1
|
Siles-Sánchez MDLN, Fernández-Jalao I, Jaime De Pablo L, Santoyo S. Design of chitosan colon delivery micro/nano particles for an Achillea millefolium extract with antiproliferative activity against colorectal cancer cells. Drug Deliv 2024; 31:2372285. [PMID: 38952133 PMCID: PMC11221479 DOI: 10.1080/10717544.2024.2372285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
In this study, chitosan low molecular weight (LCH) and chitosan medium molecular weight (MCH) were employed to encapsulate a yarrow extract rich in chlorogenic acid and dicaffeoylquinic acids (DCQAs) that showed antiproliferative activity against colon adenocarcinoma cells. The design of CH micro/nanoparticles to increase the extract colon delivery was carried out by using two different techniques: ionic gelation and spray drying. Ionic gelation nanoparticles obtained were smaller and presented higher yields values than spray-drying microparticles, but spray-drying microparticles showed the best performance in terms of encapsulation efficiency (EE) (> 94%), also allowing the inclusion of a higher quantity of extract. Spray-drying microparticles designed using LCH with an LCH:extract ratio of 6:1 (1.25 mg/mL) showed a mean diameter of 1.31 ± 0.21 µm and EE values > 93%, for all phenolic compounds studied. The release profile of phenolic compounds included in this formulation, at gastrointestinal pHs (2 and 7.4), showed for most of them a small initial release, followed by an increase at 1 h, with a constant release up to 3 h. Chlorogenic acid presented the higher release values at 3 h (56.91% at pH 2; 44.45% at pH 7.4). DCQAs release at 3 h ranged between 9.01- 40.73%, being higher for 1,5- and 3,4-DCQAs. After gastrointestinal digestion, 67.65% of chlorogenic and most DCQAs remained encapsulated. Therefore, spray-drying microparticles can be proposed as a promising vehicle to increase the colon delivery of yarrow phenolics compounds (mainly chlorogenic acid and DCQAs) previously described as potential agents against colorectal cancer.
Collapse
Affiliation(s)
| | - Irene Fernández-Jalao
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), Madrid, Spain
| | - Laura Jaime De Pablo
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), Madrid, Spain
| |
Collapse
|
2
|
Viltres-Portales M, Sánchez-Martín MJ, Llugany M, Boada R, Valiente M. Selenium biofortification of microgreens: Influence on phytochemicals, pigments and nutrients. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108283. [PMID: 38142664 DOI: 10.1016/j.plaphy.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Kale (Brassica oleracea L. var. sabellica L.), kohlrabi (Brassica oleracea L. var. gongylodes L.) and wheat (Triticum aestivum L. cv. Bancal) microgreens were cultivated in presence of selenium 20 μmol L-1 as sodium selenite and sodium selenate mixture. The influence of this biofortification process was evaluated in terms of biomass production, total Se, macro- and micronutrients concentration, polyphenols, antioxidant activity, chlorophylls and carotenoids levels and total soluble proteins content. The results obtained have shown a significant concentration of total Se in the biofortified microgreens of kale (133 μg Se·g-1 DW) and kohlrabi (127 μg Se·g-1 DW) higher than that obtained for wheat (28 μg Se·g-1 DW). The Se uptake in all the species did not produce oxidative damage to the plants reflected in the bioactive compounds, antioxidant capacity or pigments concentration. These Se-enriched microgreens may contribute to the recommended intake of this nutrient in human diet as to overcome Se-deficiency.
Collapse
Affiliation(s)
- Marcia Viltres-Portales
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Institute of Materials Science and Technology, Universidad de La Habana, Zapata y G, Vedado, Plaza, 10400, La Habana, Cuba
| | - María-Jesús Sánchez-Martín
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Roberto Boada
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Manuel Valiente
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
3
|
Tobar-Delgado E, Mejía-España D, Osorio-Mora O, Serna-Cock L. Rutin: Family Farming Products' Extraction Sources, Industrial Applications and Current Trends in Biological Activity Protection. Molecules 2023; 28:5864. [PMID: 37570834 PMCID: PMC10421072 DOI: 10.3390/molecules28155864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro and in vivo studies have demonstrated the bioactivity of rutin, a dietary flavonol naturally found in several plant species. Despite widespread knowledge of its numerous health benefits, such as anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects, industrial use of rutin is still limited due to its low solubility in aqueous media, the characteristic bitter and astringent taste of phenolic compounds and its susceptibility to degradation during processing. To expand its applications and preserve its biological activity, novel encapsulation systems have been developed. This review presents updated research on the extraction sources and methodologies of rutin from fruit and vegetable products commonly found in a regular diet and grown using family farming approaches. Additionally, this review covers quantitative analysis techniques, encapsulation methods utilizing nanoparticles, colloidal and heterodisperse systems, as well as industrial applications of rutin.
Collapse
Affiliation(s)
- Elizabeth Tobar-Delgado
- Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera. 32 Chapinero, Palmira 763533, Colombia
| | - Diego Mejía-España
- Grupo de Investigación GAIDA, Departamento de Procesos Industriales, Facultad de Ingeniería Agroindustrial, Pasto 522020, Colombia
| | - Oswaldo Osorio-Mora
- Grupo de Investigación GAIDA, Departamento de Procesos Industriales, Facultad de Ingeniería Agroindustrial, Pasto 522020, Colombia
| | - Liliana Serna-Cock
- Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera. 32 Chapinero, Palmira 763533, Colombia
| |
Collapse
|
4
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Low-Molecular-Weight Gels as Smart Materials for the Enhancement of Antioxidants Activity. COSMETICS 2023. [DOI: 10.3390/cosmetics10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Antioxidants are important substances used in the cosmetic and pharmaceutical fields that are able to block free radicals. These compounds can be incorporated into formulations for many reasons, such as release over time or preservation of the formulation activity and applicability. In the present study, a low-molecular-weight gel made with Boc-L-DOPA(Bn)2-OH was studied as suitable material to host antioxidants and improve their activity. The solvent change (DMSO/H2O) in combination with temperature was the technological procedure for the preparation of the gel. Two different antioxidants were tested: (1) α-tocopherol and (2) postbiotics. The antioxidant activity of α-tocopherol and of the postbiotics in the gel, measured by the (2,2-diphenyl-1-picryl-hydrazyl radical (DPPH) assay, showed higher values than those in the pure solvent. The antioxidant activity of the gel with 0.8 w/v% of gelator and α-tocopherol in the concentration range of 5–100 µM was 2.7–1.1 times higher on average than in the pure solvent. In the case of both postbiotics, the biggest difference was observed at 30% of postbiotics in the gel with 0.5% of a gelator, when the antioxidant activity was 4.4 to 4.7 times higher than that in the pure solvent.
Collapse
|
6
|
Rasera GB, de Camargo AC, de Castro RJS. Bioaccessibility of phenolic compounds using the standardized INFOGEST protocol: A narrative review. Compr Rev Food Sci Food Saf 2023; 22:260-286. [PMID: 36385735 DOI: 10.1111/1541-4337.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The INFOGEST protocol creation was a watershed for phenolic bioaccessibility studies. Because of this important initiative to standardize bioaccessibility studies, data comparisons between different laboratories are now expedited. It has been eight years since the INFOGEST protocol creation, and three from the latest update. However, the current status in terms of phenolic bioaccessibility and how far different laboratories are from reaching a consensus are still unrevealed. In this sense, this narrative review considered an evaluation of different studies that applied the INFOGEST protocol to investigate the bioaccessibility of phenolic compounds. The central objective was to compile the main findings and consensus and to identify possible gaps and future opportunities. This approach intends to further facilitate the use of this protocol by professionals in the field of food science and technology and related areas, generating a reflection on the actual level of standardization of the method. Despite the differences in phenolic compounds from diverse food matrices, and their peculiar behavior, some trends could be elucidated, in terms of phenolic release, stability, and/or transformation upon in vivo digestion. In contrast, there was no general consensus regarding sample preparation, how to report results and the form to calculate bioaccessibility, making it difficult to compare different studies. There is still a long road to effectively standardize the results obtained for phenolic bioaccessibility using the INFOGEST protocol, which is also an opportunity in terms of food analysis that can impact the food industry, especially for the development of nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
7
|
|
8
|
Milinčić DD, Stanisavljević NS, Kostić AŽ, Gašić UM, Stanojević SP, Tešić ŽL, Pešić MB. Bioaccessibility of Phenolic Compounds and Antioxidant Properties of Goat-Milk Powder Fortified with Grape-Pomace-Seed Extract after In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2022; 11:2164. [PMID: 36358535 PMCID: PMC9686738 DOI: 10.3390/antiox11112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/27/2023] Open
Abstract
This study deals with the evaluation of the bioaccessibility and antioxidant properties of phenolic compounds from heat-treated skim goat-milk powder fortified with grape-pomace-seed extract, after in vitro gastrointestinal digestion. Ultra-high performance liquid chromatography coupled to diode array detection and mass spectrometry (UHPLC-DAD MS/MS) analysis confirmed the abundant presence of phenolic acids and flavan-3-ols in the grape-pomace-seed extract (SE) and heat-treated skim goat-milk/seed-extract powder (TME). After in vitro digestion of TME powder and recovery of total quantified phenolics, flavan-3-ols and phenolic acids were 18.11%, 24.54%, and 1.17%, respectively. Low recovery of grape-pomace-seed phenolics indicated strong milk protein-phenolic interactions. Electrophoretic analysis of a soluble fraction of digested heat-treated skim goat milk (TM) and TME samples showed the absence of bands originating from milk proteins, indicating their hydrolysis during in vitro gastrointestinal digestion. The digested TME sample had better antioxidant properties in comparison to the digested TM sample (except for the ferrous ion-chelating capacity, FCC), due to the presence of bioaccessible phenolics. Taking into account the contribution of the digestive cocktail, digested TME sample had lower values of total phenolic content (TPC), in vitro phosphomolybdenum reducing capacity (TAC) and ferric reducing power (FRP), compared to the undigested TME sample. These results could be attributed to low recovery of phenolic compounds. TME powder could be a good carrier of phenolics to the colon; thus, TME powder could be a promising ingredient in the formulation of functional food.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nemanja S. Stanisavljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O. Box 23, 11010 Belgrade, Serbia
| | - Aleksandar Ž. Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slađana P. Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Živoslav Lj. Tešić
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Mirjana B. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
9
|
Li X, Zhang Z, Guo Z, Zhao L, Liu Y, Ma X, He Q. Macrophage immunomodulatory activity of Acanthopanax senticousus polysaccharide nanoemulsion via activation of P65/JNK/ikkαsignaling pathway and regulation of Th1/Th2 Cytokines. PeerJ 2022; 9:e12575. [PMID: 35036126 PMCID: PMC8711278 DOI: 10.7717/peerj.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Nanoemulsions (NE) are used widely in pharmaceutical drug formulations and vaccine preparation, and Acanthopanax senticousus polysaccharide (ASPS) is a natural bioactive compound with immunostimulatory activity. Therefore, NE-loaded ASPS is expected to provide immunological enhancement for effective treatment. In the present study, Acanthopanax senticousus polysaccharide (ASPS was encapsulated into nanoemulsions, the resultant ASPS-NE were coated with a negative charge, and the immune enhancement mechanism of these ASPS-NE formulations was analyzed. The immunosuppressive animal models (70 ICR mice, male) for the study were established using cyclophosphamide. In addition, the activation of splenocyte proliferation, phagocytosis of the macrophages, the ratio of CD4+ to CD8+, the concentrations of the cytokines in serum, Western blot analysis was used for the analysis of the P65/JNK/ikk α signaling pathway in the peritoneal macrophage s. The results revealed that the ASPS-NE could stimulated the proliferation of splenocytes and enhance immunity. The ASPS-NE induced the expression of different cytokines (TNF-α, IFN-γ, IL-2, and IL-6), could activate the expressions of P65, JNK, and ikkα, and regulated the Th1/Th2 cytokines. These findings demonstrated the potential of ASPS-NE formulations for drug delivery and to induce potent and sustained immune responses.
Collapse
Affiliation(s)
- Xianghui Li
- State Key Laboratory of Agricultural Microbiology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhiqiang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhenhuan Guo
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Li Zhao
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yonglu Liu
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xia Ma
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Nishimoto-Sauceda D, Romero-Robles LE, Antunes-Ricardo M. Biopolymer nanoparticles: a strategy to enhance stability, bioavailability, and biological effects of phenolic compounds as functional ingredients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:41-52. [PMID: 34460939 DOI: 10.1002/jsfa.11512] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds are abundant in nature and have multiple beneficial effects on human health due to their antioxidant, anti-inflammatory, antithrombotic, antiallergenic, anticancer, and antiatherosclerotic properties. For this reason, phenolics are becoming relevant functional ingredients for several industries, mainly the food industry, derived from food consumer exigencies and regulations. However, the use of their beneficial properties still presents some limitations, such as chemical instability under environmental and processing conditions, which leads to structural changes and compromises their biological activities. They also present poor water solubility and sensitivity to pH changes, decreasing their bioavailability in the organism. The technologies for extraction and stabilization of these compounds have evolved rapidly in the development of different delivery systems to encapsulate sensitive active molecules. Biopolymeric nanoparticles are biodegradable polymer-based colloidal systems with sizes ranging from 1 to 1000 nm, and different techniques can be carried out to develop them. These systems have emerged as a green and effective alternative to improve stability, bioavailability, and biological effects of phenolic compounds. This comprehensive review aims to present an overview of recent advances in encapsulation processes of phenolic compounds within biopolymer nanoparticles as delivery systems and the impact on their physicochemical properties and biological effects after encapsulation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| |
Collapse
|
11
|
Asadi-Yousefabad SH, Mohammadi S, Ghasemi S, Saboktakin-Rizi K, Sahraeian S, Asadi SS, Hashemi M, Ghaffari HR. Development of fortified milk with gelled-oil nanoparticles incorporated with cinnamaldehyde and tannic acid. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Siraj A, Naqash F, Shah MA, Fayaz S, Majid D, Dar BN. Nanoemulsions: formation, stability and an account of dietary polyphenol encapsulation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Arwa Siraj
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| | - Farah Naqash
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| | - Mohammad Ashraf Shah
- Special Laboratory for Multifunctional Nanomaterials (LMN) P.G Department of Physics NIT Srinagar Srinagar Jammu and Kashmir 190006 India
| | - Shemilah Fayaz
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| | - Darakshan Majid
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| | - Basharat Nabi Dar
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| |
Collapse
|
13
|
Milinčić DD, Kostić AŽ, Gašić UM, Lević S, Stanojević SP, Barać MB, Tešić ŽL, Nedović V, Pešić MB. Skimmed Goat's Milk Powder Enriched with Grape Pomace Seed Extract: Phenolics and Protein Characterization and Antioxidant Properties. Biomolecules 2021; 11:biom11070965. [PMID: 34208895 PMCID: PMC8301875 DOI: 10.3390/biom11070965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was phenolics and protein characterization and antioxidant properties evaluation of skimmed thermally treated goat's milk powder enriched with different concentration of grape pomace seed extract (SE). The dominant phenolics in SE were phenolic acids, flavan-3-ols and procyanidins. Different electrophoretic techniques together with UHPLC-MS/MS analysis revealed the presence of phenolics-protein interactions in the samples, mainly procyanidins with whey protein/caseins complexes. Addition of SE into thermally treated goat's milk significantly improved antioxidant properties of goat's milk such as TAC, FRP, DPPH• and ABTS•+ scavenging activity. Gallic acid, catechin, and procyanidins mostly contributed to these activities. The schematic representation of phenolics-casein micelles interactions in thermally treated goat's milk enriched with SE was given. The addition of SE into thermally treated goat's milk can be a promising strategy in food waste recovery and to enhance the beneficial health effects of goat's milk-based functional foods.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Aleksandar Ž. Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Steva Lević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Slađana P. Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Miroljub B. Barać
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Živoslav Lj. Tešić
- Chair of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia;
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Mirjana B. Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
- Correspondence:
| |
Collapse
|
14
|
Garavand F, Jalai-Jivan M, Assadpour E, Jafari SM. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem 2021; 364:130376. [PMID: 34171813 DOI: 10.1016/j.foodchem.2021.130376] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022]
Abstract
Phenolic compounds (phenolics) have received great attention in the food, pharmaceutical and nutraceutical industries due to their health-promoting attributes. However, their extensive use is limited mainly due to their poor water dispersibility and instability under both processing conditions and/or gastrointestinal interactions, affecting their bioavailability/bioaccessibility. Therefore, different nanocarriers have been widely used to encapsulate phenolics and overcome the aforementioned challenges. To the best of our knowledge, besides many research studies, no comprehensive review on encapsulation of phenolics by microemulsions (MEs) and nanoemulsions (NEs) has been published so far. The present study was therefore attempted to review the loading of phenolics into MEs and NEs. In addition, the fundamental characteristics of the developed systems such as stability, encapsulation efficiency, cytotoxicity, bioavailability and releasing rate are also discussed. Both MEs and NEs are proved as appropriate vehicles to encapsulate and protect phenolics which may expand their applications in foods, supplements and pharmaceuticals.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Mehdi Jalai-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
15
|
Amrani-Allalou H, Boulekbache-Makhlouf L, Izzo L, Arkoub-Djermoune L, Freidja ML, Mouhoubi K, Madani K, Tenore GC. Phenolic compounds from an Algerian medicinal plant ( Pallenis spinosa): simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct 2021; 12:1291-1304. [PMID: 33439206 DOI: 10.1039/d0fo01764g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pallenis spinosa is a medicinal plant which is used in folk medicine as curative or preventive remedies for various diseases. Individual phenolic compounds from the methanolic extracts of its flowers, leaves and stem were determined by the high performance liquid chromatography method (HPLC) and total phenolic contents (TPC) were evaluated by Folin-Ciocalteu assay. The stability and bioactivity (antioxidant activity, micellar cholesterol solubility, α-amylase, and angiotensin converting enzymes (ACE) inhibitory effects) of these extracts in the gastrointestinal environment was determined before and after their protection in hydroxypropylmethylcellulose (HPMC) capsules. HPLC analysis revealed the presence of thirteen phenolic compounds with nine flavonoids and four phenolic acids. Except for kaempferol, the twelve other compounds have not been previously detected in the aerial part of the studied plant. Quantification of phenolics by HPLC and Folin Ciocalteu methods revealed that the highest TPC was detected in the flower extracts (104.31 ± 0.80 and 145.73 ± 0.48 mg EGA per g of extract, respectively). Leaf extracts displayed the best antioxidant capacity against the two tested radicals DPPH and ABTS (IC50 = 1.24 ± 0.03 and 0.94 ± 0.02 mg mL-1, respectively), FRAP assay (IC50 = 0.50 ± 0.02 mg mL-1), α-amylase inhibitory (IC50 = 1.25 ± 0.00 mg mL-1) and angiotensin activity with an inhibitory percent of 30.10 ± 0.12%. The best activity shown by stem extracts was against micellar cholesterol solubility (67.57 ± 0.00%). A strong decrease in TPC and their bioactivity was observed after the gastrointestinal digestion (GID) in non encapsulated extracts. These results showed that P. spinosa is a good source of phenolic compounds and GID affects significantly their composition, content and bioactivity.
Collapse
Affiliation(s)
- Hanane Amrani-Allalou
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Lila Boulekbache-Makhlouf
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Lynda Arkoub-Djermoune
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Université Mouloud Mammeri de Tizi Ouzou, Faculté des Sciences Biologiques et des Sciences Agronomiques, Algeria
| | - Mohamed Lamine Freidja
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Département de Biochimie et de Microbiologie, Faculté des Sciences, Université Mohamed Boudiaf, 28000 M'sila, Algeria
| | - Khokha Mouhoubi
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Centre de Recherche en Technologie Agro-Alimentaire, Route de Tergua-Ouzemour, 06000, Bejaia, Algeria
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
16
|
Ribeiro TB, Bonifácio-Lopes T, Morais P, Miranda A, Nunes J, Vicente AA, Pintado M. Incorporation of olive pomace ingredients into yoghurts as a source of fibre and hydroxytyrosol: Antioxidant activity and stability throughout gastrointestinal digestion. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Pea Protein Nanoemulsion Effectively Stabilizes Vitamin D in Food Products: A Potential Supplementation during the COVID-19 Pandemic. NANOMATERIALS 2021; 11:nano11040887. [PMID: 33807206 PMCID: PMC8065392 DOI: 10.3390/nano11040887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Vitamin D deficiency is a global issue which has been exacerbated by the COVID-19 pandemic-related lockdowns. Fortification of food staples with vitamin D provides a solution to alleviate this problem. This research explored the use of pea protein nanoemulsion (PPN) to improve the stability of vitamin D in various food products. PPN was created using a pH-shifting and ultrasonication combined method. The physicochemical properties were studied, including particle size, foaming ability, water holding capacity, antioxidant activity, and total phenolic contents. The fortification of several food formulations (non-fat cow milk, canned orange juice, orange juice powder, banana milk, and infant formula) with vitamin D–PPN was investigated and compared to raw untreated pea protein (UPP) regarding their color, viscosity, moisture content, chemical composition, vitamin D stability, antioxidant activity, and morphology. Finally, a sensory evaluation (quantitative descriptive analysis, and consumer testing) was conducted. The results show that PPN with a size of 21.8 nm protected the vitamin D in all tested products. PPN may serve as a potential carrier and stabilizer of vitamin D in food products with minimum effects on the taste and color. Hence, PPN may serve as a green and safe method for food fortification during the COVID-19 pandemic.
Collapse
|
18
|
Jurinjak Tušek A, Šalić A, Valinger D, Jurina T, Benković M, Kljusurić JG, Zelić B. The power of microsystem technology in the food industry – Going small makes it better. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Hu Y, Liu F, Pang J, McClements DJ, Zhou Z, Li B, Li Y. Biopolymer Additives Enhance Tangeretin Bioavailability in Emulsion-Based Delivery Systems: An In Vitro and In Vivo Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:730-740. [PMID: 33356230 DOI: 10.1021/acs.jafc.0c03635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The oral bioavailability of tangeretin, a poly(methoxyflavone) found in citrus fruits, is typically very low because of its extremely limited solubility. In this research, tangeretin was encapsulated within whey protein-stabilized emulsions containing ingredients that may alter their behavior under gastrointestinal conditions and enhance the bioavailability of tangeretin after oral administration: cinnamaldehyde (CA), gum arabic (GA), or hydroxypropyl methylcellulose (HPMC). The presence of these ingredients altered the size, aggregation state, and encapsulation efficiency of tangeretin in the emulsions. In vitro studies demonstrated that the bioaccessibility of the encapsulated tangeretin was much higher than that of a crude tangeretin oil suspension. Particularly, the addition of HPMC increased the bioaccessibility of tangeretin from around 36 to 90%. In vivo pharmacokinetics results using rats indicated that tangeretin concentration in the plasma increased from 4- to 20-fold after encapsulation, especially in the presence of HPMC. HPMC also prolonged the release of tangeretin to 22 h. Tangeretin preferentially accumulated within the liver and kidney of the animals. Overall, the knowledge confirmed that structured emulsion-based delivery systems could be used to improve the oral bioavailability of hydrophobic functional ingredients.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guizhou 550005, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Fei Liu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxiao Pang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guizhou 550005, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Bin Li
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|