1
|
Zheng L, Zeng G, Li S, Li H, Wei X, Lei H. Discrimination rancidity degree of infant formula rice flour based on Headspace Solid-Phase Microextraction combined with Gas Chromatography-Mass Spectrometry as an alternative to sensory evaluation. Food Res Int 2023; 173:113347. [PMID: 37803695 DOI: 10.1016/j.foodres.2023.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
To mitigating the serious threat of harmful volatile substances to the health of infants, an alternative method of odor evaluation were proposed based on Headspace solid-phase microextraction (HS-SPME) combined with Gas Chromatography-Mass Spectrometry (GC-MS) to discriminate the degree of rancidity of infant formula rice flour (IFRF). Inspectors can simply calculate the rancidity degree of infant formula rice flour according to the regression equation based on the concentration of rancidity markers. The results showed that the joint application of OPLS-DA, molecular sensory experiments, and unsaturated fatty acids (UFAs) degradation experiments could successfully recognize the rancidity markers without collinearity in multiple linear regression analysis. The rancidity markers curve fitting was helpful for the establishment of multivariate regression model of rancidity grading. The model had an accuracy of more than 92.90% by the verification of odor evaluation. The application of the model to investigate the market IFRF samples showed that about 3% of the samples collected in the experiment were unsuitable for infant feeding. Therefore, the established model was considered to be a robust and less workload method to replace the olfactory evaluation method for discriminating the rancidity degree of IFRF.
Collapse
Affiliation(s)
- Lingyan Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guangfeng Zeng
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Siyao Li
- Sunny Fields Trading (Shenzhen) Limited, Shenzhen 518000, China
| | - Huiting Li
- Sunny Fields Trading (Shenzhen) Limited, Shenzhen 518000, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Müller I, Gulde A, Morlock GE. Bioactive profiles of edible vegetable oils determined using 10D hyphenated comprehensive high-performance thin-layer chromatography (HPTLC×HPTLC) with on-surface metabolism (nanoGIT) and planar bioassays. Front Nutr 2023; 10:1227546. [PMID: 37810920 PMCID: PMC10556687 DOI: 10.3389/fnut.2023.1227546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Vegetable oils rich in unsaturated fatty acids are assumed to be safe and even healthy for consumers though lipid compositions of foods vary naturally and are complex considering the wealth of minor compounds down to the trace level. Methods The developed comprehensive high-performance thin-layer chromatography (HPTLC×HPTLC) method including the on-surface metabolization (nanoGIT) and bioassay detection combined all steps on the same planar surface. The pancreatic lipolysis (intestinal phase) experiment and the subsequent analysis of the fatty acid composition including its effect-directed detection using a planar bioassay was performed without elaborate sample preparation or fractionation to ensure sample integrity. Thus, no sample part was lost, and the whole sample was studied on a single surface regarding all aspects. This made the methodology as well as technology miniaturized, lean, all-in-one, and very sustainable. Results and discussion To prioritize important active compounds including their metabolism products in the complex oil samples, the nanoGIT method was used to examine the pancreatic lipolysis of nine different vegetable oils commonly used in the kitchen and food industry, e.g., canola oil, flaxseed oil, hemp oil, walnut oil, soybean oil, sunflower oil, olive oil, coconut oil, and palm oil. The digested oils revealed antibacterial and genotoxic effects, which were assigned to fatty acids and oxidized species via high-resolution tandem mass spectrometry (HRMS/MS). This finding reinforces the importance of adding powerful techniques to current analytical tools. The 10D hyphenated nanoGIT-HPTLC×HPTLC-Vis/FLD-bioassay-heart cut-RP-HPLC-DAD-HESI-HRMS/MS has the potential to detect any potential hazard due to digestion/metabolism, improving food safety and understanding on the impact of complex samples.
Collapse
Affiliation(s)
- Isabel Müller
- Institute of Nutritional Science, Chair of Food Science, as well as Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Alexander Gulde
- Institute of Nutritional Science, Chair of Food Science, as well as Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud E. Morlock
- Institute of Nutritional Science, Chair of Food Science, as well as Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
- Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Liu J, Zhao H, Chang X, Li X, Zhang Y, Zhu B, Wang X. Investigation of aroma characteristics of seven Chinese commercial sunflower seed oils using a combination of descriptive Analysis, GC-quadrupole-MS, and GC-Orbitrap-MS. Food Chem X 2023; 18:100690. [PMID: 37179977 PMCID: PMC10172861 DOI: 10.1016/j.fochx.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The aroma characteristics of seven commercial Chinese sunflower seed oils were investigated in this study using descriptive analysis, headspace solid-phase microextraction coupled with GC-quadrupole-MS (LRMS, low-resolution mass spectrometry), and GC-Orbitrap-MS (HRMS, high-resolution mass spectrometry). GC-Orbitrap-MS quantified 96 compounds, including 18 alcohols, 12 esters, 7 ketones, 20 terpenoids, 11 pyrazines, 6 aldehydes, 6 furans, 6 benzene ring-containing compounds, 3 sulfides, 2 alkanes, and 5 nitrogen-containing compounds. Moreover, 22 compounds including 5 acids, 1 amide, and 16 aldehydes were quantified using GC-Quadrupole-MS. To our knowledge, 23 volatile compounds were reported for the first time in sunflower seed oil. All the seven samples were found to have a 'roasted sunflower seeds' note, 'sunflower seeds aroma' note and 'burnt aroma' note and only five of them had 'fried instant noodles' note, three had 'sweet' note and two had 'puffed food' note. Partial least squares regression was used to screen the candidate key volatiles that caused the aroma differences among these seven samples. It was observed that 'roasted sunflower seeds' note was positively correlated with 1-octen-3-ol, n-heptadehyde and dimethyl sulfone, whereas the 'fried instant noodles' and 'puffed food' demonstrated a positive correlation with pentanal, 3-methylbutanal, hexanal, (E)-2-hexenal and 2-pentylfuran. Our findings provide information to the producers and developers for quality control and improvement of sunflower seed oil.
Collapse
Affiliation(s)
- Jiani Liu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Huimin Zhao
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Xiaomin Chang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaolong Li
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Yu Zhang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Corresponding author at: Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (B. Zhu).
| | - Xiangyu Wang
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing 102209, China
- Beijing Engineering Laboratory of Geriatric Nutrition Food Research, Beijing 102209, China
- Corresponding author at: Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (B. Zhu).
| |
Collapse
|
4
|
Li J, Zhou Y, Zhang J, Cui L, Lu H, Zhu Y, Zhao Y, Fan S, Xiao X. Barley β-glucan inhibits digestion of soybean oil in vitro and lipid-lowering effects of digested products in cell co-culture model. Food Res Int 2023; 164:112378. [PMID: 36737963 DOI: 10.1016/j.foodres.2022.112378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
The effect of barley β-glucan on soybean oil digestion characteristics before and after fermentation was studied in an in vitro-simulated gastrointestinal digestion model. The addition of barley β-glucan made the system more unstable, the particle size increased significantly, and confocal laser imaging showed that it was easier to form agglomerates. The addition of barley β-glucan increased the proportion of unsaturated fatty acids in digestion products, and reduced digestibility of soybean oil. In a co-culture model of Caco-2/HT29 and HepG2 cells, the effects of digestive products of soybean oil and barley β-glucan before and after fermentation on lipid metabolism in HepG2 cells were investigated. The results showed that adding only soybean oil digestion products significantly increased triglycerides (TG) content and lipid accumulation in basolateral HepG2 cells. When fermented barley β-glucan was added, lipid deposition was significantly decreased, and the lipid-lowering activity was better than that of unfermented barley β-glucan.
Collapse
Affiliation(s)
- Jiaying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haina Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Alberdi-Cedeño J, Aichner M, Mistlberger-Reiner A, Shi A, Pignitter M. Effect of Encapsulation Material on Lipid Bioaccessibility and Oxidation during In Vitro Digestion of Black Seed Oil. Antioxidants (Basel) 2023; 12:antiox12010191. [PMID: 36671054 PMCID: PMC9854819 DOI: 10.3390/antiox12010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Different encapsulation materials might not only affect lipid hydrolysis but also lipid oxidation during in vitro digestion. Thus, this study aimed to investigate the effect of two commonly used shell materials, starch and gelatin, on the extent of lipolysis and bioaccessibility of the main and some minor lipid compounds, as well as on the oxidative status in encapsulated black seed oil (Nigella sativa) during in vitro digestion. The study was carried out using 1H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry and high-performance liquid chromatography-UV. It was shown that starch increased the level of lipid hydrolysis in black seed oil during gastric in vitro digestion, while no differences were observed in the intestinal digestates between starch-encapsulated oil and gelatin-encapsulated oil. Similarly, the bioaccessibility of minor compounds (tocopherols, sterols and thymoquinone) was not influenced by the shell materials. However, regarding lipid oxidation, a 20- and 10-fold rise of free oxylipins was obtained in oils encapsulated by starch and gelatin, respectively, after intestinal in vitro digestion. This study evidenced that gelatin rather than starch should be used for the encapsulation of oils to minimize the digestion-induced formation of bioactive oxylipins.
Collapse
Affiliation(s)
- Jon Alberdi-Cedeño
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain
| | - Martha Aichner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Agnes Mistlberger-Reiner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
6
|
Quality and chemical stability of long-term stored soy, canola, and sunflower cold-pressed cake lipids before and after thermomechanical processing: A 1H NMR study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Liu J, Wang YJ, Huang XY, Li XZ, Ma CG, McClements DJ. NMR Analysis of Lipid Oxidation in Flaxseed Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8417-8429. [PMID: 35767802 DOI: 10.1021/acs.jafc.2c00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formation of linolenic (Ln) and linoleic (L) acyl oxidation products during storage of flaxseed oil (FO)-in-water emulsions was monitored using proton nuclear magnetic resonance (1H NMR) spectroscopy, as well as chemical analytical methods and gas chromatography. Emulsions containing 10% FO and 1% Tween 60 were prepared by homogenization and then stored at 37 °C in the dark for 21 days under accelerated oxidation conditions (500 μmol ferrous sulfate). The induction time of the emulsions, after which rapid lipid oxidation was first observed, was 5-7 days, as shown by increases in peroxide values and hydroperoxide concentrations determined by NMR spectroscopy. Analysis of the hexanal and propanal concentrations during storage by HS-SPME-GC indicated that the oxidation of Ln and L acyls in the emulsions occurred simultaneously. The oxidation products originating from the Ln and L acyls were monitored using 1H NMR spectroscopy throughout the oxidation process. These results also showed that the Ln and L acyls oxidized simultaneously, and isomers of hydroperoxy-cyclic hydroperoxides (HCPs), Z,E-conjugated dienic hydroperoxides (ZECDHPs), and E,E-conjugated dienic hydroperoxides (EECDHPs) were the major primary oxidation products. Aldehydes were observed after 7 days, which was taken to be the start of the propagation stage, with the formation of a significant amount of oxygenated α, β-unsaturated aldehydes (OαβUAs). Based on the concentrations of hydroperoxides originating from the Ln and L acyls, our results suggested that the loss rate of L acyls was parallel to that of Ln acyls. This result was consistent with Ln acyls adopting a tighter packing at the oil-water interface in the emulsions than L acyls. This hypothesis was supported by the NMR relaxation time data. A good correlation between the isomer concentrations of ZECDHPs and HCPs in Ln acyls and between ZECDHPs and EECDHPs in L acyls was shown, with the mole ratios between them being 1.2 and 1.1, respectively. Droplet size and microstructure analyses showed that droplet aggregation occurred from 11 days onwards, which was attributed to polar oxidation products located at the oil droplet surfaces promoting coalescence. Zeta-potential measurements indicated that the droplets became more negative during storage, which was attributed to the accumulation of anionic reaction products at the droplet surfaces.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
- Institute of Grain and Oil Standardization, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Ya Juan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Xue Yan Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Xing Zhen Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Chuan Guo Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Tan Y, Zhou H, McClements DJ. Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Luo Y, Li A, Shen M, Yu M, Wu Z, Liu X, Yin F, Zhou D. Effects of gallic acid and its alkyl esters on lipid oxidation during
in vitro
simulated gastrointestinal digestion of fresh and fried oysters. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Luo
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 People’s Republic of China
| | - Ao Li
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 People’s Republic of China
| | - Miao Shen
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 People’s Republic of China
| | - Man‐Man Yu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 People’s Republic of China
| | - Zi‐Xuan Wu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 People’s Republic of China
| | - Xiao‐Yang Liu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 People’s Republic of China
- National Engineering Research Center of Seafood Dalian 116034 People’s Republic of China
- Collaborative Innovation Center of Seafood Deep Processing Dalian People’s Republic of China 116034
| | - Fa‐Wen Yin
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 People’s Republic of China
- National Engineering Research Center of Seafood Dalian 116034 People’s Republic of China
- Collaborative Innovation Center of Seafood Deep Processing Dalian People’s Republic of China 116034
| | - Da‐Yong Zhou
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 People’s Republic of China
- National Engineering Research Center of Seafood Dalian 116034 People’s Republic of China
- Collaborative Innovation Center of Seafood Deep Processing Dalian People’s Republic of China 116034
| |
Collapse
|
10
|
Nieva-Echevarría B, Goicoechea E, Sopelana P, Guillén MD. Different Effects of Vitamin C-Based Supplements on the Advance of Linseed Oil Component Oxidation and Lipolysis during In Vitro Gastrointestinal Digestion. Foods 2021; 11:58. [PMID: 35010183 PMCID: PMC8750871 DOI: 10.3390/foods11010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Although widely consumed, dietary supplements based on Vitamin C contain high doses of this compound, whose impact on lipid oxidation during digestion needs to be addressed. Therefore, the effect of seven commercial supplements and of pure l-ascorbic acid and ascorbyl palmitate on linseed oil during in vitro gastrointestinal digestion was tackled. The advance of lipid oxidation was studied through the generation of oxidation compounds, the degradation of polyunsaturated fatty acyl chains and of gamma-tocopherol, by employing Proton Nuclear Magnetic Resonance. Supplements containing exclusively l-ascorbic acid enhanced the advance of linseed oil oxidation during digestion. This was evidenced by increased formation of linolenic-derived conjugated hydroxy-dienes and alkanals and by the generation of conjugated keto-dienes and reactive alpha,beta-unsaturated aldehydes, such as 4,5-epoxy-2-alkenals; moreover, gamma-tocopherol was completely degraded. Conversely, supplements composed of mixtures of ascorbic acid/salt with citric acid and carotenes, and of ascorbyl palmitate, protected linseed oil against oxidation and reduced gamma-tocopherol degradation. The study through Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry of the volatile compounds of the digests corroborated these findings. Furthermore, a decreased lipid bioaccessibility was noticed in the presence of the highest dose of l-ascorbic acid. Both the chemical form of Vitamin C and the presence of other ingredients in dietary supplements have shown to be of great relevance regarding oxidation and hydrolysis reactions occurring during lipid digestion.
Collapse
Affiliation(s)
| | | | | | - María D. Guillén
- Food Technology, Lascaray Research Center, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (B.N.-E.); (E.G.); (P.S.)
| |
Collapse
|
11
|
Hu Y, Zhao G, Wang J, Liu Z, Yin F, Qin L, Zhou D, Shahidi F, Zhu B. Lipid oxidation and aldehyde formation during in vitro gastrointestinal digestion of roasted scallop ( Patinopecten yessoensis) - the role of added antioxidant of bamboo leaves. Food Funct 2021; 12:11046-11057. [PMID: 34665192 DOI: 10.1039/d1fo02717d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated lipid oxidation and aldehyde formation in roasted scallop during in vitro gastrointestinal digestion, and the effects of co-digestion of antioxidant of bamboo leaves (AOB) on this process. The results showed that the contents of lipid hydroperoxides (LOOH), conjugated dienes (CD), and Schiff bases (SB) were increased during gastrointestinal digestion. Besides, malondialdehyde (MDA) levels and total aldehyde formation decreased initially at the gastric stage but increased at the intestinal stage. The results of HPLC-ESI-MS/MS analysis showed that the contents of hexanal (HEX), trans, trans-2,4-octadienal (ODE), trans, trans-2,4-decadienal (DDE), 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) in the digestive juices were all initially decreased and then increased during gastrointestinal digestion. Meanwhile, the content of acrolein, propanal, and trans-2-pentenal at the end of intestinal digestion was lower than that in the initial stage of gastric digestion. Additionally, the digestion of roasted scallop caused significant oxidation of polyunsaturated fatty acids (PUFAs) and release of free fatty acids (FFA) in the intestinal phase, which were positively related to aldehyde production. However, co-digestion of AOB significantly reduced lipid oxidation and formation of lipid oxidation products (LOOH, CD, SB, and aldehyde) during gastrointestinal digestion, indicating that the addition of AOB was effective in reducing gastrointestinal lipid oxidation.
Collapse
Affiliation(s)
- Yuanyuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Guanhua Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Jialiang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Zhongyuan Liu
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,School of Food Science and Engineering, Hainan University, Haikou, 570228, PR China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Lei Qin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| |
Collapse
|
12
|
Márquez-Ruiz G, Holgado F, Ruiz-Méndez MV, Velasco J. Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions. Foods 2021; 10:foods10092035. [PMID: 34574145 PMCID: PMC8471306 DOI: 10.3390/foods10092035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical changes occurring in dietary lipid oxidation compounds throughout the gastrointestinal tract are practically unknown. The first site for potential chemical modifications is the stomach due to the strong acidic conditions. In this study, model lipids representative of the most abundant groups of dietary oxidation compounds were subjected to in vitro gastric conditions. Thus, methyl linoleate hydroperoxides were used as representative of the major oxidation compounds formed in food storage at low and moderate temperatures. Methyl 9,10-epoxystearate, 12-oxostearate and 12-hydroxystearate were selected as model compounds bearing the oxygenated functional groups predominantly found in oxidation compounds formed at the high temperatures of frying. Analyses were performed using gas-liquid chromatography/flame ionization detection/mass spectrometry and high performance-liquid chromatography/ultraviolet detection. Losses of methyl 9,10-epoxystearate and linoleate hydroperoxides in the ranges 17.8–58.8% and 42.3–61.7% were found, respectively, whereas methyl 12-oxostearate and methyl 12-hydroxystearate remained unaltered. Although quantitative data of the compounds formed after digestion were not obtained, methyl 9,10-dihydroxystearate was detected after digestion of methyl 9,10-epoxystearate, and some major volatiles were detected after digestion of linoleate hydroperoxides. Overall, the results showed that significant modifications of dietary oxidized lipids occurred during gastric digestion and supported that the low pH of the gastric fluid played an important role.
Collapse
Affiliation(s)
- Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040 Madrid, Spain;
- Correspondence:
| | - Francisca Holgado
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040 Madrid, Spain;
| | - María Victoria Ruiz-Méndez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), 41089 Sevilla, Spain; (M.V.R.-M.); (J.V.)
| | - Joaquín Velasco
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), 41089 Sevilla, Spain; (M.V.R.-M.); (J.V.)
| |
Collapse
|
13
|
Outgoing and potential trends of the omega-3 rich linseed oil quality characteristics and rancidity management: A comprehensive review for maximizing its food and nutraceutical applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Martini S, Tagliazucchi D, Minelli G, Lo Fiego DP. Influence of linseed and antioxidant-rich diets in pig nutrition on lipid oxidation during cooking and in vitro digestion of pork. Food Res Int 2020; 137:109528. [PMID: 33233160 DOI: 10.1016/j.foodres.2020.109528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022]
Abstract
Enrichment of pig diets with polyunsaturated fatty acids (PUFA) is considered an emerging strategy to increase their intake in the human diet. However, PUFA are particularly vulnerable to oxidative reactions leading to the generation of toxic compounds. The aim of this study was to evaluate the effect of supplementation of pig diets with extruded linseed (L), either or not in combination with synthetic antioxidants (E, tocopheryl-acetate and selenium) or natural extracts (P, grape-skin and oregano), and basal diet (C, without linseed) on the oxidative stability in raw, grilled and in vitro digested pork. The diet supplementation with antioxidant-rich ingredients resulted in the accumulation of specific metabolites in meat. Actually, 11 different phenolic- and 6 tocopherol-derived metabolites were identified by UHPLC/HR-MS. These metabolites were potentially correlated with the reduction in the oxidative phenomena occurring during meat cooking and digestion. Specifically, 16% and 35% reduction in the amounts of lipid hydroperoxides and TBA-RS were assessed after cooking of meat from P diet, respect to the L diet. Diet supplementations with α-tocopheryl acetate and selenium reduced the oxidative reactions only during meat cooking. A significant reduction was attended at the end of in vitro digestion, showing about 24% and 34% hydroperoxides and TBA-RS concentration reductions, respectively, in P diet samples respect to the L ones. Thus, our study suggests that the appearance of phenolic metabolites in meat could be associated to a reduction in the oxidative phenomena during meat cooking and digestion.
Collapse
Affiliation(s)
- Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giovanna Minelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
15
|
Otálora MC, Camelo R, Wilches-Torres A, Cárdenas-Chaparro A, Gómez Castaño JA. Encapsulation Effect on the In Vitro Bioaccessibility of Sacha Inchi Oil ( Plukenetia volubilis L.) by Soft Capsules Composed of Gelatin and Cactus Mucilage Biopolymers. Polymers (Basel) 2020; 12:polym12091995. [PMID: 32887385 PMCID: PMC7564295 DOI: 10.3390/polym12091995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) seed oil is a rich source of polyunsaturated fatty acids (PUFAs) that are beneficial for human health, whose nutritional efficacy is limited because of its low water solubility and labile bioaccessibility (compositional integrity). In this work, the encapsulation effect, using blended softgels of gelatin (G) and cactus mucilage (CM) biopolymers, on the PUFAs’ bioaccessibility of P. volubilis seed oil was evaluated during in vitro simulated digestive processes (mouth, gastric, and intestinal). Gas chromatography–mass spectrometry (GC–MS) and gas chromatography with a flame ionization detector (GC–FID) were used for determining the chemical composition of P. volubilis seed oil both before and after in vitro digestion. The most abundant compounds in the undigested samples were α-linolenic, linoleic, and oleic acids with 59.23, 33.46, and 0.57 (g/100 g), respectively. The bioaccessibility of α-linolenic, linoleic, and oleic acid was found to be 1.70%, 1.46%, and 35.8%, respectively, along with the presence of some oxidation products. G/CM soft capsules are capable of limiting the in vitro bioaccessibility of PUFAs because of the low mucilage ratio in their matrix, which influences the enzymatic hydrolysis of gelatin, thus increasing the release of the polyunsaturated content during the simulated digestion.
Collapse
Affiliation(s)
- María Carolina Otálora
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, 150001 Tunja, Boyacá, Colombia;
- Correspondence: (M.C.O.); (J.A.G.C.)
| | - Robinson Camelo
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
| | - Andrea Wilches-Torres
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, 150001 Tunja, Boyacá, Colombia;
| | - Agobardo Cárdenas-Chaparro
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
| | - Jovanny A. Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
- Correspondence: (M.C.O.); (J.A.G.C.)
| |
Collapse
|
16
|
Alberdi-Cedeño J, Ibargoitia ML, Guillén MD. Study of the In Vitro Digestion of Olive Oil Enriched or Not with Antioxidant Phenolic Compounds. Relationships between Bioaccessibility of Main Components of Different Oils and Their Composition. Antioxidants (Basel) 2020; 9:antiox9060543. [PMID: 32575754 PMCID: PMC7346224 DOI: 10.3390/antiox9060543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The changes provoked by in vitro digestion in the lipids of olive oil enriched or not with different phenolic compounds were studied by proton nuclear magnetic resonance (1H NMR) and solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). These changes were compared with those provoked in the lipids of corn oil and of virgin flaxseed oil submitted to the same digestive conditions. Lipolysis and oxidation were the two reactions under consideration. The bioaccessibility of main and minor components of olive oil, of phenolic compounds added, and of compounds formed as consequence of the oxidation, if any, were matters of attention. Enrichment of olive oil with antioxidant phenolic compounds does not affect the extent of lipolysis, but reduces the oxidation degree to minimum values or avoids it almost entirely. The in vitro bioaccessibility of nutritional and bioactive compounds was greater in the olive oil digestate than in those of other oils, whereas that of compounds formed in oxidation was minimal, if any. Very close quantitative relationships were found between the composition of the oils in main components and their in vitro bioaccessibility. These relationships, some of which have predictive value, can help to design lipid diets for different nutritional purposes.
Collapse
|
17
|
Alberdi-Cedeño J, Ibargoitia ML, Guillén MD. A Global Study by 1H NMR Spectroscopy and SPME-GC/MS of the in Vitro Digestion of Virgin Flaxseed Oil Enriched or not with Mono-, Di- or Tri-Phenolic Derivatives. Antioxidant Efficiency of These Compounds. Antioxidants (Basel) 2020; 9:antiox9040312. [PMID: 32326459 PMCID: PMC7222186 DOI: 10.3390/antiox9040312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/09/2023] Open
Abstract
The effect of enriching virgin flaxseed oil with dodecyl gallate, hydroxytyrosol acetate or gamma-tocopherol on its in vitro digestion is studied by means of proton nuclear magnetic resonance and solid phase microextraction followed by gas chromatography/mass spectrometry. The extent and pattern of the lipolysis reached in each sample is analyzed, as is the bioaccessibility of the main oil components. None of the phenolic compounds provokes inhibition of the lipase activity and all of them reduce the lipid oxidation degree caused by the in vitro digestion and the bioaccessibility of oxidation compounds. The antioxidant efficiency of the three tested phenols is in line with the number of phenolic groups in its molecule, and is dose-dependent. The concentration of some minor oil components such as terpenes, sesquiterpenes, cycloartenol and 24-methylenecycloartenol is not modified by in vitro digestion. Contrarily, gamma-tocopherol shows very low in vitro bioaccessibility, probably due to its antioxidant behavior, although this increases with enrichment of the phenolic compounds. Oxidation is produced during in vitro digestion even in the presence of a high concentration of gamma-tocopherol, which remains bioaccessible after digestion in the enriched samples of this compound.
Collapse
|
18
|
Alberdi-Cedeño J, Ibargoitia ML, Guillén MD. Effect of the Enrichment of Corn Oil with alpha- or gamma-Tocopherol on Its in Vitro Digestion Studied by 1H NMR and SPME-GC/MS; Formation of Hydroperoxy-, Hydroxy-, Keto-Dienes and Keto- E-epoxy- E-Monoenes in the more alpha-Tocopherol Enriched Samples. Antioxidants (Basel) 2020; 9:E246. [PMID: 32197490 PMCID: PMC7139825 DOI: 10.3390/antiox9030246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/27/2023] Open
Abstract
The aim of this study is the analysis of the in vitro digestion of corn oil, and of the effect of its enrichment with three levels of gamma- and alpha-tocopherol, by using, for the first time, 1H nuclear magnetic resonance (1H NMR) and a solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). The attention is focused on the hydrolysis degree, the degradation of oil's main components, the occurrence of oxidation reactions and main compounds formed, as well as on the bioaccessibility of oil's main components, of compounds formed in the oxidation, and, of gamma- and alpha-tocopherol. The lipolysis levels reached are high and show a similar pattern in all cases. The oxidation of corn oil components during in vitro digestion is proven, as is the action of gamma-tocopherol as an antioxidant and alpha-tocopherol as a prooxidant. In the more alpha-tocopherol enriched samples, hydroperoxy-, hydroxy-, and keto-dienes, as well as keto-epoxy-monoenes and aldehydes, are generated. The bioaccessibility of the oil's main components is high. The compounds formed in the oxidation process during in vitro digestion can also be considered bioaccessible. The bioaccessibility of alpha-tocopherol is smaller than that of gamma-tocopherol. The concentration of this latter compound remains unchanged during the in vitro digestion of the more alpha-tocopherol enriched oil samples.
Collapse
Affiliation(s)
| | | | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV-EHU), Paseo de la Universidad nº 7, 01006 Vitoria-Gasteiz, Spain; (J.A.-C.); (M.L.I.)
| |
Collapse
|
19
|
Nieva-Echevarría B, Goicoechea E, Guillén MD. Oxidative stability of extra-virgin olive oil enriched or not with lycopene. Importance of the initial quality of the oil for its performance during in vitro gastrointestinal digestion. Food Res Int 2020; 130:108987. [PMID: 32156407 DOI: 10.1016/j.foodres.2020.108987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
The performance of commercial non-enriched and lycopene-enriched extra-virgin olive oils (EVOO) during in vitro gastrointestinal digestion was studied in order to elucidate potential benefits of lycopene addition. Samples were analyzed before and after digestion by Proton Nuclear Magnetic Resonance (1H NMR) and Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). EVOO samples differed in both main (oleic and linoleic acyl groups) and minor components (phenolic and oxidation compounds). Regardless of the presence of lycopene, all the samples reached a high degree of lipolysis and showed high stability towards oxidation under digestion conditions. Rather than oxidation reactions, the hydroperoxides initially present in the oil were reduced to more stable hydroxides. Likewise, hydroxy-diene isomerization from cis,trans to trans,trans occurred. Hence, the presumed antioxidant effect of lycopene was not noticed during in vitro digestion of EVOO. Similar experiments carried out with a more polyunsaturated oil (sunflower oil) indicated that lycopene slowed down the advance of oxidation slightly. However, in the case of EVOO, its initial quality prevailed over the slight antioxidant effect exerted by lycopene at the concentration present in commercial samples, determining the oxidation compound profile of the digests.
Collapse
Affiliation(s)
- Bárbara Nieva-Echevarría
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain
| | - Encarnación Goicoechea
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain
| | - María D Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|