1
|
Liu N, Sun Y, Liu J, Zhang Y, Yi X, Yan W, Cui X, Guo T, Zhao W, Han S, Ma W, Cao Y, Chen L. Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia. Apoptosis 2025:10.1007/s10495-024-02067-9. [PMID: 39755823 DOI: 10.1007/s10495-024-02067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits. To test our hypothesis, an EPOR/cell membrane chromatography (CMC)-high performance liquid chromatography (HPLC)-mass spectrometry (MS) analytical system was developed to screen EPOR targeted compounds from tangerine peel extra out. A fraction was retained on the EPOR/CMC column, separated, and further identified as nobiletin. Frontal analysis, non-linear chromatography, and molecular docking assay were applied to determine the binding force and sites between nobiletin and EPOR. Intracellular Ca2+ mobilization, cAMP accumulation, and phosphorylation of JAK2 and STAT5 were determined to confirm the EPOR activation effect of nobiletin. CoCl2 was applied to construct a renal hypoxic cell model, and cell viability and apoptosis of human glomerular mesangial cells (HMC) were carried out to assess the pharmacological effect of nobiletin. Apoptosis-related proteins including Bcl-2, Bcl-xL, Bax, Cleaved caspase 3, caspase 3, caspase 9, and Cytochrome C were determined. SiRNA and lentivirus were used to silence or overexpress EPOR. Our results indicated that nobiletin is a potential EPOR agonist, reflected on its explicit binding force and downstream signal activating effects. Furthermore, EPOR-overexpressing enhanced the hypoxia-tolerance of renal cells. Our mechanism research indicated that the protective effect of nobiletin against hypoxia was depended on its pro-proliferation and anti-apoptosis effects. In conclusion, nobiletin, a potential small molecular agonist of EPOR, protects HMC against hypoxia through positively activating EPOR.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyao Yi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenzhuo Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yapeng Cao
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China.
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China.
| |
Collapse
|
2
|
Zhang H, Yu Y, Zhang H, Zhao X, Wang J. A comprehensive profiling of phenolic compounds and antioxidant activities of 24 varieties of red raspberry cultivated in Northeast China. J Food Sci 2025; 90:e17623. [PMID: 39731726 DOI: 10.1111/1750-3841.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024]
Abstract
Red raspberries, valued for their nutrients and bioactive compounds, have broad uses in processing and healthy products. However, limited comprehensive research focused on the comparison of phenolic compounds of red raspberry, especially species cultivated in Northeast China, has been reported. This study aimed to conduct a thorough investigation of 24 red raspberry varieties in Northeast China for the first time, evaluating their phenolic compounds and antioxidant capacities. The results showed that 'DNS1' had the highest total phenolic content (TPC), 'Willamette' had the highest total flavonoid content (TFC), and 'Boyne' had the highest total anthocyanin content (TAC). Phenolic compounds in red raspberries were predominantly found in esterified form, while glycosylated phenolics should not be overlooked. Chlorogenic acid, cryptochlorogenic acid, ellagic acid, and arbutin were the main phenolic compounds, and the distribution of their contents varied between varieties. The antioxidant activity in the red raspberry had a close association with the content of phenolic compounds. Principal component analysis (PCA) showed that phenolic compounds and antioxidant activities were higher in samples from 'DNS1', 'Boyne', 'Beijing10', 'DNS5', and 'Willamette' varieties. These varieties should be given priority in breeding programs that aim to boost the utility and bioactive profile of red raspberries. PRACTICAL APPLICATION: Red raspberry is becoming a desirable commercially grown fruit species and is viewed as a new functional food. In this context, this research offers strong support for confirming the quality of 24 varieties of red raspberry and plays a critical role in the food industry. It also indicates the potential sources of superior varieties of red raspberry, which are advantageous for growers and consumers in search of high-quality red raspberry varieties.
Collapse
Affiliation(s)
- Haonan Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Yiping Yu
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Hegu Zhang
- Faulty of Arts and Sciences, University of Toronto, Toronto, Canada
| | - Xin Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Jinling Wang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| |
Collapse
|
3
|
Wang X, Su Z, Li X, Chen J, Li G, Shan Y, Pan Z, Fu F. Targeted/untargeted metabolomics and antioxidant properties distinguish Citrus reticulata 'Chachi' from Citrus reticulata Blanco. Food Chem 2025; 462:140806. [PMID: 39241684 DOI: 10.1016/j.foodchem.2024.140806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Dried citrus peel (DCP), also called "Chen Pi", has edible and medicinal value. However, the specific differences among various sources remain unknown. Herein, we collected six DCP species, namely, one Citrus reticulata 'Chachi' (CZG) and five Citrus reticulata Blanco (CRB). Targeted high-performance liquid chromatography and untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry were employed to comprehensively compare the phenolic compounds and metabolites in DCP. Interestingly, 13 different phenolic compounds were noted in DCP. The total phenolic compound content in all CRB samples (58.86-127.65 mg/g) was higher than that of CZG (39.47 mg/g). Untargeted metabolomic revealed 1495 compounds, with 115 differentially expressed metabolites for CRBs and CZG, particularly flavonoids (38), terpenoids (15), and phenolic acids and derivatives (9). Lastly, antioxidant assays revealed that all CRB samples exhibited higher antioxidant activities compared with CZG. Therefore, our study results provide a theoretical basis for the high-value utilization of citrus peels and their metabolites.
Collapse
Affiliation(s)
- Xue Wang
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zhipeng Su
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Xiang Li
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiaxu Chen
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Gaoyang Li
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yang Shan
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zhaoping Pan
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Fuhua Fu
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China.
| |
Collapse
|
4
|
Ping C, Zhao X, He C, Zheng Y, Zhang H. Comparing effects of tangerine-peel ( Citrus reticulata Blanco) age and concentration on deep-fried rabbit meat: Impact on heterocyclic aromatic amines, amino acids, and flavor compound formation. Food Chem X 2024; 24:101902. [PMID: 39469281 PMCID: PMC11513665 DOI: 10.1016/j.fochx.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Many nutritional experts recommend rabbit meat as a high-protein source. However, the high temperatures used to prepare deep-fried rabbit meat (DFRM) typically produce numerous heterocyclic aromatic amines (HAAs), a class of substances with carcinogenic risks. In this study, we chromatographically evaluate changes in the volatile compounds, amino acids, and HAAs in DFRM while employing tangerine peel (TP) as an additive. A total of 35 volatile organic compounds are detected in the TP, which increase the concentrations of sweet and umami amino acids in the DFRM. Remarkably, the TP substantially inhibits the IQ-type HAAs, particularly MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP, which are produced during deep frying. Correlation analyses reveal that the histidine, aldehydes, and alcohols are strongly and positively correlated (P < 0.001) with the MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP production. This study offers innovative and natural approaches for reducing HAA formation during the frying of rabbit meat.
Collapse
Affiliation(s)
- Chunyuan Ping
- Culinary College, Sichuan Tourism University, Chengdu 610100, China
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xiangdong Zhao
- Research and Development Center, Beijing Hongxi Zhiye Technology Corporation, Beijing 101499, China
| | - Congcong He
- Research and Development Center, Beijing Hongxi Zhiye Technology Corporation, Beijing 101499, China
| | - Yingying Zheng
- Research and Development Center, Beijing Hongxi Zhiye Technology Corporation, Beijing 101499, China
| | - Haibao Zhang
- Culinary College, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
5
|
Zhou J, Ren Y, Yu J, Zeng Y, Ren J, Wu Y, Zhang Q, Xiao X. The effect of maternal dietary polyphenol consumption on offspring metabolism. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39698806 DOI: 10.1080/10408398.2024.2442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The early intrauterine environment of mothers during pregnancy significantly affects the metabolic health of their offspring. Existing studies suggest that poor maternal nutrition during pregnancy increases the risk of obesity or diabetes in offspring, so it is highly important to intervene during pregnancy to prevent metabolic disorders in mothers and their offspring. Polyphenols with anti-inflammatory and antioxidant properties are found in many foods and have protective effects on obesity, diabetes, cancer, and cardiovascular disease. Furthermore, recent evidence indicates that maternal dietary polyphenols could be a potential therapy for improving pregnancy outcomes and offspring metabolism. In this review, we discuss the studies and mechanisms of different kinds of maternal dietary polyphenols during pregnancy and lactation in improving the metabolism of offspring, analyze the limitations of the current studies, and propose possible directions of further research, which provide new ideas and directions for reducing metabolic diseases in offspring.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Tingyu W, Fei S, Ying L, Siqin Z, Jiawei Z, Zhenqiang W. Microencapsulation of Chenpi extract with soy oligopeptides: enhanced retention of flavor compounds and improved bioaccessibility of polyphenolics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39667945 DOI: 10.1002/jsfa.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Chenpi extract (CPE) is rich in polyphenols, flavonoids, and volatile flavor compounds, and possesses numerous healthy biological effects. However, the low stability and bioaccessibility of CPE significantly limits its application in food development. RESULTS In this study, CPE microcapsules were prepared using soybean oligopeptide (SOP), maltodextrin (MD), soybean protein isolate (SPI), and citrus insoluble dietary fiber (CIDF) as the encapsulants. The successful encapsulation and thermal stability of the CPE microcapsules were confirmed through structural, interaction characterization, and thermal analyses. Soybean oligopeptide encapsulated 97.89% of the total flavonoids and 95.97% of the total polyphenols in CPE, which was significantly higher than the other three materials (MD, SPI, and CIDF). Soybean oligopeptide also showed good retention capacity for volatile flavor compounds in CPE, especially d-limonene (47.67%), γ-terpinene (49.65%), n-octanal (57.38%), and β-Myrcene (44.65%). The in vitro digestion results showed that the CPE loaded by SOP was more stable during simulated digestion compared with the CPE loaded by the other three materials. The bioaccessibility of total flavonoids and total polyphenols in CP-SOP was 96.64% and 88.95%, respectively. CONCLUSION Overall, these results highlight that SOP is a better carrier for CPE microcapsules, and the distinct characteristics of SOP could significantly improve the quality of Chenpi-related functional food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wang Tingyu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shen Fei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, China
| | - Liu Ying
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhen Siqin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhao Jiawei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wu Zhenqiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou, China
| |
Collapse
|
7
|
Gressler LT, Centenaro JR, Braz PH, Costa SZR, Battisti EK, Gressler LT, Finamor IA, Sutili FJ. Influence of dietary bitter orange peel powder on growth, body composition, blood parameters, gut morphometry, and thermal tolerance of Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2179-2190. [PMID: 39031275 DOI: 10.1007/s10695-024-01383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/14/2024] [Indexed: 07/22/2024]
Abstract
The potential of bitter orange peel powder (BOPP) as a nutritional strategy for fish was investigated in Nile tilapia. A total of 120 juveniles with an average initial weight of 9.8 ± 0.7 g were divided into four groups, replicated three times, resulting in 12 experimental units (60 L each) at a stocking density of 1.63 g of fish per liter. Productive parameters, whole-body composition, blood biochemistry, erythroid morphometry, intestinal histology, and heat tolerance were assessed in the juveniles subjected to one of the following treatments: non-supplemented basal diet (control group); basal diet with BOPP at 10 g/kg (BOPP10 group); basal diet with BOPP at 20 g/kg (BOPP20 group); and basal diet with BOPP at 40 g/kg (BOPP40 group). The BOPP additive had a positive influence on Nile tilapia growth, as final weight and weight gain were greater in all BOPP-treated fish, despite the reduction in crude protein in BOPP10 and BOPP20 groups. Fish receiving BOPP40 had an increase in total lipids and showed the highest levels of triglycerides and total cholesterol. Villi development was greater in the tilapia given BOPP10. It may be concluded that BOPP presented the most promising results for Nile tilapia juveniles when used at 10 g/kg diet. Regarding the erythroid morphometry, there was a general increase in nuclear and cytoplasmic areas in BOPP-fed tilapia; this seems to be the first report on the direct impact of the inclusion of functional additives in fish diet upon such parameters. As concerns the thermal tolerance evaluated at the end of the feeding trial, no differences were registered among the experimental groups. Thus, BOPP represents a feasible alternative ingredient to be explored in fish nutrition, since orange peel is a natural low-cost source of essential nutrients and valuable bioactive compounds.
Collapse
Affiliation(s)
- Luciane Tourem Gressler
- ELOAQUA Consulting, Research and Solutions in Aquaculture, Linha Faguense S/N, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil.
| | - João Rogério Centenaro
- Federal Institute of Education, Science and Technology Farroupilha, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil
| | | | - Samay Zillmann Rocha Costa
- Federal Institute of Education, Science and Technology Farroupilha, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil
| | - Eduardo Kelm Battisti
- ELOAQUA Consulting, Research and Solutions in Aquaculture, Linha Faguense S/N, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil
| | - Leticia Trevisan Gressler
- Federal Institute of Education, Science and Technology Farroupilha, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil
| | - Isabela Andres Finamor
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Fernando Jonas Sutili
- ELOAQUA Consulting, Research and Solutions in Aquaculture, Linha Faguense S/N, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil.
| |
Collapse
|
8
|
Yang Y, Chen Y, Jia X, Huang X. Association of dietary flavonoid intake with the prevalence and all-cause mortality of depressive symptoms: Findings from analysis of NHANES. J Affect Disord 2024; 366:44-58. [PMID: 39187180 DOI: 10.1016/j.jad.2024.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND This study aimed to explore the relationship between flavonoids intake and the prevalence and all-cause mortality of depressive symptoms in American adults. METHODS Analyzing 2007-2008, 2009-2010, and 2017-2018 NHANES data, we examined the association between dietary flavonoid and depressive symptoms, including specific subclasses assessment and mortality outcomes tracking until December 31, 2019. Our methodology included weighted multivariate logistic regression, weighted cox proportional hazards regression and restricted cubic spline (RCS) models, supported by stratified and sensitivity analyses. RESULTS Among the 12,340 participants in total, 1129 exhibited depressive symptoms. The multiple logistic regression analysis showed a significant reduction in total flavonoid and subclass intake in individuals with current depressive symptoms. Adjusted odds ratios (ORs) for the highest quartiles were 0.69 for anthocyanidins and 0.63 for flavones. Interaction effects emerged in non-hypertensive, higher-income, and normal-weight groups for flavones intake. The RCS model indicated an L-shaped association between depressive symptoms and total flavonoid intake, with inflection points at 346 mg/day. During a median follow-up of 119 months, 148 deaths occurred among patients with depressive symptoms. Hazard ratios (HRs) for all-cause mortality showed a significant positive correlation between total flavonoid intake and survival in model 1 (HR = 0.56), with an optimal intake range of 45.2-948.3 mg/day according to the RCS model. LIMITATIONS The study relied on U.S. population survey data, potentially limiting generalizability. Unmeasured confounding factors may exist, and genetic factors were not considered. CONCLUSIONS Adequate intake of flavonoids, especially anthocyanidins and flavones, is associated with reduced odds of depressive symptoms. Additionally, optimal intake ranges of flavonoid intake for mental health benefits were observed for all-cause mortality in population with depressive symptoms.
Collapse
Affiliation(s)
- Yaqin Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuemei Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Jia
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyan Huang
- Department of Nephrology, Hunan Provincial Hospital of Chinese Medicine, Hengyang, China.
| |
Collapse
|
9
|
Durmus N, Gulsunoglu‐Konuskan Z, Kilic‐Akyilmaz M. Recovery, Bioactivity, and Utilization of Bioactive Phenolic Compounds in Citrus Peel. Food Sci Nutr 2024; 12:9974-9997. [PMID: 39723030 PMCID: PMC11666827 DOI: 10.1002/fsn3.4570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 12/28/2024] Open
Abstract
Citrus peels are rich in bioactive phenolic compounds with various health effects including antioxidant, antiobesity, antiinflammatory, antihypertensive, antihypercholesterolemic, antimicrobial, antidiabetic, and anticarcinogenic activities. Both extractable and nonextractable phenolics are present in significant amounts in Citrus peel with diverse bioactivities. While extractable phenolics can be recovered from the fruit peels by conventional extraction methods, nonextractable phenolics remaining in the residues must be released from the cell matrix first by hydrolysis with acid, alkali, or enzymes. Novel processing technologies can help in improvement of extraction efficiency. Extreme process or medium conditions degrade phenolics and their bioactivity where encapsulation can be applied to improve their stability, solubility, and bioactivity. Citrus peel powder including ascorbic acid and dietary fiber besides phenolics or extracts therefrom can be used as functional food ingredients to extend shelf life and provide health benefits. In addition, phenolic extracts can be used as antioxidant and antimicrobial agents in active food packaging applications. Phenolic extracts have also a potential to be used as nutraceuticals and pharmaceuticals. In this review, phenolic compounds in different forms in Citrus peels, their recovery, bioactivity and possible applications for upcycling in the industry are presented.
Collapse
Affiliation(s)
- Nihal Durmus
- Department of Food EngineeringIstanbul Technical UniversityIstanbulTürkiye
- Department of Food ProcessingDuzce UniversityDuzceTürkiye
| | | | | |
Collapse
|
10
|
Guo X, Liu H, Hou R, Chen G, Xiao H, Liu L, Ciftci ON, Liu L. Design strategies of polysaccharide, protein and lipid-based nano-delivery systems in improving the bioavailability of polyphenols and regulating gut homeostasis. Int J Biol Macromol 2024; 283:137463. [PMID: 39547604 DOI: 10.1016/j.ijbiomac.2024.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polyphenols are plant secondary metabolites that have attracted much attention due to their anti-inflammatory, antioxidant, and gut homeostasis promoting effects. However, food matrix interaction, poor solubility, and strong digestion and metabolism of polyphenols cause barriers to their absorption in the gastrointestinal tract, which further reduces bioavailability and limits polyphenols' application in the food industry. Nano-delivery systems composed of biocompatible macromolecules (polysaccharides, proteins and lipids) are an effective way to improve the bioavailability of polyphenols. Therefore, this review introduces the construction of biopolymer-based nano-delivery systems and their application in polyphenols, with emphasis on improving the solubility, stability, sustained release and intestinal targeting of polyphenols. In addition, there are possible positive effects of polyphenol-loaded nano-delivery systems on modulating gut microbiota and gut homeostasis, with particular emphasis on modulating intestinal inflammation, metabolic syndrome, and gut-brain axis. It is worth noting that the safety of bio-based nano-delivery systems still need to be further studied. In summary, the application of the bio-based nano-delivery system to deliver polyphenols provides insights for improving the bioavailability of polyphenols and for the treatment of potential diseases in the future.
Collapse
Affiliation(s)
- Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ruyan Hou
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Guijie Chen
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst 01003, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
11
|
Wang J, Chen D, Ran L, Xu D, Sun H, Yang J, Zhu B. Effects of chestnut shell extract and citric acid on the properties of navel orange pomace/chitosan composite films. Int J Biol Macromol 2024; 283:137575. [PMID: 39561844 DOI: 10.1016/j.ijbiomac.2024.137575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
The improper use of citrus peel and nondegradable plastic film can cause substantial issues, such as environmental pollution and resource waste. Herein, navel orange pomace powder (NOPP) and chitosan (CS) were used as the raw material and film-forming additive, respectively, to prepare biobased composite films. Chestnut shell extract (CHE) and citric acid (CA) were added to the prepared NOPP/CS biobased multifunctional films. Based on ensuring the tensile strength of the film above 10 MPa, the elongation at break of the film can be increased from 19.11 % to 34.93 %, the water contact angle can reach 60°, and the water vapor transmittance can be significantly reduced to approximately 1.1 × 10-10 gs-1m-1Pa-1. Additionally, the antibacterial ability and antioxidant capacity of the composite film were improved. We observed that the multifunctional film could significantly inhibit the browning of fresh-cut apples, where the browning index was maintained between 60 and 65, which was 25 % lower than that of the control. The newly developed film therefore possesses the potential to replace the traditional plastic cling film. This research contributes to the literature regarding the source of raw materials for biobased materials and highlights the value of navel orange processing by-products.
Collapse
Affiliation(s)
- Junjie Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Daozong Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China
| | - Luxia Ran
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Dingfeng Xu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hao Sun
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jianjun Yang
- Jiangxi Bojun Ecological Agriculture Development Co., Ltd., Fuzhou, Jiangxi 344700, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
12
|
Wu Z, Yao L, Guo J, Xu Z, Wang Z. Gastrointestinal health anti-diarrheal mixture relieves spleen deficiency-induced diarrhea through regulating gut microbiota. Open Life Sci 2024; 19:20220964. [PMID: 39655192 PMCID: PMC11627061 DOI: 10.1515/biol-2022-0964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 12/12/2024] Open
Abstract
This study evaluated the therapeutic efficacy of the gastrointestinal health anti-diarrheal mixture (GHAM) on diarrhea induced by spleen deficiency, focusing on its modulation of gut microbiota. Using specific pathogen-free Wistar rats, a spleen deficiency model was created through senna leaf gavage. Rats were divided into control, model, positive control, and GHAM treatment groups. After a 14-day treatment, fecal samples were analyzed via 16S rDNA sequencing to assess microbiota alterations. GHAM significantly mitigated diarrhea and enhanced food intake and fecal quality. It increased the abundance of beneficial bacteria, such as Romboutsia and Clostridium_sensu_stricto_1, and decreased the levels of diarrhea-associated bacteria, such as Prevotellaceae and Bacillus, thereby improving microbiota functionality. GHAM's modulation of gut microbiota structure and function effectively alleviated spleen deficiency-induced diarrhea, positioning it as a potential natural herbal treatment for gastrointestinal ailments. This study lays the groundwork for further exploration of GHAM's regulatory impact on gut health.
Collapse
Affiliation(s)
- Zhengquan Wu
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Liuyi Yao
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Jun Guo
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Zhong Xu
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Zhengyan Wang
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| |
Collapse
|
13
|
Das G, Kameswaran S, Ramesh B, Bangeppagari M, Nath R, Das Talukdar A, Shin HS, Patra JK. Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods 2024; 13:3785. [PMID: 39682858 DOI: 10.3390/foods13233785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV radiation. Recent scientific studies show that traditional plant-based foods and supplements can help mitigate the effects of aging. Nutraceuticals, which are dietary supplements with medicinal properties, have gained attention for their ability to prevent chronic and age-related diseases. Antioxidants like flavonoids, carotenoids, ascorbic acid, terpenes, tannins, saponins, alkaloids, minerals, etc. found in plants are key to managing oxidative stress, which is a major cause of aging. Well-known plant-based supplements from Bacopa monnieri, Curcuma longa, Emblica officinalis, Ginkgo biloba, Glycyrrhiza glabra, and Panax ginseng have been found to possess medicinal properties. These supplements have been shown to improve cognitive function, reduce oxidative stress, improve overall health, and potentially extend life and enhance the excellence of life. The obtained benefits from these plant species are due to the presence of their bioactive secondary metabolites, such as bacosides in Bacopa monnieri, curcumin in Curcuma longa, ginsenosides in Panax ginseng, and many more. These compounds not only protect against free radical damage but also modulate key biological pathways of aging. Also, traditional fermented foods (tempeh and kimchi), which are rich in probiotics and bioactive compounds, support gut health, boost immune function, and have anti-aging properties. The molecular mechanisms behind these benefits are the activation of nutrient-sensing pathways like AMPK, SIRT/NAD+, and mTOR, which are important for cellular homeostasis and longevity. This review shows the potential of traditional plant-based foods and dietary supplements for healthy aging, and more studies are needed to prove their efficacy and safety in humans. Incorporating these natural products into our diet may be a practical and effective way to counteract the effects of aging and overall well-being. The foremost goal of this review is to emphasize the importance of supporting the body's antioxidant system by consuming the right balance of natural ingredients in the diet.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali 524201, Andhra Pradesh, India
| | - Bellamkonda Ramesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Manjunatha Bangeppagari
- Department of Cell Biology and Molecular Genetics, Sri DevarajUrs Academy of Higher Education and Research (A Deemed to Be University), Tamaka, Kolar 563103, Karnataka, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
- Department of Biotechnology and Microbiology, School of Natural Sciences, Techno India University, Agartala 799004, Tripura, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
14
|
Qiao K, Zhao M, Huang Y, Liang L, Zhang Y. Bitter Perception and Effects of Foods Rich in Bitter Compounds on Human Health: A Comprehensive Review. Foods 2024; 13:3747. [PMID: 39682819 DOI: 10.3390/foods13233747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter food, because of its unique taste, is not popular with the public, and is even considered to be difficult to swallow. By binding to specific sites of bitter receptors (26 hTAS2Rs), bitter compounds activate the downstream signaling pathways mediated by G protein, which convert chemical signals into electrical signals that are ultimately transmitted to the brain to produce the bitter perception. The intensity of bitterness is mainly determined by the hydrophobic recognition region of bitter receptors. The bitter compounds in foods mainly include alkaloids, polyphenols, terpenoids, amino acids, etc. Foods rich in bitter taste are mostly natural such as beans, nuts, and coffee, etc. Studies have proven that bitter foods have biological activities such as preventing hyperlipidemia, hypertension, hyperglycemia, anti-inflammatory, antitumor, antibacterial, antioxidant, and exhibit neuroprotective effects and other biological activities. The purpose of this review is to explore the bitter perception and the biological activity of bitter compounds, clarify the mechanism of their action on human health, and provide theoretical guidance for the development and application of functional foods.
Collapse
Affiliation(s)
- Kaina Qiao
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxia Zhao
- Food Laboratory of Zhongyuan · Luohe Food Engineering Vocational University, Luohe 462300, China
| | - Yan Huang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Vasquez-Gomez KL, Mori-Mestanza D, Caetano AC, Idrogo-Vasquez G, Culqui-Arce C, Auquiñivin-Silva EA, Castro-Alayo EM, Cruz-Lacerna R, Perez-Ramos HA, Balcázar-Zumaeta CR, Torrejón-Valqui L, Yoplac-Collantes C, Yoplac I, Chavez SG. Exploring chemical properties of essential oils from citrus peels using green solvent. Heliyon 2024; 10:e40088. [PMID: 39559244 PMCID: PMC11570516 DOI: 10.1016/j.heliyon.2024.e40088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
The research explored the chemical characteristics of essential oils (EOs) extracted from the peels of four citrus fruits grown in northeastern Peru (lime, sweet lemon, mandarin and orange). The essential oils were extracted by hydrodistillation using a green solvent, and subsequently, their physicochemical profile, bioactive, heat capacity, and RAMAN mapping were determined; in addition, the volatile composition was determined by gas chromatography (GC-MS), and the main phenols by liquid chromatography (UHPLC). The results evidenced that sweet lemon and mandarin essential oils had higher antioxidant activity (1592.38 and 1216.13 μmol TE/g) and total phenolic content (680.78 and 420.28 mg GAE/g). In contrast, sweet lemon peel essential oil had the highest total flavonoid content (23.18 mg QE/g). D-limonene was the most abundant aromatic compound in orange (>67 %), mandarin (>70 %), and sweet lemon (>72 %) EOs; however, in the lime, it was the lowest (37 %). The most abundant component was the cyclobutane, 1,2-bis(1-methylethylethylenyl)-, trans- (32 %).
Collapse
Affiliation(s)
- Katheryn L. Vasquez-Gomez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Aline C. Caetano
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Guillermo Idrogo-Vasquez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Erick A. Auquiñivin-Silva
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Rosita Cruz-Lacerna
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Harvey A. Perez-Ramos
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Llisela Torrejón-Valqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Cindy Yoplac-Collantes
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Ives Yoplac
- Laboratorio de Nutrición Animal y Bromatología de alimentos, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Segundo G. Chavez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| |
Collapse
|
16
|
Valencia-Cordova MG, Jaguey-Hernández Y, Castañeda-Ovando A, González-Olivares LG, Castañeda-Ovando EP, Añorve-Morga J, de la O-Arciniega M. Lesser-Explored Edible Flowers as a Choice of Phytochemical Sources for Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9265929. [PMID: 39564080 PMCID: PMC11576087 DOI: 10.1155/2024/9265929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
Flowers have been commonly used in cooking to add color and flavor to dishes. In addition to enhancing the visual appeal of food, many edible flowers also contain bioactive compounds that promote good health. These compounds include antimicrobial, antihypertensive, nephroprotective, antiulcer, and anticancer agents. In the last 5 years, there have been 95 published reviews about edible flowers. Among these, 43% have concentrated on Food Science and Technology, while 32% have analyzed their effects on human health. Most of these edible flowers are commonly consumed, but some are less known due to limited distribution or seasonality. These lesser-explored flowers often contain compounds that offer significant health advantages. Therefore, this review focuses on exploring the characteristics, phytochemical composition, and bioactive compounds found in less commonly examined edible flowers. The flowers included in this review are peonies, forget-me-nots, frangipani, alpine roses, wild roses, hibiscus species, common lilacs, woodland geraniums, camellias, Aztec marigolds, kiri flowers, sunflowers, yucca flower, hollyhocks, and cornflowers. Due to their diverse biological activities, these flowers provide various health benefits and can be used to be incorporated into food and supplements or develop mainly cancer-fighting medications.
Collapse
Affiliation(s)
| | - Yari Jaguey-Hernández
- Agroindustry Engineering Department, Polytechnque University of Francisco I. Madero, Francisco I. Madero, Hidalgo 42660, Mexico
- Autonomous University of Hidalgo State, Institute of Health Sciences, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| | - Araceli Castañeda-Ovando
- Chemistry Department, Autonomous University of Hidalgo State, Mineral de la Reforma, Hidalgo 42184, Mexico
| | | | - E Pedro Castañeda-Ovando
- Autonomous University of Hidalgo State, Institute of Basic Sciences and Engineering, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Javier Añorve-Morga
- Chemistry Department, Autonomous University of Hidalgo State, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Minarda de la O-Arciniega
- Autonomous University of Hidalgo State, Institute of Health Sciences, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| |
Collapse
|
17
|
Zhang H, Zhu Z, Wei W, Liu Z, Zhou H, Gong Y, Yan X, Du J, Li H, Chen L, Sheng L. Aronia melanocarpa extract extends the lifespan and health-span of Caenorhabditis elegans via mitogen-activated protein kinase 1. Food Funct 2024; 15:11020-11035. [PMID: 39450574 DOI: 10.1039/d4fo02479f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Aging is a highly complex process and one of the largest risk factors for many chronic diseases. Aronia melanocarpa (AM) is rich in bioactive phytochemicals with antioxidant, anti-inflammatory, and anticancer properties. However, little is known about its effects on aging. The objective of this study was to evaluate the effects of AM extract on lifespan and health-span using Caenorhabditis elegans as a representative model. The mechanisms of its effects were explored using transcriptomics and untargeted metabolomics. Results showed that the lifespan of C. elegans was significantly extended by 22.2% after high-dose AM treatment. AM improved the behavior and physiological functions of C. elegans by increasing the pharyngeal pumping rate, decreasing lipofuscin accumulation and the reactive oxygen species level, enhancing resistance to oxidative stress, and increasing the activities of superoxide dismutase and catalase. Transcriptome analysis showed that the pmk-1 gene (mitogen-activated protein kinase 1), which is involved in the MAPK signaling pathway, was the gene with the largest fold change after AM intervention. However, in the C. elegans pmk-1(km25) mutant, the beneficial effect of AM in improving nematode senescence disappeared. An untargeted metabolomics study showed that the levels of 4-hydroxyproline, rhamnose, and cysteine were increased after AM supplementation, and their extending effect on the lifespan and health-span of C. elegans were partly dependent on the pmk-1 gene. In conclusion, our results revealed that AM can promote the lifespan and health-span of C. elegans via the PMK-1 pathway, highlighting the potential of AM as a dietary supplement to delay aging.
Collapse
Affiliation(s)
- Huan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Wenjing Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Huiji Zhou
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Yueling Gong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinlei Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Chen P, Li C, Chen L, Li X, Zhu S. Citrus-derived flavanones as neuraminidase inhibitors: In vitro and in silico study. Eur J Med Chem 2024; 277:116758. [PMID: 39151273 DOI: 10.1016/j.ejmech.2024.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Neuraminidase (NA) has been well-studied as a therapeutic target for Influenza. However, resistance to the influenza virus has been observed recently. Out of special interest in the utilization of dietary antivirals from citrus, in vitro inhibition activity against NA and in silico studies including molecular docking, molecular dynamic simulation, and a predictive ADMET study, were performed on five citrus-derived flavanones. Encouragingly, citrus-derived flavanones displayed comparable or even more potent in vitro inhibitory activity than oseltamivir carboxylate against NA. Orange peel extract exhibited higher activity than hesperidin. Among the tested compounds, neohesperidin, forming strong hydrogen-bonding interactions with key arginine residues, exhibited the most effective inhibitory activity against NAs from C. perfringens, consistent with the results of molecular dynamics simulations. Although the molecular docking results were inconsistent with the in vitro activity, the binding energy was identical against the wild-type and mutant, suggesting a lower likelihood of developing drug resistance. Moreover, predictive ADMET studies showed favorable pharmacokinetic properties for the tested compounds. Overall, citrus fruit peel emerges as a promising dietary supplement for prevention and treatment of influenza. These findings elucidate the impact of flavanones on NA activity, and the analysis of their binding modes provides valuable insights into the mechanism of NA inhibition.
Collapse
Affiliation(s)
- Ping Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lin Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Xinpeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| |
Collapse
|
19
|
Gao X, Wang W, Chen O, Huang J, Zeng K. Building a protective shield: The role of wound healing in reducing postharvest decay and preserving quality of citrus fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109272. [PMID: 39541864 DOI: 10.1016/j.plaphy.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/11/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Postharvest citrus fruit is susceptible to pathogenic infestation and quality reduction through wounds, leading to tremendous commercial losses. Herein, wound healing of citrus fruit was obviously at 25 °C for five days to form a barrier effective against the development of infectious diseases and water dissipation. Combined with the results of transcriptional and metabolic levels, wound healing activated the expression of CsKCS4, CsKCS11, CsCYP704B1, CsFAH1, CsGPAT3 and CsGPAT9 genes in suberin biosynthesis pathway, and CsPMEI7, CsCesA-D3, CsXTH2, CsXTH6, CsXTH22, CsXTH23, CsXTH24, CsC4H and CsCAD genes in cell wall metabolism pathway, leading to the accumulation of suberin monomers and cell wall components. The results of microscopic observations proved wound healing promoted suberin deposition and cell wall strengthening. Meanwhile, wound healing required the provision of energy and precursor substances by carbohydrate metabolism and amino acid metabolism. We provide new insights into the regulatory mechanism of wound healing on improving disease resistance and maintaining the quality of citrus fruit.
Collapse
Affiliation(s)
- Xiaoquan Gao
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Wenjun Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China
| | - Ou Chen
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Jian Huang
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China.
| |
Collapse
|
20
|
Liu J, Xu L, Wang L, Wang Q, Yu L, Zhang S. Naringin Alleviates Intestinal Fibrosis by Inhibiting ER Stress-Induced PAR2 Activation. Inflamm Bowel Dis 2024; 30:1946-1956. [PMID: 38557865 DOI: 10.1093/ibd/izae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease (CD), without specific antifibrotic drugs, which usually relies on surgical intervention. The transcription factor XBP1, a key component of endoplasmic reticulum (ER) stress, is required for degranulation of mast cells and linked to PAR2 activation and fibrosis. Many studies have confirmed that naringin (NAR) can inhibit ER stress and reduce organ fibrosis. We hypothesized that ER stress activated the PAR2-induced epithelial-mesenchymal transition process by stimulating mast cell degranulation to release tryptase and led to intestinal fibrosis in CD patients; NAR might play an antifibrotic role by inhibiting ER stress-induced PAR2 activation. We report that the expression levels of XBP1, mast cell tryptase, and PAR2 are upregulated in fibrotic strictures of CD patients. Molecular docking simulates the interaction of NAR and spliced XBP1. ER stress stimulates degranulation of mast cells to secrete tryptase, activates PAR2-induced epithelial-mesenchymal transition process, and promotes intestinal fibrosis in vitro and vivo experiments, which is inhibited by NAR. Moreover, F2rl1 (the coding gene of PAR2) deletion in intestinal epithelial cells decreases the antifibrotic effect of NAR. Hence, the ER stress-mast cell tryptase-PAR2 axis can promote intestinal fibrosis, and NAR administration can alleviate intestinal fibrosis by inhibiting ER stress-induced PAR2 activation.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Wang
- Department of Surgery, Huangshi Traditional Chinese Medicine Hospital, Hubei Chinese Medical University, Huangshi, China
| | - Qianqian Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangliang Yu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Zou J, Wang P, Xu H, Gan X, Zhang H, Chen L, Chen H, Wang F, Hu Y, Liu Y. Metabolic profile and bioactivity of the peel of Zhoupigan ( Citrus reticulata cv. Manau Gan), a special citrus variety in China, based on GC-MS, UPLC-ESI-MS/MS analysis, and in vitro assay. Food Chem X 2024; 23:101719. [PMID: 39224696 PMCID: PMC11367054 DOI: 10.1016/j.fochx.2024.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Zhoupigan (Citrus reticulata cv. Manau Gan) is a local citrus variety in China. Its peel, known as Zangju peel (ZJP). The metabolic profile and bioactivity of ZJP have not been adequately studied, resulting in underutilization of ZJP and a serious waste of resources. In this study, GC-MS identified 46 components in ZJP, which defined ZJP's distinct aroma. Furthermore, UPLC-ESI-MS/MS detected 1506 metabolites in ZJP, and the differential metabolites were primarily involved in the biosynthesis of flavonoids and phenylacetone. Additionally, 56 key differential metabolites with metabolic pathways were identified. ZJP had significant antioxidant activity and the enzyme inhibitory activity ranking as pancreatic lipase (IC50 = 3.71 mg/mL) > α-glucosidase (IC50 = 6.28 mg/mL) > α-amylase (IC50 = 8.02 mg/mL). This study aimed to evaluate the potential of ZJP as natural antioxidant and functional food source and to serve as foundation for the further development of ZJP products with specific functional attributes.
Collapse
Affiliation(s)
- Jialiang Zou
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Peng Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Huanhuan Xu
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Xuelian Gan
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Huangsheng Zhang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Lin Chen
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Hongping Chen
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Fu Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Yuan Hu
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Youping Liu
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
22
|
Cui Q, Jiang LJ, Wen LL, Tian XL, Yuan Q, Liu JZ. Metabolomic profiles and differential metabolites of volatile components in Citrus aurantium Changshan-huyou pericarp during different growth and development stages. Food Chem X 2024; 23:101631. [PMID: 39130723 PMCID: PMC11315122 DOI: 10.1016/j.fochx.2024.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Citrus fruits possess a distinctive aroma and flavor, with Citrus aurantium Changshan-huyou (CACH) standing out due to their considerable edible and medicinal value. However, the volatile components (VOCs) in the CACH pericarp (CP) remain underexplored. In this study, gas chromatography-mass spectrometry (GC-MS) was utilized to qualitatively analyze VOCs in 27 CP samples across different growth stages. A total of 544 VOCs were identified, including 91 terpenoids. The types, quantities and distributions of VOCs were conducted. Detailed discussions on the major terpenoids in CP were also presented. A metabolomics approach combining multivariate statistical analysis with univariate analysis was employed for screening the differential metabolites. The study provides comprehensive insights into the VOCs in CP and citrus plants. Moreover, it delivers the first in-depth analysis of differential metabolites in CP throughout the entire CACH growth and development process, laying a foundation for ongoing research and development of the VOCs in CP.
Collapse
Affiliation(s)
| | | | | | - Xiao-Li Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Qiang Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Ju-Zhao Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| |
Collapse
|
23
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
24
|
Domínguez-Rodríguez G, Amador-Luna VM, Benešová K, Pernica M, Parada-Alfonso F, Ibáñez E. Biorefinery approach with green solvents for the valorization of Citrus reticulata leaves to obtain antioxidant and anticholinergic extracts. Food Chem 2024; 456:140034. [PMID: 38870823 DOI: 10.1016/j.foodchem.2024.140034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Citrus reticulata L leaves are one of the main post-harvest byproduct, containing bioactive compounds, that are usually undervalued. This work describes the development of a biorefinery process based on the application of supercritical CO2 (SC-CO2) followed by ultrasonic-assisted extraction (UAE) combined with Natural Deep Eutectic Solvents (NaDES) to extract bioactive terpenoids and phenolic compounds from these leaves. Extraction temperature and pressure of SC-CO2 were optimized, obtaining the highest bioactive terpenoids content using 200 bar at 60 °C. A Box-Behnken experimental design showed that 57% of water in NaDES composed of Choline Chloride and Glycerol (1:2) as extraction solvent at 25 °C for 50 min were the optimal UAE-NaDES extraction conditions to obtain the highest bioactive phenolic content from the residue of the optimal SC-CO2 extraction. The optimum extract presented the highest bioactivity and polyphenol content determined by LC-DAD-MS compared with extracts obtained using only water or NaDES as solvent.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Victor M Amador-Luna
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Karolína Benešová
- Research Institute of Brewing and Malting, Mostecká 7, 614 00 Brno, Czech Republic
| | - Marek Pernica
- Research Institute of Brewing and Malting, Mostecká 7, 614 00 Brno, Czech Republic
| | - Fabián Parada-Alfonso
- High Pressure Laboratory, Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, 111321, Bogotá D.C., Colombia
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
25
|
Potenza L, Saltarelli R, Palma F, Di Patria L, Annibalini G, Burattini S, Gobbi P, Valentini L, Caprioli G, Santanatoglia A, Vittori S, Barbieri E. Morphological Characterization, Polyphenolic Profile, and Bioactive Properties of Limoncella, an Ancient Mediterranean Variety of Sweet Citrus. Biomolecules 2024; 14:1275. [PMID: 39456208 PMCID: PMC11505904 DOI: 10.3390/biom14101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Limoncella of Mattinata, a rare and ancient Mediterranean citrus fruit, was investigated by sequence analysis of the ribosomal internal transcribed spacer regions, which assigns it as a variety of Citrus medica L. Morphological, chemical, and biomolecular approaches, including light and electron microscopy, HPLC-ESI-MS/MS, and antioxidant and anti-inflammatory assays, were used to characterize the flavedo and albedo parts, usually rich in bioactive compounds. The morphological findings showed albedo and flavedo cellular structures as "reservoirs" of nutritional components. Both albedo and flavedo hydroalcoholic extracts were rich in polyphenols, but they were different in compounds and quantity. The flavedo is rich in p-coumaric acid and rutin, whereas the albedo contains high levels of hesperidin and quercitrin. Antioxidant, anti-inflammatory, and genoprotective effects for albedo and flavedo were found. The results confirmed the health properties of flavedo and highlighted that albedo is also a rich source of antioxidants. Moreover, this study valorizes Limoncella of Mattinata's nutritional properties, cueing its crops' repopulation.
Collapse
Affiliation(s)
- Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| | - Laura Di Patria
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| | - Laura Valentini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (G.C.); (A.S.); (S.V.)
| | - Agnese Santanatoglia
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (G.C.); (A.S.); (S.V.)
| | - Sauro Vittori
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (G.C.); (A.S.); (S.V.)
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (L.P.); (R.S.); (G.A.); (S.B.); (P.G.); (L.V.); (E.B.)
| |
Collapse
|
26
|
Kim S, Kim D, Lee J, Han JK, Um MY, Jung JH, Yoon M, Choi Y, Oh Y, Youn JH, Cho S. Novel neuropharmacological activity of citrus lime (Citrus aurantifolia): A standardized lime peel supplement enhances non-rapid eye movement sleep by activating the GABA type A receptor. Biomed Pharmacother 2024; 179:117410. [PMID: 39270541 DOI: 10.1016/j.biopha.2024.117410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Polyphenols have been well-established to exert sedative-hypnotic effects in psychopharmacology. Lime (Citrus aurantifolia) peel is rich in biologically active polyphenols; however, the effects of lime peel extract on sleep have not yet been demonstrated. A comparison was conducted in mice, between the sleep-promoting effects of a standardized lime peel supplement (SLPS) and a well-known hypnotic drug, zolpidem, and its hypnotic mechanism was investigated using in vivo and in vitro assays. The effects of SLPS on sleep were assessed using a pentobarbital-induced sleep test and sleep architecture analysis based on recording electroencephalograms and electromyograms. Additionally, a GABAA receptor binding assay, electrophysiological measurements, and in vivo animal models were used to elucidate the hypnotic mechanism. SLPS (200 and 400 mg/kg) was found to significantly decrease sleep latency and increase the amount of non-rapid eye movement sleep without altering delta activity. The hypnotic effects of SLPS were attributed to its flavonoid-rich ethyl acetate fraction. SLPS had a binding affinity to the GABA-binding site of the GABAA receptor and directly activated the GABAA receptors. The hypnotic effects and GABAA receptor activity of SLPS were completely blocked by bicuculline, a competitive antagonist of the GABAA receptor, in both in vitro and in vivo assays. To the best of our knowledge, this study is the first to demonstrate the hypnotic effects of SLPS, which acts via the GABA-binding site of the GABAA receptor. Our results suggest that lime peel, a by-product abundantly generated during juice processing, can potentially be used as a novel sedative-hypnotic.
Collapse
Affiliation(s)
- Seonghui Kim
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea; Research & Development Center, Nutra-it Inc., Busan 48513, Republic of Korea
| | - Duhyeon Kim
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaekwang Lee
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jin-Kyu Han
- Research & Development Center, Nutra-it Inc., Busan 48513, Republic of Korea; Seoul Sleep Center, Seoul 06041, Republic of Korea
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jong Hoon Jung
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yunjin Choi
- Research & Development Center, Nutra-it Inc., Busan 48513, Republic of Korea
| | - Youngtaek Oh
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089, USA
| | - Jang H Youn
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089, USA.
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea; Research & Development Center, Nutra-it Inc., Busan 48513, Republic of Korea; Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
27
|
Nasimi Shad A, Akhlaghipour I, Babazadeh Baghan A, Askari VR, Baradaran Rahimi V. Caffeic acid and its derivative caffeic acid phenethyl ester as potential therapeutic compounds for cardiovascular diseases: A systematic review. Arch Pharm (Weinheim) 2024; 357:e2400240. [PMID: 39008886 DOI: 10.1002/ardp.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
Cardiovascular diseases (CVDs) contribute to major public health issues. Some studies have found that caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) may effectively prevent or treat CVDs. However, there is a major need to sum up our current understanding of the possible beneficial or detrimental effects of CA and CAPE on CVDs and related mechanisms. Therefore, this study aimed to summarize the data on this topic. A methodical search was carried out on key databases, including Pubmed, Google Scholar, Scopus, and Web of Science, from the beginning to June 2024. Studies were then assessed for eligibility based on inclusion and exclusion criteria. Treatment with CA and CAPE significantly and positively affected cardiovascular health in various aspects, including atherosclerotic diseases, myocardial infarction, hypertension, cardiac arrhythmias, and hypercoagulation state. Several mechanisms were proposed to mediate these effects, including transcription factors and signaling pathways associated with antioxidant, cytostatic, and anti-inflammatory processes. CA and CAPE were found to have several beneficial effects via multiple mechanisms during the prevention and treatment of various CVDs. However, these promising effects were only reported through in vitro and animal studies, which reinforces the need for further evaluation of these effects via human clinical investigations.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Babazadeh Baghan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Sandhiutami NMD, Desmiaty Y, Pitaloka PDU, Salsabila S. The protective effect of hydroalcoholic Citrus aurantifolia peel extract against doxorubicin-induced nephrotoxicity. Res Pharm Sci 2024; 19:591-605. [PMID: 39691301 PMCID: PMC11648341 DOI: 10.4103/rps.rps_99_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose Doxorubicin chemotherapy is a widely used treatment for various cancers, including breast, ovarian, and uterine cancers, among others. However, long-term use can cause nephrotoxicity side effects. Some citrus flavonoids have demonstrated nephroprotective activity; therefore, this study aimed to test the nephroprotective effectiveness of Citrus aurantifolia peel extract in protecting and reducing kidney damage caused by doxorubicin. Experimental approach Citrus aurantifolia peel was dried, ground, and extracted by ultrasonication (70% ethanol), then the extract was dried. Twenty-five female Sprague-Dawley rats were divided into 5 groups including the normal group (control), positive control (doxorubicin) group receiving doxorubicin at the repeated intraperitoneal (i.p.) dose of 4 mg/kg/day on days 2, 6, 10, and 14, and treatment groups receiving Citrus aurantifolia peel extract (CPE) with the doses of 100, 200, and 400 mg/kg/day orally for 14 days, and doxorubicin (4 mg/kg/day, i.p.) on days 2, 6, 10 and 14. On day 15, the rats were euthanized for the measurements of MDA, superoxide dismutase (SOD), catalase, kidney function (measuring blood urea nitrogen (BUN), creatinine, albumin serum levels), and renal histopathology. Findings/Results The CPE yield was 16.13%. CPE could significantly reduce the levels of MDA, and increase SOD and catalase activities compared with the doxorubicin-induced nephrotoxic model. CPE could increase renal function by reducing BUN and creatinine levels, increasing albumin, and improving the histopathology of the kidney. Conclusion and implications CPE has a potential effect as nephroprotective against doxorubicin-induced toxicity in renal through antioxidant capacities and increased renal function.
Collapse
Affiliation(s)
- Ni Made Dwi Sandhiutami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia
| | - Yesi Desmiaty
- Departement of Phytochemistry, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia
| | - Putu Diah Utari Pitaloka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia
| | - Salsabila Salsabila
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia
| |
Collapse
|
29
|
Zou J, Song Q, Shaw PC, Wu Y, Zuo Z, Yu R. Tangerine Peel-Derived Exosome-Like Nanovesicles Alleviate Hepatic Steatosis Induced by Type 2 Diabetes: Evidenced by Regulating Lipid Metabolism and Intestinal Microflora. Int J Nanomedicine 2024; 19:10023-10043. [PMID: 39371479 PMCID: PMC11451394 DOI: 10.2147/ijn.s478589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) represents a significant global health burden, exhibiting a strong correlation with insulin resistance, obesity, and type 2 diabetes (T2DM). Despite the severity of hepatic steatosis in T2DM patients, no specific drugs have been approved for clinical treatment of the disease. Tangerine peel is one kind of popular functional food and reported to possess hypoglycemic and lipid-lowering potential. In this study, we investigated the effects of Tangerine-peel-derived exosome-like nanovesicles (TNVs) on hepatic lipotoxicity associated with T2DM. Methods The TNVs was prepared by differential centrifugation of the aqueous extract of Tangerine and chemical properties were characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and LC-MS/MS. The hypoglycemic and lipid-lowering potential of TNVs were possessed by biochemical measurement, RT-PCR, 16S rRNA sequencing, GC/MS, UHPLC-MS/MS, in vivo small animal imaging assay and HE staining. Subsequently, effects of TNVs on lipid accumulation and glycolysis were investigated on 3T3-L1 and AML-12 cells. Results TNVs significantly inhibited insulin resistance, reduced hepatic lipid accumulation, facilitate intestinal mucosal repair, rescued gut microbiota dysbiosis, regulated colonic SCFA and liver bile acid metabolism in db/db mice. Furthermore, TNVs restored the expression of key genes in glucose and lipid metabolism (ACC, AMPK, CD36, LXRα, PPAR-γ, SREBP-1) while activating the expression of genes related to glycolysis (G6Pase, GLUT2, PCK1, PEPCK) in db/db mice. Further cell-based mechanistic studies revealed that TNVs reduced lipid accumulation in 3T3-L1 and AML-12 cells via regulation of glucose and lipid metabolism-related genes (UCP1, FGFR4, PRDM16, PGC-1α, Tmem26, Cpt1, Cpt2 and PPAR-α). Conclusion We for the first time demonstrated that TNVs could significantly improve glucose and lipid metabolism via activating the expression of genes related to fatty acid β-oxidation and glycolysis.
Collapse
Affiliation(s)
- Junju Zou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Qianbo Song
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Pang Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Yongjun Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
30
|
Pal P, Singh AK, Srivastava RK, Rathore SS, Sahoo UK, Subudhi S, Sarangi PK, Prus P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024; 13:3007. [PMID: 39335935 PMCID: PMC11431570 DOI: 10.3390/foods13183007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The growing challenge of food waste management presents a critical opportunity for advancing the circular bioeconomy, aiming to transform waste into valuable resources. This paper explores innovative strategies for converting food wastes into renewable food resources, emphasizing the integration of sustainable technologies and zero-waste principles. The main objective is to demonstrate how these approaches can contribute to a more sustainable food system by reducing environmental impacts and enhancing resource efficiency. Novel contributions of this study include the development of bioproducts from various food waste streams, highlighting the potential of underutilized resources like bread and jackfruit waste. Through case studies and experimental findings, the paper illustrates the successful application of green techniques, such as microbial fermentation and bioprocessing, in valorizing food wastes. The implications of this research extend to policy frameworks, encouraging the adoption of circular bioeconomy models that not only address waste management challenges but also foster economic growth and sustainability. These findings underscore the potential for food waste to serve as a cornerstone in the transition to a circular, regenerative economy.
Collapse
Affiliation(s)
- Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad Road, Lucknow 226028, India;
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India;
| | - Saurabh Singh Rathore
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | | | - Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110003, India;
| | | | - Piotr Prus
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| |
Collapse
|
31
|
Kuşi M, Becer E, Vatansever HS. Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease. Nutr Neurosci 2024:1-13. [PMID: 39225173 DOI: 10.1080/1028415x.2024.2397136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. This situation imposes a great burden on individuals, both economically and socially. Today, an effective method for treating the disease and protective approach to tau accumulation has not been developed yet. Studies have been conducted on the effects of hesperidin and naringin flavonoids found in citrus fruits on many diseases. METHODS In this review, the pathophysiology of AD is defined, and the effects of hesperidin and naringin on these factors are summarized. RESULTS Studies have shown that both components may potentially affect AD due to their antioxidative and anti-inflammatory properties. Based on these effects of the components, it has been shown that they may have ameliorative effects on Aβ, α-synuclein aggregation, tau pathology, and cognitive functions in the pathophysiology of AD. DISCUSSION There are studies suggesting that hesperidin and naringin may be effective in the prevention/treatment of AD. When these studies are examined, it is seen that more studies should be conducted on the subject.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
32
|
Cardullo N, Calcagno D, Pulvirenti L, Sciacca C, Pittalà MGG, Maccarronello AE, Thevenard F, Muccilli V. Flavonoids with lipase inhibitory activity from lemon squeezing waste: isolation, multispectroscopic and in silico studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7639-7648. [PMID: 38775623 DOI: 10.1002/jsfa.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Obesity is recognized as a lifestyle-related disease and the main risk factor for a series of pathological conditions, including cardiovascular diseases, hypertension and type 2 diabetes. Citrus limon is an important medicinal plant, and its fruits are rich in flavonoids investigated for their potential in managing obesity. In the present work, a green extraction applied to lemon squeezing waste (LSW) was optimized to recover pancreatic lipase (PL) inhibitors. RESULTS The microwave-assisted procedure yielded an extract with higher lipase inhibitory activity than those obtained by maceration and ultrasound. The main compounds present in the extract were identified by high-performance liquid chromatographic-mass spectrometric analysis, and hesperidin, eriocitrin and 4'-methyllucenin II were isolated. The three compounds were evaluated for in vitro PL inhibitory activity, and 4'-methyllucenin II resulted in the most promising inhibitor (IC50 = 12.1 μmol L-1; Ki = 62.2 μmol L-1). Multispectroscopic approaches suggested the three flavonoids act as competitive inhibitors and the binding studies indicated a greater interaction between PL and 4'-methyllucenin II. Docking analysis indicated the significant interactions of the three flavonoids with the PL catalytic site. CONCLUSION The present work highlights flavonoid glycosides as promising PL inhibitors and proposes LSW as a safe ingredient for the preparation of food supplements for managing obesity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | - Luana Pulvirenti
- CNR-ICB, Consiglio Nazionale delle Ricerche - Istituto di Chimica Biomolecolare, Catania, Italy
| | - Claudia Sciacca
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | | | - Fernanda Thevenard
- Centre of Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo Andre, São Paulo, Brazil
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Zhang Q, Zhong W, Zhu G, Cheng L, Yin C, Deng L, Yang Y, Zhang Z, Shen J, Fu T, Zhu JK, Zhao L. aChIP is an efficient and sensitive ChIP-seq technique for economically important plant organs. NATURE PLANTS 2024; 10:1317-1329. [PMID: 39179701 DOI: 10.1038/s41477-024-01743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/19/2024] [Indexed: 08/26/2024]
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is crucial for profiling histone modifications and transcription factor binding throughout the genome. However, its application in economically important plant organs (EIPOs) such as seeds, fruits and flowers is challenging due to their sturdy cell walls and complex constituents. Here we present advanced ChIP (aChIP), an optimized method that efficiently isolates chromatin from plant tissues while simultaneously removing cell walls and cellular constituents. aChIP precisely profiles histone modifications in all 14 tested EIPOs and identifies transcription factor and chromatin-modifying enzyme binding sites. In addition, aChIP enhances ChIP efficiency, revealing numerous novel modified sites compared with previous methods in vegetative tissues. aChIP reveals the histone modification landscape for rapeseed dry seeds, highlighting the intricate roles of chromatin dynamics during seed dormancy and germination. Altogether, aChIP is a powerful, efficient and sensitive approach for comprehensive chromatin profiling in virtually all plant tissues, especially in EIPOs.
Collapse
Affiliation(s)
- Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenying Zhong
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guangfeng Zhu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lulu Cheng
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Caijun Yin
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
34
|
Li S, Yang L, Wang M, Chen Y, Yu J, Chen H, Yang H, Wang W, Cai Z, Hong L. Effects of rootstocks and developmental time on the dynamic changes of main functional substances in 'Orah' ( Citrus reticulata Blanco) by HPLC coupled with UV detection. FRONTIERS IN PLANT SCIENCE 2024; 15:1382768. [PMID: 39263418 PMCID: PMC11388320 DOI: 10.3389/fpls.2024.1382768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Introduction Citrus fruit is rich in important functional constituents such as flavonoids, phenolic acids terpenes and other functional substances that play an important role for treating clinical diseases or controlling major agricultural diseases and pests. Plant secondary metabolites have become one of the most important resources of novel lead compounds, especially young citrus fruits contain multiple functional substances. 'Orah', a type of citrus reticulata, is known for its fine appearance, productivity, delicious sweetness, late-maturing characteristics, and is widely cultivated in China. Fruit thinning and rootstock selection are commonly used agronomic measures in its production to ensure its quality and tree vigor. However, few studies have demonstrated the effects of these agronomic measures on the functional substances of 'Orah'. Methods In this study, we used HPLC coupled with UV to detect the dynamic changes of fruit quality, 13 main flavonoids, 7 phenolic acids, 2 terpenes, synephrine and antioxidant capacity in both peel and pulp of citrus fruits grafted on four rootstocks (Red orange Citrus reticulata Blanco cv. red tangerine, Ziyang xiangcheng Citrus junos Sieb. ex Tanaka, Trifoliate orange Poncirus trifoliata L. Raf, and Carrizo citrange Citrus sinensis Osb.×P.trifoliate Raf) at six different developmental stages (from 90 DAF to 240 DAF). Results The results indicated that rootstock can significantly affect the contents of functional constituents and antioxidant capacity in 'Orah'. Additionally, it was found that pruning at either 90 DAF (days after flowering) or 150 DAF produced the most favorable outcomes for extracting functional substances. We also identified rootstock 'Trifoliate orange' has the highest total soluble solids (TSS) and 'Ziyang xiangcheng' to be the optimal in terms of comprehensive sensory of fruit quality, while 'Red orange' and 'Ziyang xiangcheng' are optimal in terms of functional substance quality, and 'Red orange' excels in antioxidant capacity. Discussion Overall, the findings demonstrate the important role of rootstocks and developmental stage in shaping fruit sensory quality and functional substance synthesis, providing valuable insights for guiding rootstock selection, determining thinning time, and utilizing pruned fruits in a more informed manner.
Collapse
Affiliation(s)
- Shuang Li
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lei Yang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Min Wang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yang Chen
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Jianjun Yu
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Hao Chen
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Haijian Yang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wu Wang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhiyong Cai
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lin Hong
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
35
|
Silva AP, Cordeiro MLDS, Aquino-Martins VGDQ, de Moura Melo LF, Paiva WDS, Naliato GFDS, Theodoro RC, Meneses CHSG, Rocha HAO, Scortecci KC. Prospecting of the Antioxidant Activity from Extracts Obtained from Chañar ( Geoffroea decorticans) Seeds Evaluated In Vitro and In Vivo Using the Tenebrio molitor Model. Nutrients 2024; 16:2813. [PMID: 39275132 PMCID: PMC11396818 DOI: 10.3390/nu16172813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Geoffroea decorticans, commonly known as Chañar, is a native Chilean plant widely used in folk medicine for its expectorant, pain relief, and antinociceptive properties. This study explored the antioxidant, cytotoxic, and protective effects of its ethanolic (EE) and aqueous (EA) seed extracts against oxidative stress induced by copper sulfate, using both in vitro and in vivo approaches. Phytochemical analyses revealed the presence of phenolic compounds and flavonoids in the extracts. High-Performance Liquid Chromatography (HPLC) coupled with Gas Chromatography-Mass Spectrometry/Mass Spectrometry (GC-MS/MS) identified significant components such as phytol, alpha-tocopherol, vitexin, and rutin, with the EE being particularly rich in phytol and vitexin. Antioxidant assays-measuring the total antioxidant capacity (TAC), reducing power, DPPH radical scavenging, and copper and iron chelation-confirmed their potent antioxidant capabilities. Both extracts were non-cytotoxic and provided protection against CuSO4-induced oxidative stress in the 3T3 cell line. Additionally, the use of Tenebrio molitor as an invertebrate model underscored the extracts' antioxidant and protective potentials, especially that of the EE. In conclusion, this study highlights the significant antioxidant and protective properties of Chañar seed extracts, particularly the ethanolic extract, in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Ariana Pereira Silva
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Maria Lucia da Silva Cordeiro
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luciana Fentanes de Moura Melo
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Weslley de Souza Paiva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Georggia Fatima da Silva Naliato
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Raquel Cordeiro Theodoro
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Carlos Henrique Salvino Gadelha Meneses
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB), Campina Grande 58429-500, PB, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
36
|
Deschamps E, Durand-Hulak M, Castagnos D, Hubert-Roux M, Schmitz I, Froelicher Y, Afonso C. Metabolite Variations during the First Weeks of Growth of Immature Citrus sinensis and Citrus reticulata by Untargeted Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Metabolomics. Molecules 2024; 29:3718. [PMID: 39202798 PMCID: PMC11357260 DOI: 10.3390/molecules29163718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Immature citruses are an important resource for the pharmaceutical industry due to their high levels of metabolites with health benefits. In this study, we used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to investigate the changes associated with fruit size in immature citrus fruits in the first weeks of growth. Three orange cultivars (Citrus sinensis 'Navel', Citrus sinensis 'Valencia', and Citrus sinensis 'Valencia Late') and a mandarin (Citrus reticulata Blanco 'Fremont') were separated into eight fruit sizes, extracted, and analyzed. Statistical analyses revealed a distinct separation between the mandarin and the oranges based on 56 metabolites, with an additional separation between the 'Navel' orange and the 'Valencia' and 'Valencia Late' oranges based on 21 metabolites. Then, metabolites that evolved significantly with fruit size growth were identified, including 40 up-regulated and 31 down-regulated metabolites. This study provides new insights into the metabolite modifications of immature Citrus sinensis and Citrus reticulata in the first weeks of growth and emphasizes the significance of including early sampled fruits in citrus maturation studies.
Collapse
Affiliation(s)
- Estelle Deschamps
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Marie Durand-Hulak
- EARL DURAND Olivier, Domaine de la Triballe, 34820 Guzargues, France;
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, Station INRAE, 20230 San Giuliano, France;
| | - Denis Castagnos
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France;
| | - Marie Hubert-Roux
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Isabelle Schmitz
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Yann Froelicher
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, Station INRAE, 20230 San Giuliano, France;
| | - Carlos Afonso
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| |
Collapse
|
37
|
He Q, Yin Z, Chen Y, Wu Y, Pan D, Cui Y, Zhang Z, Ma H, Li X, Shen C, Qin J, Wang S. Cyanidin-3-O-glucoside alleviates ethanol-induced liver injury by promoting mitophagy in a Gao-binge mouse model of alcohol-associated liver disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167259. [PMID: 38796918 DOI: 10.1016/j.bbadis.2024.167259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a leading cause of liver disease-related deaths worldwide. Unfortunately, approved medications for the treatment of this condition are quite limited. One promising candidate is the anthocyanin, Cyanidin-3-O-glucoside (C3G), which has been reported to protect mice against hepatic lipid accumulation, as well as fibrosis in different animal models. However, the specific effects and mechanisms of C3G on ALD remain to be investigated. EXPERIMENTAL APPROACH In this report, a Gao-binge mouse model of ALD was used to investigate the effects of C3G on ethanol-induced liver injury. The mechanisms of these C3G effects were assessed using AML12 hepatocytes. RESULTS C3G administration ameliorated ethanol-induced liver injury by suppressing hepatic oxidative stress, as well as through reducing hepatic lipid accumulation and inflammation. Mechanistically, C3G activated the AMPK pathway and enhanced mitophagy to eliminate damaged mitochondria, thus reducing mitochondria-derived reactive oxidative species in ethanol-challenged hepatocytes. CONCLUSIONS The results of this study indicate that mitophagy plays a potentially important role underlying the hepatoprotective action of C3G, as demonstrated in a Gao-binge mouse model of ALD. Accordingly, C3G may serve as a promising, new therapeutic drug candidate for use in ALD.
Collapse
Affiliation(s)
- Qiao He
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Zhaoqing Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yunling Chen
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Yunxiao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Di Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yuanhao Cui
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Zinuo Zhang
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Hanyu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xuanji Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chang Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin, China.
| | - Shuanglian Wang
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.
| |
Collapse
|
38
|
Sanches VL, de Souza Mesquita LM, Viganó J, Contieri LS, Pizani R, Chaves J, da Silva LC, de Souza MC, Breitkreitz MC, Rostagno MA. Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status. Crit Rev Anal Chem 2024; 54:1173-1199. [PMID: 35993795 DOI: 10.1080/10408347.2022.2107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.
Collapse
Affiliation(s)
- Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, Brazil
| | - Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Jaísa Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Laíse Capelasso da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | | | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
39
|
Wang Z, Ge W, Bi W, Chen DDY. Strategies for using magnetic beads in enhanced deep eutectic solvent-mechanochemical extraction of natural products from orange peels. Food Chem 2024; 447:139004. [PMID: 38492304 DOI: 10.1016/j.foodchem.2024.139004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
To address the challenges of low recovery, prolonged extraction times, and environmental pollution caused by toxic solvents in traditional extraction methods, magnetic bead-enhanced deep eutectic solvent mechanochemical extraction was developed for extracting natural products from orange peels. The extraction efficiencies of deep eutectic solvents were experimentally evaluated, and theoretical methods were used to guide solvent selection. Choline chloride-ethylene glycol demonstrated the highest efficiency under the optimal extraction conditions: a molar ratio of 1:2, no water content, a solid-liquid ratio of 0.08 g/mL, and an extraction time of 60 s. The synergy between the deep eutectic solvent and magnetic bead-enhanced the mechanochemical extraction efficiencies. The study also examined the effects of different magnetic bead types and orange peel powder particle sizes on extraction efficiency, finding that a 0.11 mm particle size combined with CIP@SiO2 yielded the best results. Overall, this study holds promise as an environmentally friendly and efficient extraction method.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wuxia Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
40
|
Kamel NA, Wissa DA, Abd-El-Messieh SL. Novel nano composites from Citrus limon and Citrullus colocynthis agricultural wastes for biomedical applications. Sci Rep 2024; 14:17343. [PMID: 39069554 PMCID: PMC11284205 DOI: 10.1038/s41598-024-67423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
In recent years, academic and industrial research has focused on using agro-waste for energy and new material production to promote sustainable development and lessen environmental issues. In this study, new nanocomposites based on polyvinyl alcohol (PVA)-Starch using two affordable agricultural wastes, Citrus limon peels (LP) and Citrullus colocynthis (Cc) shells and seeds powders with different concentrations (2, 5, 10, and 15 wt%) as bio-fillers were prepared. The nanocomposites were characterized by Dielectric Spectroscopy, Fourier-Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and water swelling ratio. The antimicrobial properties of the nanocomposites against Escherichia coli, Staphylococcus aureus, and Candida albicans were examined to investigate the possibility of using such composites in biomedical applications. Additionally, the biocompatibility of the composites on human normal fibroblast cell lines (HFB4) was tested using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results demonstrate that the filler type and concentration strongly affect the film's properties. The permittivity ε', dielectric loss ε″ and conductivity σdc increased by increasing filler content but still in the insulators range that recommend such composites to be used in the insulation purposes. Both bio fillers control the water uptake, and the samples filled with LP were more water resistant. The polyvinyl alcohol/starch incorporated with 5 wt% LP and Cc have antimicrobial effects against all the tested microorganisms. Increasing the filler content has a negative impact on cell viability.
Collapse
Affiliation(s)
- Nagwa A Kamel
- Microwave Physics and Dielectrics Department, Physics Research Institute, National Research Centre, Giza, Egypt.
| | - D A Wissa
- Solid State Physics Department, Physics Research Institute, National Research Centre, Giza, Egypt
| | - Salwa L Abd-El-Messieh
- Microwave Physics and Dielectrics Department, Physics Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
41
|
Liu Z, Wang P, Liu C, Tang X. Flavonoid Profiles in the Pulp of Different Lemon Cultivars and Their Antioxidant Activity Based on UPLC-Q-TOF-MS. Molecules 2024; 29:3464. [PMID: 39124867 PMCID: PMC11313956 DOI: 10.3390/molecules29153464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Previous studies have indicated that there may be differences among the varieties of lemon flavonoids, but the details have not yet been made clear, which limits the comprehensive use of different cultivated lemon varieties. In this study, ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) and ultraviolet-visible spectroscopy (UV-Vis) were used to investigate the types and contents of flavonoids in the flesh of the main cultivated variety (Eureka) and five common lemon varieties, as well as their in vitro antioxidant activity. A total of 21 compounds were identified, five of which were common compounds. Among them, Verna, Lisbon, and Bearss each have characteristic components that can serve as potential criteria for variety identification. Each of the six varieties of lemon has strong antioxidant activity. The antioxidant activity of different lemon varieties is related to flavonoids. Therefore, Eureka and the other five varieties of lemon are good natural antioxidants, and the cultivation and industrial production of lemons should consider the needs and selection of suitable varieties.
Collapse
Affiliation(s)
- Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Peng Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Chengcheng Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Xin Tang
- Chongqing Key Laboratory of the Innovative Chinese Materia Medica & Health Intervention, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, China;
| |
Collapse
|
42
|
Liu Y, Liu Z, Wu N. Association between intake of flavanones and the overweight/obesity and central obesity in children and adolescents: a cross-sectional study from the NHANES database. Front Nutr 2024; 11:1430140. [PMID: 39086546 PMCID: PMC11288817 DOI: 10.3389/fnut.2024.1430140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Aim The prevalence of obesity (Ob), overweight (Ow) and central obesity (CO) in children and adolescents has increased dramatically over the past decades globally. Flavanones have been recently studied as adjuvants for the treatment of obesity. This study was aimed at evaluating the association between intake of flavanones and its subclasses and the Ow/Ob and CO in children and adolescents. Methods This cross-sectional study extracted the data of children and adolescents with Ow/Ob and CO from the National Health and Nutrition Examination Survey (NHANES) database for 2007-2010 and 2017-2018. Ow and Ob were defined as a body mass index (BMI) ≥ 85th percentile. CO was defined as a waist circumference (WC) ≥ 90th percentile. The association between intake of flavanones and its subclasses and the Ow/Ob and CO in children and adolescents was determined by weighted univariate and multivariate Logistic regression models adjusted for potential covariates, and odds ratios (ORs) with 95% confidence intervals (CIs) was calculated. To further explore association between intake of flavanones and its subclasses and the Ow/Ob and CO in children and adolescents, subgroup analyses stratified by age, and gender. Results Of the total 5,970 children and adolescents, 2,463 (41.2%) developed Ow/Ob and 1,294 (21.7%) patients developed CO. High intake of flavanones, eriodictyol, hesperetin, and naringenin were associated with lower odds of Ow/Ob in children and adolescents. (OR: 0.75, 95%CI: 0.62-0.92, OR: 0.69, 95%CI: 0.55-0.87, OR: 0.69, 95%CI: 0.55-0.87, and OR: 0.76, 95%CI: 0.63-0.92, respectively). In addition, high intake of flavanones, eriodictyol, and naringenin were associated with lower odds of CO in children and adolescents (OR: 0.71, 95%CI: 0.57-0.88, OR: 0.67, 95%CI: 0.51-0.86, and OR: 0.69, 95%CI: 0.55-0.86, respectively). Subgroup analyses showed that among all the different subgroups, high intake of flavanones was associated with lower odds of Ow/Ob and CO in children and adolescents. Conclusion A diet loaded with high flavanones were associated with lower odds of Ow/Ob and CO in children and adolescents, and children and adolescents should be encouraged to increase their intake of flavanones.
Collapse
Affiliation(s)
- Yangyang Liu
- Developmental Behavior Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuoqiong Liu
- Developmental Behavior Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wu
- Child Health Section, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Barreto VHNS, da Silva Mazzeti CM, Rodrigues BM, Simões de Souza H, Correa AD, Mello MDA, Ramalho de Oliveira CF, Orlandi Sardi JDC, Cardoso CAL, La Flor Ziegler Sanches F, Rodrigues Macedo ML, Santos EFD, Rafacho BPM. Mangaba ( hancornia speciosa): exploring potent antifungal and antioxidant properties in lyophilised fruit pulp extract through in vitro analysis. Nat Prod Res 2024:1-7. [PMID: 38963903 DOI: 10.1080/14786419.2024.2372839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Mangaba is a fruit native to Brazil, rich in bioactive compounds. To evaluate physicochemical composition, bioactive compounds, antioxidant and antifungal activity of mangaba fruit pulp. Moisture, ash, protein, lipid, energy values and phenolic compounds were determined. Antioxidant activity was determined by capture of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Evaluation of antifungal activity was performed by Minimum Inhibitory Concentration, according to protocols M07-A9 and M27-S3, and minimum fungicidal concentration. Freeze-dried mangaba pulp presented high levels of carbohydrates, low levels of lipids, and high energy density. Phenolic analysis demonstrated that chlorogenic acid was found in the highest concentration, followed by p-coumaric acid and ferulic acid. Mangaba extract showed antioxidant activity like BHT. Mangaba extract inhibited the growth of Candida albicans (ATCC 90028), Cryptococcus gattii (AFLP4), Candida guilliermondii (ATCC 6260) and Candida albicans (MYA 2876). Freeze-dried mangaba inhibited fungal activity associated with antioxidant effect due to presence of phenolic compounds.
Collapse
Affiliation(s)
- Victor Hugo Nosella Sá Barreto
- Chronic Conditions and Food Observatory Research Group (OCCA), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Camila Medeiros da Silva Mazzeti
- Chronic Conditions and Food Observatory Research Group (OCCA), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Bruna Magusso Rodrigues
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Hellika Simões de Souza
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Arianne Dias Correa
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Milena de Almeida Mello
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | | | | | | | - Fabiane La Flor Ziegler Sanches
- Chronic Conditions and Food Observatory Research Group (OCCA), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
- Protein Purification Laboratory and its Biological Functions (LPPFB), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
| | - Maria Ligia Rodrigues Macedo
- Chronic Conditions and Food Observatory Research Group (OCCA), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
- Protein Purification Laboratory and its Biological Functions (LPPFB), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
| | - Elisvânia Freitas Dos Santos
- Chronic Conditions and Food Observatory Research Group (OCCA), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
- Protein Purification Laboratory and its Biological Functions (LPPFB), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
| | - Bruna Paola Murino Rafacho
- Chronic Conditions and Food Observatory Research Group (OCCA), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
- Protein Purification Laboratory and its Biological Functions (LPPFB), Federal University of Mato Grosso do Sul (UFMS), Dourados, MS, Brazil
| |
Collapse
|
44
|
Cirrincione F, Ferranti P, Ferrara A, Romano A. A critical evaluation on the valorization strategies to reduce and reuse orange waste in bakery industry. Food Res Int 2024; 187:114422. [PMID: 38763672 DOI: 10.1016/j.foodres.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.
Collapse
Affiliation(s)
- Federica Cirrincione
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Alessandra Ferrara
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy.
| |
Collapse
|
45
|
Shi M, Guo Q, Xiao Z, Sarengaowa, Xiao Y, Feng K. Recent Advances in the Health Benefits and Application of Tangerine Peel ( Citri Reticulatae Pericarpium): A Review. Foods 2024; 13:1978. [PMID: 38998484 PMCID: PMC11241192 DOI: 10.3390/foods13131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within the framework of the circular economy, CRP has emerged as a focal point due to its potential health benefits. CRP, extracted from Citrus reticulata cv. and aged for over three years, has attracted increasing attention for its diverse health-promoting effects, including its anticancer, cardiovascular-protecting, gastrointestinal-modulating, antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, CRP positively impacts skeletal health and various physiological functions. This review delves into the therapeutic effects and molecular mechanisms of CRP. The substantial therapeutic potential of CRP highlights the need for further research into its applications in both food and medicine. As a value-added functional ingredient, CRP and its constituents are extensively utilized in the development of food and health supplements, such as teas, porridges, and traditional medicinal formulations.
Collapse
Affiliation(s)
- Minke Shi
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Qihan Guo
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Zhewen Xiao
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Sarengaowa
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Ying Xiao
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Ke Feng
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
46
|
Sathianathan RV, Joseph J, Bhaskaran A, Chan Bose S. Hybrid Metal Oxide (Ag-ZnO) Impregnated Biocomposite in the Development of an Eco-Friendly Sustainable Film. ACS APPLIED BIO MATERIALS 2024; 7:3854-3864. [PMID: 38820558 DOI: 10.1021/acsabm.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Nanotechnology offers an innovative application as an eco-friendly food packaging film fabricated along with a degradable active mixture (AM). The AM is an assortment of alloyed metal oxide nanoparticles (Ag-ZnO), citron powder (AA), and Curcuma peel powder (CPP). Alloyed nanoparticles (NPs) were observed to exhibit a hexagonal structure from the experimental X-ray diffraction. Compositional and morphological study of the NPs (22.69 nm) and AM (32 nm) was done using energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and ζ- potential was observed to be -14.7 mV, indicating the stability of NPs. The prepared film was observed to be more effective with antibacterial analysis against Escherichia coli, exhibiting 72% of inhibition and antioxidant activity with IC50: 51.56% using the 2,2 diphenyl-1-picrylhydrazyl (DPPH) assay. Film 1, Film 2, Film 3, and Film 4 were fabricated with the AM and observed to be perfectly encapsulated by PVA using XRD. FESEM images of the film exhibit the aggregation of NPs with biocomposites in perfect distribution. The mechanical properties such as Young's modulus, elongation at break, tensile strength, and ultimate tensile strength (UTS- 5.37 MPa) were experimented for the films. The degradation rate was observed to be 6.12% for film 1 using the soil burial method. The study emphasizes that NPs along with biocomposite upgrade the sustainability of the packaging film with improved mechanical and physicochemical properties. The synthesized film with biomaterials could be used as a "green" food package to store fruits, vegetables, and sweets in the food industry.
Collapse
Affiliation(s)
- Rubalya Valantina Sathianathan
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Jasline Joseph
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Ashika Bhaskaran
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Sweshna Chan Bose
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| |
Collapse
|
47
|
Roselli V, Pugliese G, Leuci R, Brunetti L, Gambacorta L, Tufarelli V, Piemontese L. Green Methods to Recover Bioactive Compounds from Food Industry Waste: A Sustainable Practice from the Perspective of the Circular Economy. Molecules 2024; 29:2682. [PMID: 38893556 PMCID: PMC11173532 DOI: 10.3390/molecules29112682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time.
Collapse
Affiliation(s)
- Vincenzo Roselli
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Gianluca Pugliese
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Lucia Gambacorta
- Institute of Science of Food Production (ISPA), Research National Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| |
Collapse
|
48
|
D'Amore T, Chaari M, Falco G, De Gregorio G, Zaraî Jaouadi N, Ali DS, Sarkar T, Smaoui S. When sustainability meets health and innovation: The case of Citrus by-products for cancer chemoprevention and applications in functional foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103163. [DOI: 10.1016/j.bcab.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
49
|
Chen H, Chu Z, Huang J, Wen Y. Regulatory potential of secondary metabolite DIMBOA and baicalein to imazethapyr-induced toxicity in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38265-38273. [PMID: 38801610 DOI: 10.1007/s11356-024-33812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Controlling and mitigating the toxicity of herbicides to non-target plants is of significant importance in reducing ecological risks. The development of green and natural herbicide control technologies has become an urgent necessity. In this paper, how 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) and baicalein alleviated oxidative stress induced by imazethapyr (IM) in wheat seedlings was investigated. We found that DIMBOA and baicalein enhanced the antioxidant enzyme activities in wheat seedlings exposed to IM and reduced the excessive reactive oxygen species due to IM stress by 21.3% and 23.5%, respectively. DIMBOA and baicalein also restored the iron content reduced by IM and effectively mitigated Fe2+ overload by alleviating the response of heme oxygenase 1 to IM stress. The antioxidant and iron homeostatic maintenance properties of DIMBOA and baicalein enhanced the defenses of wheat seedlings against IM stress. Our results highlight the potential implication of secondary metabolites as natural products to modulate herbicide toxicity to non-target plants.
Collapse
Affiliation(s)
- Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Zheyu Chu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
50
|
Gomez-Molina M, Albaladejo-Marico L, Yepes-Molina L, Nicolas-Espinosa J, Navarro-León E, Garcia-Ibañez P, Carvajal M. Exploring Phenolic Compounds in Crop By-Products for Cosmetic Efficacy. Int J Mol Sci 2024; 25:5884. [PMID: 38892070 PMCID: PMC11172794 DOI: 10.3390/ijms25115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Phenolic compounds represent a group of secondary metabolites that serve essential functions in plants. Beyond their positive impact on plants, these phenolic metabolites, often referred to as polyphenols, possess a range of biological properties that can promote skin health. Scientific research indicates that topically using phenolics derived from plants can be advantageous, but their activity and stability highly depend on storage of the source material and the extraction method. These compounds have the ability to relieve symptoms and hinder the progression of different skin diseases. Because they come from natural sources and have minimal toxicity, phenolic compounds show potential in addressing the causes and effects of skin aging, skin diseases, and various types of skin damage, such as wounds and burns. Hence, this review provides extensive information on the particular crops from which by-product phenolic compounds can be sourced, also emphasizing the need to conduct research according to proper plant material storage practices and the choice of the best extracting method, along with an examination of their specific functions and the mechanisms by which they act to protect skin.
Collapse
Affiliation(s)
- Maria Gomez-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lorena Albaladejo-Marico
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lucia Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain;
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| |
Collapse
|