59.52 μg/kg), methanethiol (SM: 12.85 μg/kg), and valeric acid (BF: 15.08 μg/kg), which are positively correlated with Bacillus cereus, Bacillus subtilis, Bacillus licheniformis, Pseudomonas sp., Aspergillus ruber, and Moraxella osloensis. Furthermore, the physicochemical property and quality characteristics results showed that high moisture (BF: 56.32 g/100 g), pH (BF: 6.63), thiobarbituric acid reactive substances (TBARS) (SM: 1.98 MDA/kg), and low NaCl content (SM: 6.31%) were also responsible for the spoilage of hams with off-odour. This study provided a deep insight into the off-odour of Xuanwei ham from the perspective of microorganism communities and a theoretical basis for improving the flavour and overall quality of Xuanwei hams.
Collapse
Affiliation(s)
- Haoyi Wang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Xiaoyu Yin
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Lu Zhang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Xuejiao Wang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Jiliang Zhang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Rongxin Wen
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Jianxin Cao
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| |
Collapse
|
7
|
Jia R, Xun W, Liao G, Yang Y, Wang G. Comparison of the Fatty Acid Composition and Small Molecular Metabolites between Yanjin Blackbone Chicken and Piao Chicken Meat. Food Sci Anim Resour 2023; 43:975-988. [PMID: 37969319 PMCID: PMC10636213 DOI: 10.5851/kosfa.2023.e53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
The fatty acid composition and small molecular metabolites in breast and leg meat of Yanjin blackbone chickens (YBC) and Piao chickens (PC) were detected by gas chromatography-mass spectrometry and liquid chromatography-quadrupole static field orbital trap mass spectrometry. Thirty-two fatty acids were detected, and the total fatty acid content of PC was significantly higher than that of YBC (p<0.05). Oleic acid, linoleic acid, palmitic acid, stearic acid, and arachidonic acid were the main fatty acids in the two chicken varieties, and the composition of fatty acids in the two varieties were mainly unsaturated fatty acids, being more than 61.10% of the total fatty acids. Meanwhile, 12 and 16 compounds were screened out from chicken legs and chicken breasts of YBC and PC, respectively, which had important contributions to the differences between groups.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Wen Xun
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Yuan Yang
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Cui H, Li H, Wu Y, Hu X. Identification, flavor characteristics and molecular docking of umami taste peptides of Xuanwei ham. Food Res Int 2023; 173:113211. [PMID: 37803535 DOI: 10.1016/j.foodres.2023.113211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 10/08/2023]
Abstract
To better understand the palatable properties of Xuanwei ham, the aqueous extract was isolated, analyzed and combin with sensory evaluation. Of umami-tasting activity and umami-enhancing impact, four new peptides (MDAIKKMQ, RKYEEVAR, YVGDEAQSKRG, and VNVDEVGGEALGR) were extracted and identified by ultrafiltration, gel separation, reverse performance liquid chromatography, and nano-LC-MS / MS. Sensory evaluation results showed that all of them had umami activity and enhanced umami taste, among which VNVDEVGGEALGR had the best effect. These peptides' umami taste thresholds ranged from 0.25 to 0.8 mg/mL. The MSG solution's umami taste threshold ranged from 0.125 to 0.5 mg/mL. Molecular docking results showed that the four umami peptides could be embedded into the binding pocket of the T1R3 cavity of the umami taste receptor T1R1/T1R3, wherein the binding sites Asp219, Asp150, and Thr179 may play crucial roles, and Glu222, Asp108, Glu217 and Glu148 play auxiliary roles. Hydrogen bonding and hydrophobic interactions were the most prominent interaction forces. This study helps to clarify the flavor characteristics of Xuanwei ham and could improve new processing technology.
Collapse
Affiliation(s)
- Hongwei Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China
| | - Hongyuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China
| | - Yue Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China
| | - Xujia Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| |
Collapse
|
9
|
Cai X, Liao R, Pan D, Xia Q, Wang Y, Geng F, Zhou C, Cao J. 1H NMR Reveals the Mechanism of Potassium Lactate on Proteolysis and Taste Metabolites of Rugao Ham. Foods 2023; 12:foods12071453. [PMID: 37048272 PMCID: PMC10093880 DOI: 10.3390/foods12071453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
To deepen the understanding of the effect of potassium lactate on the taste of Rugao ham, proteolysis index, enzyme activities and protein degradation of Rugao ham salted with potassium lactate (0%, 0.5%, 1%, 2%) were investigated. Metabolites of Rugao ham were identified by 1H nuclear magnetic resonance (NMR) spectroscopy and the metabolic pathways of the key metabolites were enriched by the Kyoto Encyclopedia of Genes and Genomes (KEGG); the relationship between taste and metabolites was assessed by partial least square discriminant analysis (PLS-DA). The hams with 2% potassium lactate showed lower cathepsin B and L activities, and higher aminopeptidase activities than that of the control group. The contents of free amino acids and organic acids significantly increased from the control to the treatment of 2% potassium lactate. PLS-DA further demonstrated that aspartate, glutamate, alanine, serine, threonine, acetate, lactate, succinate, carnosine, β-glucose and glycerol were the key metabolites to improve the taste of Rugao ham in the treatment of 2% potassium lactate. Metabolic pathways analysis further demonstrated that amino acids metabolism was the main pathway for the taste development of Rugao ham.
Collapse
|
10
|
Lu W, Hou Q, Zhang J, Zhang W. Targeted energy metabolomics analysis of postmortem pork in an in vitro model as influenced by protein S-nitrosylation. Meat Sci 2023; 197:109073. [PMID: 36525918 DOI: 10.1016/j.meatsci.2022.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
For exploring the effect of protein S-nitrosylation on the energy metabolism of early postmortem pork (within 24 h postmortem), the six Longissimus thoracis (LT) muscle homogenates were treated with nitric oxide donor (NOR-3, (±)-(E)-4-Ethyl-2-(E)-hydroxyimino-5-nitro-3-hexenamide), nitric oxide synthase (NOS) inhibitor (L-NAME, Nω-nitro-L-arginine methyl ester hydrochloride) and control (0.1 M K2HPO4, pH 7.4) in the in vitro buffer system for 24 h, respectively. The western blotting result showed that NOR-3 treatment led to a greater level of protein S-nitrosylation (p < 0.05). However, S-nitrosylation levels had no significant difference between L-NAME and control groups (p > 0.05). In addition, results showed that 16 significantly differential energy metabolites were identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and clearly separated among three groups in the principal component analysis. Four pathways (glycolysis, tricarboxylic acid cycle, purine metabolism and pentose phosphate pathway) related to energy metabolism were significantly influenced by different levels of protein S-nitrosylation. Furthermore, the correlation analysis of metabolites demonstrated that metabolites were in dynamic equilibrium with each other. These results indicate that protein S-nitrosylation can participate in and regulate energy metabolism postmortem pork through glycolysis and tricarboxylic acid (TCA) cycle.
Collapse
Affiliation(s)
- Wenwei Lu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Hou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Consonni R, Cagliani L. Quality assessment of traditional food by NMR analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Shi Y, Pu D, Zhou X, Zhang Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022; 11:3408. [PMID: 36360025 PMCID: PMC9654595 DOI: 10.3390/foods11213408] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/11/2023] Open
Abstract
Organic acids could improve the food flavor, maintain the nutritional value, and extend the shelf life of food. This review summarizes the detection methods and concentrations of organic acids in different foods, as well as their taste characteristics and nutritional properties. The composition of organic acids varies in different food. Fruits and vegetables often contain citric acid, creatine is a unique organic acid found in meat, fermented foods have a high content of acetic acid, and seasonings have a wide range of organic acids. Determination of the organic acid contents among different food matrices allows us to monitor the sensory properties, origin identification, and quality control of foods, and further provides a basis for food formulation design. The taste characteristics and the acid taste perception mechanisms of organic acids have made some progress, and binary taste interaction is the key method to decode multiple taste perception. Real food and solution models elucidated that the organic acid has an asymmetric interaction effect on the other four basic taste attributes. In addition, in terms of nutrition and health, organic acids can provide energy and metabolism regulation to protect the human immune and myocardial systems. Moreover, it also exhibited bacterial inhibition by disrupting the internal balance of bacteria and inhibiting enzyme activity. It is of great significance to clarify the synergistic dose-effect relationship between organic acids and other taste sensations and further promote the application of organic acids in food salt reduction.
Collapse
Affiliation(s)
- Yige Shi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Pu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
13
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Jiang L, Mu Y, Su W, Tian H, Zhao M, Su G, Zhao C. Effects of Pediococcus acidilactici and Rhizopus Oryzae on microbiota and metabolomic profiling in fermented dry-cure mutton sausages. Food Chem 2022; 403:134431. [DOI: 10.1016/j.foodchem.2022.134431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
15
|
Ju M, Piao C, Zhang J, Mu B, Li G, Zhang W. Hydrolysis of pork sarcoplasmic protein extracts by unique staphylococci isolated from low-salt dry-cured ham. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Microwave heating and conduction heating pork belly: Non-volatile compounds and their correlation with taste characteristics, heat transfer modes and matrix microstructure. Meat Sci 2022; 192:108899. [DOI: 10.1016/j.meatsci.2022.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
|
17
|
Liao R, Xia Q, Zhou C, Geng F, Wang Y, Sun Y, He J, Pan D, Cao J. LC-MS/MS-based metabolomics and sensory evaluation characterize metabolites and texture of normal and spoiled dry-cured hams. Food Chem 2022; 371:131156. [PMID: 34583183 DOI: 10.1016/j.foodchem.2021.131156] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023]
Abstract
The spoiled dry-cured ham commonly shows unpleasant taste and odour. To deepen the understanding in the formation mechanism of unpleasant taste in spoiled ham, sensory attributes, texture parameters, protein degradation, metabolites were investigated between normal and spoiled hams; the relationship between the sensory quality and metabolites of dry-cured ham was further evaluated by partial least square discriminant analysis (PLS-DA). The scores of richness and overall acceptance were significantly lower in spoiled ham, and more than 12.5-fold values in adhesiveness were found in spoiled ham than normal ham. Myofibrillar proteins including actin, troponin-T and myosin light chain showed excessive degradation in spoiled ham. Forty-two kinds of metabolites mainly derived from protein degradation were identified by LC-MS/MS, and amino acid derivatives and oligopeptides were the key components to distinguish spoiled and normal hams demonstrated by PLS-DA. Purine metabolism, pyrimidine metabolism and protein degradation were the main metabolism pathways in spoiled ham.
Collapse
Affiliation(s)
- Renyong Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
18
|
Fu H, Pan L, Wang J, Zhao J, Guo X, Chen J, Lu S, Dong J, Wang Q. Sensory Properties and Main Differential Metabolites Influencing the Taste Quality of Dry-Cured Beef during Processing. Foods 2022; 11:foods11040531. [PMID: 35206008 PMCID: PMC8870990 DOI: 10.3390/foods11040531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
This study adopted widely targeted high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) metabolomics and multivariate data analysis methods to evaluate the correlation between changes in metabolites and their taste formation in dry-cured beef during processing. The physicochemical profile changed significantly in the maturity period (RG), especially due to the continuous hydrolysis and oxidation of proteins. The sensory characteristic of dry-cured beef was highest in saltiness, umami, overall taste, and after-taste in RG. Overall, 400 metabolites were mainly identified, including amino acids, peptides, organic acids, and their derivatives, nucleotides, and their metabolites, as well as carbohydrates. Cysteine and succinic acid were significantly up-regulated during the process of dry-curing beef compared to the control group (CG). Moreover, glutamine and glutathione were significantly down-regulated in the fermentation period (FG) and in RG. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that glyoxylate and dicarboxylate metabolism, glutathione metabolism, alanine, aspartate, and glutamate metabolism, arginine biosynthesis, taurine, and hypotaurine metabolism were the main metabolic pathways influencing the taste of dry-cured beef during processing. Results of correlation analysis revealed that umami is positively correlated with salty, L-cysteine, L-arginine, inosine, creatinine, and succinic acid. Our study results provide a better understanding of the changes in taste substances and will contribute to quality evaluation of dry-cured beef.
Collapse
Affiliation(s)
- Huihui Fu
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
- College of Cooking and Catering Management, Xinjiang Vocational University, Urumqi 830013, China
| | - Li Pan
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Jingyun Wang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Jixing Zhao
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Xin Guo
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Jingya Chen
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Shiling Lu
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Juan Dong
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Qingling Wang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
- Correspondence: ; Tel.: +86-0993-2058735; Fax: +86-0993-2057399
| |
Collapse
|
19
|
Wang Y, Wang Z, Han Q, Xie Y, Zhou H, Zhou K, Li X, Xu B. Comprehensive insights into the evolution of microbiological and metabolic characteristics of the fat portion during the processing of traditional Chinese bacon. Food Res Int 2022; 155:110987. [DOI: 10.1016/j.foodres.2022.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
|
20
|
Zhu Y, Guo Y, Yang F, Zhou C, Tang C, Zhou G. Combined application of high-throughput sequencing and UHPLC-Q/TOF-MS-based metabolomics in the evaluation of microorganisms and metabolites of dry-cured ham of different origins. Int J Food Microbiol 2021; 359:109422. [PMID: 34634729 DOI: 10.1016/j.ijfoodmicro.2021.109422] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
Ham fermentation relies on environmental and indigenous microorganisms forming a rich microbiome, which is pivotal to taste and flavor formation. Previous studies have focused on the appearance of differences of microorganisms and metabolites, this study aims to establish the relationship between microorganisms and metabolites over a period of two years in the fermentation of hams from Jinghua (JH2), Xuanwei (XW2), Rugao (RG2), Iberian (IB2) and Parma (PA2). We profiled bacterial communities by sequencing the V3-V4 region of the 16S rRNA genes and metabolites were analyzed using LC-Q-TOF-MS. LefSe analysis showed that different biomarkers in five ham groups. OPLS analysis showed that most differential metabolites are amino acids and were associated with four metabolic pathways. Correlation analysis implies a firm positive relationship between microorganisms and metabolites. This study provides novel insights into the taste and flavor quality of dry-cured hams of different origins due to fermentation.
Collapse
Affiliation(s)
- Yingying Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Animal Products Processing, MOA, Jiang Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China; Suzhou University Student Nutrition and Health Promotion Base, Center of Food Nutrition and Safety, Department of Food Nutrition and Test, Suzhou Vocational University, Suzhou, Jiangsu 215104, PR China
| | - Yun Guo
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Animal Products Processing, MOA, Jiang Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fenghong Yang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Animal Products Processing, MOA, Jiang Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Changyu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Changbo Tang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Animal Products Processing, MOA, Jiang Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Animal Products Processing, MOA, Jiang Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
21
|
Zhang T, Chen C, Xie K, Wang J, Pan Z. Current State of Metabolomics Research in Meat Quality Analysis and Authentication. Foods 2021; 10:2388. [PMID: 34681437 PMCID: PMC8535928 DOI: 10.3390/foods10102388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
In the past decades, as an emerging omic, metabolomics has been widely used in meat science research, showing promise in meat quality analysis and meat authentication. This review first provides a brief overview of the concept, analytical techniques, and analysis workflow of metabolomics. Additionally, the metabolomics research in quality analysis and authentication of meat is comprehensively described. Finally, the limitations, challenges, and future trends of metabolomics application in meat quality analysis and meat authentication are critically discussed. We hope to provide valuable insights for further research in meat quality.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.Z.); (C.C.); (K.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.Z.); (C.C.); (K.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.Z.); (C.C.); (K.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.Z.); (C.C.); (K.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Zhiming Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
1H NMR-based metabolomics and sensory evaluation characterize taste substances of Jinhua ham with traditional and modern processing procedures. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Zhang J, Zhang W, Xing L. Effects of ultrasound on the taste components from aqueous extract of unsmoked bacon. Food Chem 2021; 365:130411. [PMID: 34218106 DOI: 10.1016/j.foodchem.2021.130411] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
To investigate the effects of ultrasound on the taste profile of unsmoked bacon, metabolite identification, metabolite analysis and metabolic pathway analysis were performed by 1H NMR, multivariate statistical analyses and MetaboAnalyst respectively. Results showed that ultrasound improved the concentration of free amino acids and organic acids thus promoting the taste development of unsmoked bacon. Sensory results demonstrated that ultrasound groups (especially 500 W) had higher sensory scores compared with non-ultrasonic group, which could be attributed to the improved levels of nine metabolites (alanine, arginine, glutamate, isoleucine, lysine, tyrosine, valine, creatine and lactate) after ultrasound treatment. Meanwhile, six metabolic pathways (tyrosine metabolism, etc.) were screened as crucial pathways tightly related to the taste development of unsmoked bacon after ultrasound treatment. In conclusion, ultrasound is found to be an effective technology to improve the taste profile of unsmoked bacon.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
24
|
Improving the taste profile of reduced-salt dry sausage by inoculating different lactic acid bacteria. Food Res Int 2021; 145:110391. [PMID: 34112394 DOI: 10.1016/j.foodres.2021.110391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to investigate the effects of lactic acid bacteria (LAB) including Lactobacillus curvatus, Lactobacillus sakei, Weissella hellenica, and Lactobacillus plantarum on the taste profiles of reduced-salt dry sausage. The results showed that the inoculation of LAB increased the moisture content and water activity and decreased the pH values of the sausages. Higher contents of total free amino acids (FAAs) were observed in the inoculated sausages (P < 0.05), especially for the sausages inoculated with L. curvatus, W. hellenica, and L. plantarum. The sausage inoculated with W. hellenica also had higher contents of organic acids than the other sausages (P < 0.05). In addition, partial least squares regression analysis demonstrated that the taste properties characterized by electronic tongue were consistent with the sensory evaluation results, and FAAs and organic acids contributed to the taste properties of the reduced-salt dry sausage. These results highlight the potential of W. hellenica and L. plantarum for the production of reduced-salt dry sausage with improved taste profiles.
Collapse
|
25
|
Li W, Chen YP, Blank I, Li F, Li C, Liu Y. GC × GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions. Food Res Int 2021; 142:110222. [DOI: 10.1016/j.foodres.2021.110222] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/26/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
|
26
|
Development of a portable electronic nose based on a hybrid filter-wrapper method for identifying the Chinese dry-cured ham of different grades. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Wang Q, Wei Y, Jiang S, Wang X, Xu F, Wang H, Shao X. Flavor development in peach fruit treated with 1-methylcyclopropene during shelf storage. Food Res Int 2020; 137:109653. [DOI: 10.1016/j.foodres.2020.109653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/03/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
|
28
|
Yang Y, Wang Y, Pan D, Zhang Y, He J, Xia Q, Cao J. The application of 1H NMR to explore the taste difference caused by taste-active metabolites of different Chinese sauce-stewed beef. Food Sci Nutr 2020; 8:4868-4876. [PMID: 32994948 PMCID: PMC7500787 DOI: 10.1002/fsn3.1773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/11/2023] Open
Abstract
In this study, we developed a method for the quantification of taste-active metabolites of Chinese commercial sauce-stewed beef by using 1H NMR spectroscopy coupled with multivariate data analysis. This method was applied to analyze the taste difference which caused by taste-active metabolites of different Chinese sauce-stewed beef. Beef samples demonstrated to consist of 25 metabolites, including amino acids, sugars, organic acids, nucleic aides, and their derivatives. PC1 and PC2 explained a total of 85.1 and 13.1% of variables, respectively. Metabolites such as isoleucine, histidine, glutamate, pyroglutamate, sucrose, lactate, creatine, carnitine, and creatinine were kept at a higher levels compared with other metabolites in the four products. Sensory evaluation was also done to help analyze the taste difference. This microcosmic approach of using high-resolution NMR spectrometry to analyze beef products has rarely been reported. This work established a feasible method to distinguish the taste difference of different Chinese sauce-stewed beef.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsNingbo UniversityNingboChina
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsNingbo UniversityNingboChina
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsNingbo UniversityNingboChina
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Yuyu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsNingbo UniversityNingboChina
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsNingbo UniversityNingboChina
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsNingbo UniversityNingboChina
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| |
Collapse
|
29
|
Lin F, Cai F, Luo B, Gu R, Ahmed S, Long C. Variation of Microbiological and Biochemical Profiles of Laowo Dry-Cured Ham, an Indigenous Fermented Food, during Ripening by GC-TOF-MS and UPLC-QTOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8925-8935. [PMID: 32706588 DOI: 10.1021/acs.jafc.0c03254] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fermented foods have unique microbiota and metabolomic profiles that can support dietary diversity, digestion, and gut health of consumers. Laowo ham (LWH) is an example of an indigenous fermented food from Southwestern China that has cultural, ecological, economic, and health significance to local communities. We carried out ethnobiological surveys coupled with metagenomic and metabolomic analyses using GC-TOF-MS and UPLC-QTOF-MS to elucidate the microbiota and metabolic profiles of LWH samples at different ripening stages. The results from high-throughput sequencing showed a total of 502 bacterial genera in LWH samples with 12 genera of bacteria and 6 genera of fungi identified as dominant groups. This is the first study to our knowledge to report the bacteria of Lentibacillus and Mesorhizobium along with fungi Eremascus and Xerochrysium on a fermented meat product. Findings further revealed that the metabolite profiles among LWH samples were significantly different. In total, 27 and 30 metabolites from GC-TOF-MS and UPLC-QTOF-MS analysis, respectively, were annotated as highly discriminative metabolites. Among the differential compounds, the relative contents of most amino acids showed the highest in the LWH sample ripened for two years, while some metabolites with potential therapeutic effects such as levetiracetam were the most abundant in the LWH sample ripened for three years. The correlation analysis indicated that the dominant microbes were closely related to differential metabolites, highlighting the importance of their functional characterization. Findings indicate that the consumption of LWH contributes to microbiological and chemical diversity of human diets as well as suggests efficacy of combining GC-MS and LC-MS to study the metabolites in dry-cured meat products.
Collapse
Affiliation(s)
- Fengke Lin
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong-Guan-Cun South Avenue, Haidian, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
| | - Fei Cai
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong-Guan-Cun South Avenue, Haidian, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
| | - Binsheng Luo
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong-Guan-Cun South Avenue, Haidian, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
| | - Ronghui Gu
- School of Liquor and Food Engineering, Guizhou University, Huixia Road in Huaxi District, Guiyang 550025, People's Republic of China
| | - Selena Ahmed
- Food and Health Lab, Sustainable Food and Bioenergy Systems Program, Department of Health and Human Development, Montana State University, Bozeman Montana 59717, United States of America
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong-Guan-Cun South Avenue, Haidian, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road in Heilongtan, Kunming 650201, People's Republic of China
| |
Collapse
|
30
|
Wang X, Jiang G, Kebreab E, Li J, Feng X, Li C, Zhang X, Huang X, Fang C, Fang R, Dai Q. 1H NMR-based metabolomics study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality. Food Res Int 2020; 133:109126. [PMID: 32466939 DOI: 10.1016/j.foodres.2020.109126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 01/09/2023]
Abstract
This study investigated the effects of breed and age on meat quality, and metabolite profiles of duck breast meat, and the relationship between changes in metabolite profiles and the meat quality. The meat quality and 1H nuclear magnetic resonance (NMR)-based metabolomics of breast meat from Pekin and Linwu ducks at 2 different ages (42 and 72d) was analyzed. The results showed that age exerted a greater effect on the observed meat quality traits of breast meat than breed, and its interaction (breed × age) effect on pH values and yellowness (b*) of duck breast meat was significant. Total of 32 metabolites were detected in breast meat of Pekin and Linwu duck. The difference of metabolite profiles in breast meat between Pekin and Linwu duck at 72 d was greater than that at 42 d, while the effects of age on metabolites of duck meat from both breeds were similar. Anserine, aspartate, and carnosine were the most relevant metabolites of duck breast meat quality, and nicotinamide in duck breast meat was negatively correlated with cooking loss. These results provide an overall perspective for bridging the gap between the breed and age on duck meat quality and metabolome, and improve the understanding of the relationship between metabolites and duck meat quality.
Collapse
Affiliation(s)
- Xiangrong Wang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Department of Animal Science, University of California, Davis, CA 95616, United States; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Guitao Jiang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Jinghui Li
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Xiaoyu Feng
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Chuang Li
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Xu Zhang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Xuan Huang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Qiuzhong Dai
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| |
Collapse
|
31
|
Influences of ultrasonic-assisted frying on the flavor characteristics of fried meatballs. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Muroya S, Ueda S, Komatsu T, Miyakawa T, Ertbjerg P. MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals. Metabolites 2020; 10:E188. [PMID: 32403398 PMCID: PMC7281660 DOI: 10.3390/metabo10050188] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and the exploration of biomarkers in the production system. For identification of potential biomarkers to control meat quality, studies of animal muscles and meat with metabolomics (MEATabolomics) has been conducted in combination with analyses of meat quality traits, focusing on specific factors associated with animal genetic background and sensory scores, or conditions in feeding system and treatments of meat in the processes such as postmortem storage, processing, and hygiene control. Currently, most of MEATabolomics approaches combine separation techniques (gas or liquid chromatography, and capillary electrophoresis)-mass spectrometry (MS) or nuclear magnetic resonance (NMR) approaches with the downstream multivariate analyses, depending on the polarity and/or hydrophobicity of the targeted metabolites. Studies employing these approaches provide useful information to monitor meat quality traits efficiently and to understand the genetic background and production system of animals behind the meat quality. MEATabolomics is expected to improve the knowledge and methodologies in animal breeding and feeding, meat storage and processing, and prediction of meat quality.
Collapse
Affiliation(s)
- Susumu Muroya
- NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| | - Shuji Ueda
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan;
| | - Tomohiko Komatsu
- Livestock Research Institute of Yamagata Integrated Research Center, Shinjo, Yamagata 996-0041, Japan;
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
33
|
Yang Y, Pan D, Wang Y, He J, Yue Y, Xia Q, Zhou G, Cao J. Effect of Reconstituted Broth on the Taste-Active Metabolites and Sensory Quality of Stewed and Roasted Pork-Hock. Foods 2020; 9:foods9040513. [PMID: 32326064 PMCID: PMC7230635 DOI: 10.3390/foods9040513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/18/2023] Open
Abstract
Stewed pork-hock in soy sauce (SPHSS) is a cuisine that is stewed in broth with abundant taste-active compounds. Broth plays an important role in determining the meat taste. In order to promote the comprehensive utilization of the broth we treated it by spray drying, and secondary processed it into reconstituted broth. Two new products: SPH (stewed pork-hock with reconstituted broth) and MRPH (marinated and roasted pork-hock with reconstituted broth) were processed. Their metabolome consisted of amino acids, sugars, organic acids, nucleic acids and their derivatives. PC1 and PC2 explained a total of 63.07% and 35.31% of the variation, respectively. All the metabolite levels in SPH were higher than those in SPHSS, except for histidine and phosphorylcholine. SPH kept the highest levels of total FAAs and total sugars, which corresponded to the highest score of overall taste in the three products. These results demonstrated that reconstituted broth can promote the metabolite concentration in and improve the taste of pork-hock. Compared with marinating and roasting, reconstituted broth was more suitable for stewing pork-hock. This study preliminarily explored a feasible method to comprehensively utilize the surplus broth in food processing. SPH with a shortened processing time by a reconstituted broth have potential application in the industry due to the high concentrations of taste metabolites.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.Y.); (D.P.); (J.H.); (Q.X.); (J.C.)
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.Y.); (D.P.); (J.H.); (Q.X.); (J.C.)
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.Y.); (D.P.); (J.H.); (Q.X.); (J.C.)
- Correspondence: ; Tel.: +86-150-5828-0747
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.Y.); (D.P.); (J.H.); (Q.X.); (J.C.)
| | - Yi Yue
- College of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.Y.); (D.P.); (J.H.); (Q.X.); (J.C.)
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.Y.); (D.P.); (J.H.); (Q.X.); (J.C.)
| |
Collapse
|
34
|
Caballero D, Asensio M, Fernández C, Reina R, García MJ, Noguera JL, Silva A. Effects of genotypes and crossbreeding on the quality parameters of dry-cured shoulders from different Iberian genetic pig lines. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Antonelo DS, Cônsolo NRB, Gómez JFM, Beline M, Goulart RS, Corte RRPS, Colnago LA, Schilling MW, Gerrard DE, Silva SL. Metabolite profile and consumer sensory acceptability of meat from lean Nellore and Angus × Nellore crossbreed cattle fed soybean oil. Food Res Int 2020; 132:109056. [PMID: 32331638 DOI: 10.1016/j.foodres.2020.109056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
Thirty each Nellore (NEL) and crossbred Angus × Nellore (AxN) were used to evaluate the effect of feeding soybean oil (SBO) and breed on meat sensory acceptability and its relation to muscle metabolite profiles. Cattle were fed for 133 d on two different diets: 1) basal feedlot diet (CON) and 2) CON diet with 3.5% added SBO. No interactions between diet and genetic group were detected for any traits measured. Meat from animals fed SBO diet had lower overall liking, flavor, tenderness and juiciness scores compared to meat from animals fed CON diet. The four most important compounds differing between animals fed CON and SBO diets were betaine, glycerol, fumarate, and carnosine, suggesting that metabolic pathways such as glycerolipid metabolism; glycine, serine and threonine metabolism; glutamine and glutamate metabolism; valine, leucine and isoleucine biosynthesis; and alanine, aspartate and glutamate metabolism were affected by diets. Nellore beef had a higher overall liking and meat flavor scores than AxN beef. The four most important compounds differing between breeds were glycine, glucose, alanine, and carnosine, which may indicate that metabolic pathways such as glutathione metabolism; primary bile acid biosynthesis; alanine, aspartate and glutamate metabolism; and valine, leucine and isoleucine biosynthesis were affected by genetic groups. Meat carnosine, inosine monophosphate, glutamate, betaine, glycerol and creatinine levels were correlated with sensory acceptability scores. Meat metabolite profiles and sensory acceptability were differentially impacted by diet and breed.
Collapse
Affiliation(s)
- Daniel S Antonelo
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte 225, Pirassununga/SP 13635-900, Brazil.
| | - Nara R B Cônsolo
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte 225, Pirassununga/SP 13635-900, Brazil
| | - Juan F M Gómez
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte 225, Pirassununga/SP 13635-900, Brazil
| | - Mariane Beline
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte 225, Pirassununga/SP 13635-900, Brazil
| | - Rodrigo S Goulart
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte 225, Pirassununga/SP 13635-900, Brazil
| | - R R P S Corte
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte 225, Pirassununga/SP 13635-900, Brazil
| | - Luiz A Colnago
- EMBRAPA Instrumentation, XV de Novembro 1452, São Carlos/SP 13560-970, Brazil
| | - M Wes Schilling
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, United States
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, 24061, Blacksburg, VA, United States
| | - Saulo L Silva
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte 225, Pirassununga/SP 13635-900, Brazil; National Council for Scientific and Technological Development (CNPq) Fellow, Brazil
| |
Collapse
|
36
|
Yu Y, Wang G, Sun Y, Ge C, Liao G. Changes in physicochemical parameters, free fatty acid profile and water‐soluble compounds of Yunnan dry‐cured beef during processing. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yuanrui Yu
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Guiying Wang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Yuehui Sun
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
| |
Collapse
|
37
|
Mu Y, Su W, Mu Y, Jiang L. Combined Application of High-Throughput Sequencing and Metabolomics Reveals Metabolically Active Microorganisms During Panxian Ham Processing. Front Microbiol 2020; 10:3012. [PMID: 31998279 PMCID: PMC6966718 DOI: 10.3389/fmicb.2019.03012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Panxian ham, a traditional Chinese dry-cured ham, is protected by national geographical indication. Similar to other fermented foods, the microbial population of dry-cured ham is pivotal to taste and flavor formation. This study aimed to establish the relationship between microorganisms and metabolites during the spontaneous fermentation of Panxian ham. Multivariate analysis based on metabolomics data revealed that continuous metabolic changes occurred during the entire fermentation process, with the most significant changes occurring in the initial stage of ripening. Thirty-one significantly different metabolites (SDMs) were identified as discriminant factor, and pathway analysis suggested that these metabolites were involved in 30 pathways, including alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism; and arginine and proline metabolism. Microbial community analysis using the Illumina MiSeq platform indicated that the bacterial community was more complex than the fungal community, and their succession regulation differed during processing. At the genus level, 11 bacteria and five fungi were identified as core microbes, of which Staphylococcus was the dominant bacteria and Debaryomyces and Aspergillus were the dominant fungi. Further, statistical redundancy analysis (RDA) indicated that Staphylococcus, Debaryomyces, and Chromohalobacter promoted the production of amino and fatty acids; Cobetia and Aspergillus were associated with sugar metabolism, and Kushneria, Penicillium, and Yamadazyma were closely related with organic acids. These findings provide fundamental knowledge regarding the metabolically active microorganisms in Panxian ham, helping industrial processors to develop effective strategies for standardizing quality parameters.
Collapse
Affiliation(s)
- Yu Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang, China
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Li Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
38
|
Sugimoto M, Sugawara T, Obiya S, Enomoto A, Kaneko M, Ota S, Soga T, Tomita M. Sensory properties and metabolomic profiles of dry-cured ham during the ripening process. Food Res Int 2019; 129:108850. [PMID: 32036920 DOI: 10.1016/j.foodres.2019.108850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Dry-cured ham with a long ripening period is a valuable product worldwide. Ripening time is a key determinant of the endogenous metabolites that characterize the flavor and taste of ham products. While various studies have analyzed the relationship between ripening duration and sensory characteristics, no studies have evaluated ham products produced in Japan. Here, we conducted time-course metabolomic profiling, taste sensor-based analyses, and sensory evaluations by non-trained consumers during ripening. Capillary electrophoresis-mass spectrometry was used to quantify non-volatile metabolites, such as amino acids, organic acids, and nucleotides. In an analysis of eight time-points during 680 days of ripening, the highest score for the after-taste of umami was observed on day 540, despite subtle changes in the scores for other properties. The concentrations of aspartic acid and glutamic acid relative to those of total amino acids were the highest at this point. This approach can contribute to the understanding of the relationship between the metabolite profile and ripening duration.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; Research and Development Center for Minimally Invasive Therapies Health Promotion and Preemptive Medicine, Tokyo Medical University, Shinjuku, Tokyo 160-8402, Japan.
| | - Tetsuya Sugawara
- Yamagata Research Institute of Technology, Shonai Testing Facility, Mikawa, Tagawa, Tsuruoka, Yamagata 997-0321, Japan.
| | | | - Ayame Enomoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan.
| | - Miku Kaneko
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan.
| | - Sana Ota
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan.
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan.
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan.
| |
Collapse
|
39
|
Metabolite profile based on 1H NMR of broiler chicken breasts affected by wooden breast myodegeneration. Food Chem 2019; 310:125852. [PMID: 31735464 DOI: 10.1016/j.foodchem.2019.125852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 11/23/2022]
Abstract
The objective was to characterize the effect of wooden breast (WB) myodegeneration on the metabolite profile of chicken meat by 1H NMR and multivariate data analysis. The results displayed that the metabonome of chicken breast consisted predominantly of 30 metabolites, including amino acids, organic acids, carbohydrates, alkaloids, nucleosides and their derivatives. WB-affected samples showed higher leucine, valine, alanine, glutamate, lysine, lactate, succinate, taurine, glucose, and 5'-IMP levels, but lower histidine, β-alanine, acetate, creatine, creatinine, anserine and nicotinamide adenine dinucleotide levels compared to normal fillets (p < 0.05). In conclusion, results indicated that WB-affected fillets possessed a unique biochemical signature. This unique profile could identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into biochemical processes leading to WB myopathy in commercial broiler chickens.
Collapse
|
40
|
Guo X, Lu S, Wang Y, Dong J, Ji H, Wang Q. Correlations among flavor compounds, lipid oxidation indices, and endogenous enzyme activity during the processing of Xinjiang dry‐cured mutton ham. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Guo
- School of Food Science Shihezi University Shihezi P.R. China
| | - Shiling Lu
- School of Food Science Shihezi University Shihezi P.R. China
| | - Yongqin Wang
- School of Food Science Shihezi University Shihezi P.R. China
| | - Juan Dong
- School of Food Science Shihezi University Shihezi P.R. China
| | - Hua Ji
- School of Food Science Shihezi University Shihezi P.R. China
| | - Qingling Wang
- School of Food Science Shihezi University Shihezi P.R. China
| |
Collapse
|
41
|
Zhou CY, Wang C, Cai JH, Bai Y, Yu XB, Li CB, Xu XL, Zhou GH, Cao JX. Evaluating the effect of protein modifications and water distribution on bitterness and adhesiveness of Jinhua ham. Food Chem 2019; 293:103-111. [DOI: 10.1016/j.foodchem.2019.04.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 10/27/2022]
|
42
|
Zhang J, Yi Y, Pan D, Zhou G, Wang Y, Dang Y, He J, Li G, Cao J. 1H NMR-based metabolomics profiling and taste of boneless dry-cured hams during processing. Food Res Int 2019; 122:114-122. [DOI: 10.1016/j.foodres.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
|
43
|
Molecular insight into taste and aroma of sliced dry-cured ham induced by protein degradation undergone high-pressure conditions. Food Res Int 2019; 122:635-642. [DOI: 10.1016/j.foodres.2019.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/21/2022]
|
44
|
Liu S, Wang G, Xiao Z, Pu Y, Ge C, Liao G. 1H-NMR-based water-soluble low molecular weight compound characterization and free fatty acid composition of five kinds of Yunnan dry-cured hams. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Yang Y, Pan D, Sun Y, Wang Y, Xu F, Cao J. 1H NMR-based metabolomics profiling and taste of stewed pork-hock in soy sauce. Food Res Int 2019; 121:658-665. [DOI: 10.1016/j.foodres.2018.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/16/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
|
46
|
Zhu C, Tian W, Sun L, Liu Y, Li M, Zhao G. Characterization of protein changes and development of flavor components induced by thermal modulation during the cooking of chicken meat. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chaozhi Zhu
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou PR China
- College of Food Science and Technology Henan Agricultural University Zhengzhou PR China
| | - Wei Tian
- College of Animal Husbandry and Veterinary Science Engineering Henan Agricultural University Zhengzhou PR China
| | - Lingxia Sun
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou PR China
- College of Food Science and Technology Henan Agricultural University Zhengzhou PR China
| | - Yanxia Liu
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou PR China
- College of Food Science and Technology Henan Agricultural University Zhengzhou PR China
| | - Miaoyun Li
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou PR China
- College of Food Science and Technology Henan Agricultural University Zhengzhou PR China
| | - Gaiming Zhao
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou PR China
- College of Food Science and Technology Henan Agricultural University Zhengzhou PR China
| |
Collapse
|
47
|
Stelmasiak A, Wyrwisz J, Wierzbicka A. Effect of packaging methods on salt-reduced smoked-steamed ham using herbal extracts. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1660409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Adrian Stelmasiak
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jarosław Wyrwisz
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|