1
|
Khatun MH, Sami SA, Mim FS, Kumar P, Islam A, Al Mahamud Rian I, Rahman MA, Riya SI, Lokman M, Mamun A, Haque MA, Yeasmin MS, Rana GMM, Barmon J. Unveiling Pharmacological Promise of Mangifera indica (Haribhanga) Peel Extract: Exploring an Untapped Cultivar Through Biochemical and Computational Approaches. SCIENTIFICA 2025; 2025:6516268. [PMID: 40225279 PMCID: PMC11986926 DOI: 10.1155/sci5/6516268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/22/2025] [Indexed: 04/15/2025]
Abstract
The Haribhanga is one of the most renowned varieties of mango native to the Rangpur region of Bangladesh. The study aimed to explore the in vitro and in vivo pharmacological potentialities of the methanolic extract of Mangifera indica (Haribhanga) (MEMI) peel. The antioxidant, antimicrobial, and antiarthritic activities of MEMI peel were conducted by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, disc diffusion, and protein denaturation assays, respectively. The extract was administered to STZ-induced diabetic mice for 7 days for the observation of blood glucose, body weight, lipid profile, and liver enzyme levels. The gas chromatography-mass spectrometry (GC-MS) analysis was performed to identify phytochemicals in the extract. Subsequently, molecular docking was conducted to predict the binding affinity of the identified compounds. The MEMI peel exhibited notable antioxidant potentiality with an IC50 value of 4.43 ± 0.68 μg/mL and antimicrobial activity against Bacillus cereus with a zone of inhibition of 20.67 ± 1.52 mm. Furthermore, MEMI peel demonstrated substantial antiarthritic activity, with the highest inhibition of denaturation of protein (88%) observed at the highest dose (500 μg/mL). In the in vivo experiments, MEMI peel led to a significant increase in high-density lipoprotein (p < 0.001, p < 0.05), with a significant decrease in blood glucose (p < 0.001), triglycerides, total cholesterol, and low-density lipoprotein (p < 0.0001) in STZ-induced diabetic mice. Comparing the diabetic control mice, the MEMI peel substantially decreased (p < 0.001) the high serum levels of aspartate aminotransferase and alanine aminotransferase. Moreover, the extract significantly improved the body weight (p < 0.001) of diabetic mice after 7 days of treatment. GC-MS analysis identified 28 bioactive compounds, primarily fatty acid esters in the MEMI peel. Di-n-octyl phthalate, terpinen-4-ol, 8,11,14-docosatrienoic acid methyl ester, and phenol, 2-methoxy-4-(2-propenyl)-acetate exhibited the most favorable binding potential in molecular docking studies. The results suggest that MEMI peel possesses antimicrobial, antiarthritic, antidiabetic, antihyperlipidemic, and liver enzyme protective activities as a promising antioxidant.
Collapse
Affiliation(s)
- Mst. Hajera Khatun
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Farhana Sultana Mim
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Pappu Kumar
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Ariful Islam
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Injamam Al Mahamud Rian
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Md. Ashikur Rahman
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Sharmin Islam Riya
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Md. Lokman
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Al Mamun
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Anwarul Haque
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mst. Sarmina Yeasmin
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| | - G. M. Masud Rana
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| | - Jaytirmoy Barmon
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| |
Collapse
|
2
|
Muñoz-Bernal ÓA, Vazquez-Flores AA, de la Rosa LA, Rodrigo-García J, Martínez-Ruiz NR, Alvarez-Parrilla E. Enriched Red Wine: Phenolic Profile, Sensory Evaluation and In Vitro Bioaccessibility of Phenolic Compounds. Foods 2023; 12:foods12061194. [PMID: 36981121 PMCID: PMC10048746 DOI: 10.3390/foods12061194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The beneficial health effect of red wine depends on its phenolic content and the phenolic content in red wines is affected by ecological, agricultural, and enological practices. Enriched wines have been proposed as an alternative to increase the phenolic content in wines. Nevertheless, phenolic compounds are related to the sensory characteristics of red wines, so enrichment of red wines requires a balance between phenolic content and sensory characteristics. In the present study, a Merlot red wine was enriched with a phenolic extract obtained from Cabernet Sauvignon grape pomace. Two levels of enrichment were evaluated: 4 and 8 g/L of total phenolic content (gallic acid equivalents, GAE). Wines were evaluated by a trained panel to determine their sensory profile (olfactive, visual, taste, and mouthfeel phases). The bioaccessibility of phenolic compounds from enriched red wines was evaluated using an in vitro digestive model and phenolic compounds were quantified by High Performance Liquid Chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Enrichment increased mainly flavonols and procyanidins. Such an increase impacted astringency and sweetness perceived by judges. This study proposes an alternative to increase the phenolic content in wines without modifying other main sensory characteristics and offers a potential beneficial effect on the health of consumers.
Collapse
Affiliation(s)
- Óscar A. Muñoz-Bernal
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Alma A. Vazquez-Flores
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Laura A. de la Rosa
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Joaquín Rodrigo-García
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Nina R. Martínez-Ruiz
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
- Correspondence: ; Tel.: +52-(656)-688-21-00 (ext. 1562)
| |
Collapse
|
3
|
Chen G, Netzel ME, Mantilla SMO, Phan ADT, Netzel G, Sivakumar D, Sultanbawa Y. Quality Assessment of Burdekin Plum ( Pleiogynium timoriense) during Ambient Storage. Molecules 2023; 28:1608. [PMID: 36838596 PMCID: PMC9958931 DOI: 10.3390/molecules28041608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Pleiogynium timoriense, commonly known as Burdekin plum (BP), is among many Australian native plants traditionally used by Indigenous people. However, only limited information is available on the nutritional and sensory quality of BP grown in Australia as well as its changes during storage. Therefore, this study evaluated the quality of BP during one week of ambient storage (temperature 21 °C, humidity 69%). Proximate analysis revealed a relatively high dietary fiber content in BP (7-10 g/100 g FW). A significant reduction in fruit weight and firmness (15-30% and 60-90%, respectively) with distinguishable changes in flesh color (ΔE > 3) and an increase in total soluble solids (from 11 to 21 °Brix) could be observed during storage. The vitamin C and folate contents in BP ranged from 29 to 59 mg/100g FW and 0.3 to 5.9 μg/100g FW, respectively, after harvesting. A total phenolic content of up to 20 mg GAE/g FW and ferric reducing antioxidant power of up to 400 μmol Fe2+/g FW in BP indicate a strong antioxidant capacity. In total, 34 individual phenolic compounds were tentatively identified in BP including cyanidin 3-galactoside, ellagic acid and gallotannins as the main phenolics. Principle component analysis (PCA) of the quantified phenolics indicated that tree to tree variation had a bigger impact on the phenolic composition of BP than ambient storage. Sensory evaluation also revealed the diversity in aroma, appearance, texture, flavor and aftertaste of BP. The results of this study provide crucial information for consumers, growers and food processors.
Collapse
Affiliation(s)
- Gengning Chen
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Michael E. Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Sandra Milena Olarte Mantilla
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Gabriele Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Dharini Sivakumar
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
- Department of Horticulture, Tshwane University of Technology, 0001 Pretoria West, South Africa
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| |
Collapse
|
4
|
Fernández-Rojas M, Rodríguez L, Trostchansky A, Fuentes E. Regulation of platelet function by natural bioactive compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
A Comparative Metabolomics Approach for Egyptian Mango Fruits Classification Based on UV and UPLC/MS and in Relation to Its Antioxidant Effect. Foods 2022; 11:foods11142127. [PMID: 35885370 PMCID: PMC9318453 DOI: 10.3390/foods11142127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Mango (Mangifera indica L.) is a tropical climacteric fruit that encompasses a myriad of metabolites mediating for its nutritive value, unique taste, flavor, and medicinal uses. Egypt is among the top mango producers worldwide, albeit little characterization has been made toward its fruits’ chemical composition. This study aims to assess metabolites difference via comparative profiling and fingerprinting of Egyptian mango in context to its cultivar (cv.) type and/or growth province. To achieve such goal, hyphenated chromatographic techniques (UPLC/MS) and UV spectroscopy were employed and coupled to multivariate data analysis for Egyptian mango fruits’ classification for the first time. UPLC/MS led to the detection of a total of 47 peaks identified based on their elution times and MS data, belonging to tannins as gallic acid esters, flavonoids, xanthones, phenolic acids and oxylipids. UV/Vis spectra of mango fruits showed similar absorption patterns mostly attributed to the phenolic metabolites, i.e., gallic acid derivatives and phenolic acids showing λmax at ca. 240 and 270 nm. Modeling of both UPLC/MS and UV data sets revealed that cv. effect predominated over geographical origin in fruits segregation. Awees (AS) cv. showed the richest phenolic content and in agreement for its recognition as a premium cv. of mango in Egypt. Results of total phenolic content (TPC) assay revealed that AS was the richest in TPC at 179.1 mg GAE/g extract, while Langara from Ismailia (LI) showed the strongest antioxidant effect at 0.41 mg TE/g extract. Partial least square modeling of UV fingerprint with antioxidant action annotated gallates as potential contributor to antioxidant effect though without identification of exact moieties based on UPLC/MS. The study is considered the first-time investigation of Egyptian mango to aid unravel phytoconstituents responsible for fruits benefits using a metabolomics approach.
Collapse
|
6
|
Uslu N, Özcan MM. Effect of ultrasound‐assisted vacuum extraction on biological properties and bioactive compounds of mango (
Mangifera indica
L.) peel and flesh. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture Selçuk University Konya Turkey
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture Selçuk University Konya Turkey
| |
Collapse
|
7
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors in sub-Saharan Africa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1387. [PMID: 35631812 PMCID: PMC9143319 DOI: 10.3390/plants11101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality, including deaths arising from non-communicable diseases in sub-Saharan Africa (SSA). Consequently, this study aimed to provide details of medicinal plants (MPs) employed in SSA for the treatment of CVDs and their related risk factors to open new avenues for the discovery of novel drugs. The extensive ethnopharmacological literature survey of these MPs in 41 SSA countries was based on studies from 1982 to 2021. It revealed 1,085 MPs belonging to 218 botanical families, with Fabaceae (9.61%), Asteraceae (6.77%), Apocynaceae (3.93%), Lamiaceae (3.75%), and Rubiaceae (3.66%) being the most represented. Meanwhile, Allium sativum L., Persea americana Mill., Moringa oleifera Lam., Mangifera indica L., and Allium cepa L. are the five most utilised plant species. The preferred plant parts include the leaves (36%), roots (21%), barks (14%), fruits (7%), and seeds (5%), which are mostly prepared by decoction. Benin, Mauritius, Nigeria, South Africa, and Togo had the highest reported use while most of the investigations were on diabetes and hypertension. Despite the nutraceutical advantages of some of these MPs, their general toxicity potential calls for caution in their human long-term use. Overall, the study established the need for governments of SSA countries to validate the efficacy/safety of these MPs as well as provide affordable, accessible, and improved modern healthcare services.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpho Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
8
|
A review on valorization of different byproducts of mango (Mangifera indica L.) for functional food and human health. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Ribeiro ACB, Cunha AP, da Silva LMR, Mattos ALA, de Brito ES, de Souza Filho MDSM, de Azeredo HMC, Ricardo NMPS. From mango by-product to food packaging: Pectin-phenolic antioxidant films from mango peels. Int J Biol Macromol 2021; 193:1138-1150. [PMID: 34717979 DOI: 10.1016/j.ijbiomac.2021.10.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
The objective of the study was to prepare active films based on pectin and polyphenol-rich extracts from Tommy Atkins mango peels. Aqueous and methanolic extracts showed a variety of phenolic compounds that were identified by UPLC-MS analysis, and a high content of total phenolics that were quantified by the Folin-Ciocalteau method. The methanolic extract showed better results in antioxidant tests and was more effective in inhibiting the growth of Gram-positive and Gram-negative bacteria. The pectin extracted from mango peels showed good thermal stability and a degree of methoxylation of 58.3% by 1H NMR. The films containing the phenolic extracts showed lower water vapor permeability when compared to the control film (without any phenolic extracts). The incorporation of the extracts led to an increase in elongation (ε) and a decrease in tensile strength (σ) and modulus of elasticity (Y). The films with aqueous or methanolic extracts showed higher antioxidant activity in terms of inhibition of the DPPH radical. Therefore, the films developed in this work are presented as a promising alternative for food packaging and/or coating applications.
Collapse
Affiliation(s)
- Ana Carolina Barbosa Ribeiro
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil
| | - Arcelina Pacheco Cunha
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil
| | | | | | - Edy Sousa de Brito
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Henriette Monteiro Cordeiro de Azeredo
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil; Embrapa Instrumentação, R. XV de Novembro, 2452, 13560-970 São Carlos, SP, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Quintana SE, Salas S, García-Zapateiro LA. Bioactive compounds of mango (Mangifera indica): a review of extraction technologies and chemical constituents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6186-6192. [PMID: 34324201 DOI: 10.1002/jsfa.11455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/27/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Mango (Mangifera indica) has been recognized as a rich source of bioactive compounds with potential pharmaceutical and nutraceutical applications and has attracted increasing interest from research. Phytochemistry studies have demonstrated that phenolic compounds are one of the most important biologically active components of M. indica extracts. Ultrasound- and microwave-assisted extractions and supercritical fluids have been employed to obtain bioactive molecules, such as phenolic acids, terpenoids, carotenoids, and fatty acids. These phytochemicals exhibit antioxidant, antimicrobial, anti-inflammatory, and anticancer activity, and depending on the source (bark, leaves, seeds, flowers, or peel) and extraction method there will be differences in the structure and bioactivity. This review examines the bioactive compounds, extraction techniques, and biological function of different parts of M. indica of great importance as nutraceuticals and functional compounds with potential application as therapeutic agents and functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Somaris E Quintana
- Research Group of Complex Fluid Engineering and Food Rheology, University of Cartagena, Cartagena, Colombia
| | - Stephanie Salas
- Research Group of Complex Fluid Engineering and Food Rheology, University of Cartagena, Cartagena, Colombia
| | - Luis A García-Zapateiro
- Research Group of Complex Fluid Engineering and Food Rheology, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
11
|
Phenolic compounds in mango fruit: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Phytochemicals and Amino Acids Profiles of Selected sub-Saharan African Medicinal Plants' Parts Used for Cardiovascular Diseases' Treatment. Pharmaceutics 2021; 13:1367. [PMID: 34575444 PMCID: PMC8472700 DOI: 10.3390/pharmaceutics13091367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
For years, the focus on the lipid-atherosclerosis relationship has limited the consideration of the possible contribution of other key dietary components, such as amino acids (AAs), to cardiovascular disease (CVD) development. Notwithstanding, the potential of plant-based diets, some AAs and phytochemicals to reduce CVDs' risk has been reported. Therefore, in this study, the phytochemical and AA profiles of different medicinal plants' (MPs) parts used for CVDs' treatment in sub-Saharan Africa were investigated. Fourier-transform infrared analysis confirmed the presence of hydroxyl, amino and other bioactive compounds' functional groups in the samples. In most of them, glutamic and aspartic acids were the most abundant AAs, while lysine was the most limiting. P. biglobosa leaf, had the richest total branched-chain AAs (BCAAs) level, followed by A. cepa bulb. However, A. cepa bulb had the highest total AAs content and an encouraging nutraceutical use for adults based on its amino acid score. Principal component analysis revealed no sharp distinction between the AAs composition of MPs that have found food applications and those only used medicinally. Overall, the presence of medicinally important phytochemicals and AAs levels in the selected MPs' parts support their use for CVDs treatment as they might not add to the AAs (e.g., the BCAAs) burden in the human body.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpoh Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
13
|
Marcillo-Parra V, Anaguano M, Molina M, Tupuna-Yerovi DS, Ruales J. Characterization and quantification of bioactive compounds and antioxidant activity in three different varieties of mango (Mangifera indica L.) peel from the Ecuadorian region using HPLC-UV/VIS and UPLC-PDA. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Alañón ME, Pimentel-Moral S, Arráez-Román D, Segura-Carretero A. Profiling phenolic compounds in underutilized mango peel by-products from cultivars grown in Spanish subtropical climate over maturation course. Food Res Int 2021; 140:109852. [PMID: 33648170 DOI: 10.1016/j.foodres.2020.109852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022]
Abstract
Nutraceutical market has undergone an exponential growth worldwide due to its health link-up. With the purpose of evaluating nutraceutical value, the phenolic composition of underutilized mango peel by-products of three cultivars ('Keitt', 'Kent' and 'Osteen') grown in Spanish subtropical climate was monitored at three maturation stages (green, ripe and overripe). Tracking the total phenol content, mango peels were figured out to have until twenty-seven fold higher than edible fraction. Mango peels comprised a wide range of phenolic compounds such as mono- and di-galloyl compounds, gallotannins, phenolic acids, benzophenones and flavonoids. The influence of both factors, cultivar and maturation degree, on the phenolic composition was the main outcome of the research. 'Keitt' mango peel was revealed as the cultivar with the highest phenolic content mainly due to the great quantities of galloyl glucose, 5-galloylquinic acid, digalloylquinic acid, hexagalloyl glucose and macluring galloyl glucoside detected. Regarding to the effect of maturation degree, green mango peels showed the highest amounts of polyphenols, although this behaviour could be dependent on the mango cultivar. Therefore, mango peels resulted to be a promising and low-cost resource of phenolic compounds to be exploited in food industry, but to enhance the nutraceutical value, factors such as cultivar and maturation degree should be taken into account.
Collapse
Affiliation(s)
- M E Alañón
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n, Edificio BioRegion, 18016 Granada, Spain.
| | - S Pimentel-Moral
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n, Edificio BioRegion, 18016 Granada, Spain
| | - D Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n, Edificio BioRegion, 18016 Granada, Spain
| | - A Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n, Edificio BioRegion, 18016 Granada, Spain
| |
Collapse
|
15
|
Kyriacou MC, Antoniou C, Rouphael Y, Graziani G, Kyratzis A. Mapping the Primary and Secondary Metabolomes of Carob ( Ceratonia siliqua L.) Fruit and Its Postharvest Antioxidant Potential at Critical Stages of Ripening. Antioxidants (Basel) 2021; 10:57. [PMID: 33466561 PMCID: PMC7824902 DOI: 10.3390/antiox10010057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Six critical stages corresponding to major morphophysiological events in carob fruit ripening were defined, and changes in the primary and secondary metabolome and in vitro antioxidant capacity were examined in two genotypes collected at low (15 m) and high (510 m) altitudes from genetically identified and georeferenced trees. Soluble carbohydrates were analyzed by HPLC-RI, macro-minerals by ion chromatography coupled to conductivity detection and polyphenols by UHPLC-Q-Orbitrap-HRMS. spectroscopy facilitated assays for condensed tannins and in vitro free-radical scavenging capacity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP). The fruit respiration rate and moisture content declined sharply during the transition from the breaker to green pedicel stage. Sugar accumulation spiked at the onset of fruit coloration and culminated at 498.7 ± 8.4 mg g-1 dry weight (dw) in the late ripe stage, while the ratio of reducing sugars to sucrose decreased from 3.45 ± 0.32 to 0.41 ± 0.02. The total phenolic compounds and condensed tannins declined with ripening, particularly during the transition from the breaker to green pedicel stage. Eighteen polyphenols were identified and quantitated, with catechins and hydrolyzable tannins being dominant until the onset of fruit coloration. The transition to the green pedicel stage signaled a precipitous decline (90.9%) in catechins, hydrolyzable tannins (60.2%) and flavonol glycosides (52.1%) concomitant to the rise in gallic acid, which was putatively fueled by the enzymatic hydrolysis of gallotannins in immature fruit. Catechins, hydrolyzable tannins and flavone glycosides were more abundant at higher altitudes and gallic acid at lower altitudes. An antioxidant capacity was also favored by higher elevations and declined with ripening, particularly after the breaker stage. Correlations with FRAP and DPPH assays were significant for the total phenolic content, condensed tannins, catechins and hydrolyzable tannins. The highest correlation factors were obtained for epigallocatechin-gallate (r = 0.920 and r = 0.900; p < 0.01). Although the sharp drop in hydrolyzable and nonhydrolyzable tannins and catechins compromised the in vitro antioxidant capacity at physiological maturity, it also reduced the astringency and configured a palatable organoleptic fruit profile. These changes unraveled significant episodes in the ripening-related secondary metabolism of the carob fruit. They further highlighted the value of immature carob as a potent source of gallotannins, with putative in vivo anti-inflammatory action, and of catechins beneficial in preventing and protecting against diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (C.A.); (A.K.)
| | - Chrystalla Antoniou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (C.A.); (A.K.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Angelos Kyratzis
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (C.A.); (A.K.)
| |
Collapse
|
16
|
Ordoñez-Díaz JL, Moreno-Ortega A, Roldán-Guerra FJ, Ortíz-Somovilla V, Moreno-Rojas JM, Pereira-Caro G. In Vitro Gastrointestinal Digestion and Colonic Catabolism of Mango ( Mangifera indica L.) Pulp Polyphenols. Foods 2020; 9:foods9121836. [PMID: 33321767 PMCID: PMC7764420 DOI: 10.3390/foods9121836] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mango (Mangifera indica L.), a fruit with sensorial attractiveness and extraordinary nutritional and phytochemical composition, is one of the most consumed tropical varieties in the world. A growing body of evidence suggests that their bioactive composition differentiates them from other fruits, with mango pulp being an especially rich and diverse source of polyphenols. In this study, mango pulp polyphenols were submitted to in vitro gastrointestinal digestion and colonic fermentation, and aliquots were analyzed by HPLC-HRMS. The main phenolic compounds identified in the mango pulp were hydroxybenzoic acid-hexoside, two mono-galloyl-glucoside isomers and vanillic acid. The release of total polyphenols increased after the in vitro digestion, with an overall bioaccessibility of 206.3%. Specifically, the most bioaccessible mango polyphenols were gallic acid, 3-O-methylgallic acid, two hydroxybenzoic acid hexosides, methyl gallate, 3,4-dihydroxybenzoic acid and benzoic acid, which potentially cross the small intestine reaching the colon for fermentation by the resident microbiota. After 48 h of fecal fermentation, the main resultant mango catabolites were pyrogallol, gallic and 3,4-dihydroxybenzoic acids. This highlighted the extensive transformation of mango pulp polyphenols through the gastrointestinal tract and by the resident gut microbiota, with the resultant formation of mainly simple phenolics, which can be considered as biomarkers of the colonic metabolism of mango.
Collapse
Affiliation(s)
- José Luis Ordoñez-Díaz
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (J.L.O.-D.); (A.M.-O.); (F.J.R.-G.); (V.O.-S.); (J.M.M.-R.)
| | - Alicia Moreno-Ortega
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (J.L.O.-D.); (A.M.-O.); (F.J.R.-G.); (V.O.-S.); (J.M.M.-R.)
- Department of Food Science and Technology, University of Córdoba, Campus Rabanales, Ed. Darwin-anexo, 14071 Córdoba, Spain
| | - Francisco Javier Roldán-Guerra
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (J.L.O.-D.); (A.M.-O.); (F.J.R.-G.); (V.O.-S.); (J.M.M.-R.)
| | - Victor Ortíz-Somovilla
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (J.L.O.-D.); (A.M.-O.); (F.J.R.-G.); (V.O.-S.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (J.L.O.-D.); (A.M.-O.); (F.J.R.-G.); (V.O.-S.); (J.M.M.-R.)
| | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (J.L.O.-D.); (A.M.-O.); (F.J.R.-G.); (V.O.-S.); (J.M.M.-R.)
- Correspondence: ; Tel.: +34-671-532-734
| |
Collapse
|
17
|
Alañón ME, Pimentel-Moral S, Arráez-Román D, Segura-Carretero A. HPLC-DAD-Q-ToF-MS profiling of phenolic compounds from mango (Mangifera indica L.) seed kernel of different cultivars and maturation stages as a preliminary approach to determine functional and nutraceutical value. Food Chem 2020; 337:127764. [PMID: 32795857 DOI: 10.1016/j.foodchem.2020.127764] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/12/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Mango seed kernel is a by-product which is usually discarded. However, it has been confirmed in this study that seed kernel exhibits more phenolic compounds with bioactive properties than edible fraction of mango. The influence of factors such as cultivar and maturation degree on the phenolic composition has been studied to evaluate nutraceutical value. The comprehensive analysis of phenolic composition by HPLC-DAD-Q-ToF-MS seed kernel from different cultivars ('Keitt', 'Kent'and 'Osteen') at five maturation stages was conducted. Results evidenced that 'Keitt' samples exhibited higher quantities of iriflophenone glucoside, maclurin C-glucoside, maclurin digalloyl glucoside, mangiferin, 5-galloyl quinic acid and trigalloyl glucose at the first three ripening stages. However, seed kernel from 'Osteen' variety showed higher amounts of hexa- and hepta-gallotannins whose concentrations diminished over the maturation course. Therefore, cultivar and maturation stage factors should be take into account due to their influence on the phenolic composition and subsequently on the nutraceutical value.
Collapse
Affiliation(s)
- M E Alañón
- Department of Analytical Chemistry and Food Technology, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n, Edificio BioRegion, 18016 Granada, Spain.
| | - S Pimentel-Moral
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n, Edificio BioRegion, 18016 Granada, Spain.
| | - D Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n, Edificio BioRegion, 18016 Granada, Spain.
| | - A Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n, Edificio BioRegion, 18016 Granada, Spain.
| |
Collapse
|
18
|
Alañón ME, Palomo I, Rodríguez L, Fuentes E, Arráez-Román D, Segura-Carretero A. Antiplatelet Activity of Natural Bioactive Extracts from Mango ( Mangifera Indica L.) and its By-Products. Antioxidants (Basel) 2019; 8:E517. [PMID: 31671743 PMCID: PMC6912241 DOI: 10.3390/antiox8110517] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 11/23/2022] Open
Abstract
The potential antiplatelet aggregation effects of mango pulp and its by-products (peel, husk seed, and seed) due to the presence of bioactive compounds were explored. Among them, mango seed exhibited a 72% percentage inhibition of platelet aggregation induced by adenosine 5'-diphosphate (ADP) agonist with a demonstrated dose-dependent effect. This biological feature could be caused by the chemical differences in phenolic composition. Mango seed was especially rich in monogalloyl compounds, tetra- and penta-galloylglucose, ellagic acid, mangiferin, and benzophenones such as maclurin derivatives and iriflophenone glucoside. Mangiferin showed an inhibitory effect of 31%, suggesting its key role as one of the main contributors to the antiplatelet activity of mango seed. Therefore, mango seed could be postulated as a natural source of bioactive compounds with antiplatelet properties to design functional foods or complementary therapeutic treatments.
Collapse
Affiliation(s)
- María Elena Alañón
- Area of Food Technology, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha. Avda. Camilo José Cela, 10, 13071 Ciudad Real, Spain.
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging (CIE), University of Talca, 3460000 Talca, Chile.
| | - Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging (CIE), University of Talca, 3460000 Talca, Chile.
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging (CIE), University of Talca, 3460000 Talca, Chile.
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| |
Collapse
|