1
|
Demircan B, Velioglu YS, Bozturk MM. Effect of dipping pre-treatments and drying methods on Aronia melanocarpa quality. Food Chem 2024; 457:140109. [PMID: 38901336 DOI: 10.1016/j.foodchem.2024.140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
This study examined the impact of different dipping pre-treatments (PO: potassium carbonate-olive oil emulsion, HW: hot water) and drying methods (sun, oven, hot air, and freeze) on aronia berry quality. Freeze-drying showed the highest process yield (29.07%-29.43%), while sun-drying had the lowest (24.60%-25.74%). PO pre-treatment showed superior moisture and water activity reductions across all drying methods. Notably, it enhanced carotenoid levels (PO: 399.5, HW: 371.4 mg BCE/kg), antioxidant activity (PO: 9602.8, HW: 9403.3 mg TE/kg), total phenolics (PO: 38176.5, HW: 34804.0 mg GAE/kg) and flavonoids (PO: 6537.1, HW: 6141.5 mg CE/kg) during freeze-drying. Additionally, PO-treated samples exhibited superior rehydration properties, with a ratio of 293.32% and a 1.01 g/g capacity. On the other hand, HW pre-treatment increased ascorbic acid levels (PO: 377.0, HW: 391.7 mg/kg). The highest quality dried aronia berries are generally observed in PO-treated samples, especially in freeze drying, followed by hot-air, oven, and sun drying processes.
Collapse
Affiliation(s)
- Bahar Demircan
- Department of Food Engineering, Ankara University, 06850 Golbasi, Ankara, Türkiye.
| | - Yakup Sedat Velioglu
- Department of Food Engineering, Ankara University, 06850 Golbasi, Ankara, Türkiye.
| | | |
Collapse
|
2
|
Raczkowska E, Serek P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry-A Review. Nutrients 2024; 16:2757. [PMID: 39203893 PMCID: PMC11357471 DOI: 10.3390/nu16162757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Fruit pomace, a by-product of the fruit industry, includes the skins, seeds, and pulp most commonly left behind after juice extraction. It is produced in large quantities: apple residues alone generate approximately 4 million tons of waste annually, which is a serious problem for the processing industry but also creates opportunities for various applications. Due to, among other properties, their high content of dietary fiber and polyphenolic compounds, fruit residues are used to design food with functional features, improving the nutritional value and health-promoting, technological, and sensory properties of food products. This article presents the health-promoting (antioxidant, antidiabetic, anti-inflammatory, and antibacterial) properties of fruit pomace. Moreover, the possibilities of their use in the food industry are characterized, with particular emphasis on bread, sweet snack products, and extruded snacks. Attention is paid to the impact of waste products from the fruit industry on the nutritional value and technological and sensory characteristics of these products. Fruit pomace is a valuable by-product whose use in the food industry can provide a sustainable solution for waste management and contribute to the development of functional food products with targeted health-promoting properties.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| | | |
Collapse
|
3
|
Khachatryan G, Pląder J, Piechowicz K, Witczak T, Liszka-Skoczylas M, Witczak M, Gałkowska D, Duraczyńska D, Hunter W, Waradzyn A, Khachatryan K. Preparation and Study of the Physicochemical and Functional Properties of Nano/Micromicellar Structures Containing Chokeberry Fruit Pomace Extracts Using Egg White and Egg Yolk. Int J Mol Sci 2024; 25:8405. [PMID: 39125974 PMCID: PMC11312911 DOI: 10.3390/ijms25158405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
There is currently a growing interest in health-promoting foods. The beneficial effects of food on human health are actively promoted by health professionals and nutritionists. This growing awareness is influencing the increasing range of functional foods and the pursuit of more innovative solutions. Recent research indicates that spherical nanoparticles have the potential to be used as functional biomaterials in the food industry, particularly for encapsulating hydrophobic natural phytochemicals. Techniques and systems based on micro- and nano-encapsulation are of great importance in the food and pharmaceutical industries. It is of paramount importance that encapsulation materials are safe for use in food. The aim of this study was to obtain micelles containing extracts from chokeberry fruit pomace using egg yolk powder (EYP) for emulsification (as a source of lecithin) and egg white powder (EWP) for stabilisation. The structural properties of the micelles in the resulting powders were characterised using Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) analysis confirmed the presence of spherical micellar structures between 500 and 1000 nm in size. The water activity and water content of the obtained powders were determined, and the thermal (DSC) and antioxidant properties were investigated. The results indicated that the powder with the micellar structures had a higher stability compared to the powder obtained by simple mixing without the use of encapsulation techniques.
Collapse
Affiliation(s)
- Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (D.G.)
| | - Julia Pląder
- Scientific Circle of Food Technologists, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (J.P.); (K.P.); (W.H.); (A.W.)
| | - Karolina Piechowicz
- Scientific Circle of Food Technologists, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (J.P.); (K.P.); (W.H.); (A.W.)
| | - Teresa Witczak
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Marta Liszka-Skoczylas
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland (M.W.)
| | - Mariusz Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland (M.W.)
| | - Dorota Gałkowska
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (D.G.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland;
| | - Walter Hunter
- Scientific Circle of Food Technologists, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (J.P.); (K.P.); (W.H.); (A.W.)
| | - Aleksandra Waradzyn
- Scientific Circle of Food Technologists, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (J.P.); (K.P.); (W.H.); (A.W.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| |
Collapse
|
4
|
Li Z, Qin B, Chen T, Kong X, Zhu Q, Azad MAK, Cui Y, Lan W, He Q. Fermented Aronia melanocarpa pomace improves the nutritive value of eggs, enhances ovarian function, and reshapes microbiota abundance in aged laying hens. Front Microbiol 2024; 15:1422172. [PMID: 38962144 PMCID: PMC11220260 DOI: 10.3389/fmicb.2024.1422172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction There is a decline in the quality and nutritive value of eggs in aged laying hens. Fruit pomaces with high nutritional and functional values have gained interest in poultry production to improve the performance. Methods The performance, egg nutritive value, lipid metabolism, ovarian health, and cecal microbiota abundance were evaluated in aged laying hens (320 laying hens, 345-day-old) fed on a basal diet (control), and a basal diet inclusion of 0.25%, 0.5%, or 1.0% fermented Aronia melanocarpa pomace (FAMP) for eight weeks. Results The results show that 0.5% FAMP reduced the saturated fatty acids (such as C16:0) and improved the healthy lipid indices in egg yolks by decreasing the atherogenicity index, thrombogenic index, and hypocholesterolemia/hypercholesterolemia ratio and increasing health promotion index and desirable fatty acids (P < 0.05). Additionally, FAMP supplementation (0.25%-1.0%) increased (P < 0.05) the ovarian follicle-stimulating hormone, luteinizing hormone, and estrogen 2 levels, while 1.0% FAMP upregulated the HSD3B1 expression. The expression of VTG II and ApoVLDL II in the 0.25% and 0.5% FAMP groups, APOB in the 0.5% FAMP group, and ESR2 in the 1% FAMP group were upregulated (P < 0.05) in the liver. The ovarian total antioxidant capacity was increased (P < 0.05) by supplementation with 0.25%-1.0% FAMP. Dietary 0.5% and 1.0% FAMP downregulated (P < 0.05) the Keap1 expression, while 1.0% FAMP upregulated (P < 0.05) the Nrf2 expression in the ovary. Furthermore, 1.0% FAMP increased cecal acetate, butyrate, and valerate concentrations and Firmicutes while decreasing Proteobacteria (P < 0.05). Conclusion Overall, FAMP improved the nutritive value of eggs in aged laying hens by improving the liver-blood-ovary function and cecal microbial and metabolite composition, which might help to enhance economic benefits.
Collapse
Affiliation(s)
- Zhihua Li
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Binghua Qin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ting Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md. Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Olechno E, Puścion-Jakubik A, Socha K, Pipino C, Zujko ME. Consumption of Chokeberry Bio-Products Improves Specific Metabolic Parameters and Increases the Plasma Antioxidant Status. Antioxidants (Basel) 2024; 13:699. [PMID: 38929138 PMCID: PMC11200734 DOI: 10.3390/antiox13060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Because of its high antioxidant activity, chokeberry can be used both in the prevention and treatment of various metabolic disorders. In this study, for the first time, the synergistic effects of chokeberry juice and chokeberry fiber on selected metabolic and anthropometric parameters were assessed during a 90-day intervention including 102 people (67 women and 35 men). After 60 days of intervention with chokeberry juice, statistically significant increases in the muscle mass and antioxidant potential of the serum were observed. In turn, there were decreases in the waist circumference, systolic blood pressure, diastolic blood pressure, heart rate, glycated hemoglobin, glucose, LDL cholesterol, eGFR, and ALT level. The addition of chokeberry fiber for the next 30 days resulted in stabilizations of the diastolic blood pressure, glycated hemoglobin, glucose, and waist circumference, as well as reductions in the values of the heart rate, LDL cholesterol, insulin, and AST level. After 90 days, a significant increase in the FRAP value was also observed. This intervention indicates that chokeberry products may have a beneficial effect on metabolic health and serve as a foundation for developing functional foods.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland;
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
| | - Caterina Pipino
- Center for Advanced Studies and Technology, G. d’Annunzio University, 66100 Chieti, Italy;
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland;
| |
Collapse
|
6
|
Indiarto R, Reni R, Utama GL, Subroto E, Pangawikan AD, Djali M. The physicochemical, antioxidant, and sensory properties of chocolate biscuits incorporated with encapsulated mangosteen ( Garcinia mangostana L.) peel extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2159429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Reni Reni
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Gemilang Lara Utama
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Aldila Din Pangawikan
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mohamad Djali
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
7
|
Lucas-González R, Díez-Riquelme V, Viuda-Martos M, Pérez-Álvarez JÁ, Sánchez-Zapata E, Fernández-López J. Effect of the food matrix on the (poly)phenol stability of different plant-based meat products and their main ingredients after in vitro gastrointestinal digestion. Food Funct 2023; 14:10796-10813. [PMID: 37982684 DOI: 10.1039/d3fo03265e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The present study aimed to investigate the influence of the food matrix on the bioaccessibility of free and bound (poly)phenols in different plant-based foods. These plant-based matrices included two fresh raw materials (tomato and red pepper), two minimally processed intermediate ingredients (dehydrated tomato and roasted red pepper), and two final plant-based and spreadable meat products whose main ingredients were tomato and red pepper (tomato pâté and pepper pâté, respectively). All samples underwent harmonized INFOGEST in vitro gastrointestinal digestion to simulate the digestive process. In the six studied matrices, 75 (poly)phenolic compounds were detected, the free fraction, in general, being higher than the bound fraction. The bioaccessibility values fluctuated between 5.83 and 38.38%, while the colon available index ranged from 10.40-298.81%. Among phenolic acids and flavonoids, in general, flavonoids were more bioaccessible than phenolic acids. The highest bioaccessibility values were obtained for fresh raw tomato and tomato pâté, while the lowest values were obtained for roasted red pepper and pepper pâté. In conclusion, except for the tomato pâté, food processing was detrimental to polyphenol bioaccessibility.
Collapse
Affiliation(s)
- Raquel Lucas-González
- IPOA Research Group, Centro e Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain.
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avda. Galicia No. 4, 32900 San Cibrao das Viñas, Ourense, Spain
| | - Vicente Díez-Riquelme
- IPOA Research Group, Centro e Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain.
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro e Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain.
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro e Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain.
| | - Elena Sánchez-Zapata
- Research & Development Pre-Cooked Convenience Food, Surinver El Grupo S.Coop, 03191 Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Centro e Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain.
| |
Collapse
|
8
|
Olechno E, Puścion-Jakubik A, Soroczyńska J, Socha K, Zujko ME. Are Chokeberry Products Safe for Health? Evaluation of the Content of Contaminants and Health Risk. Foods 2023; 12:3271. [PMID: 37685204 PMCID: PMC10487231 DOI: 10.3390/foods12173271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The health-promoting properties of chokeberry fruit have been confirmed in numerous scientific studies. It has been shown that the consumption of these fruits, due to the high content of bioactive compounds, has beneficial effects in neurodegenerative diseases, in addition to having hypolipemic, hypotensive, hypoglycemic, and anti-inflammatory properties. However, different conditions and methods of fruit cultivation, as well as methods of juice and fiber production, may result in a high content of toxic substances, which reduce the health value of chokeberry products. Many substances are environmental pollutants. In this study, for the first time, we examined the content of toxic elements (As, Hg, Cd, Pb), nitrates, and nitrites in all chokeberry juices (organic, conventional, from concentrate, and not from fruit concentrate) without additives and in all chokeberry fibers available in Poland. In addition, risk indicators of adverse health effects were calculated. The median content of the contaminants tested in juices was 0.461 µg/kg for As, 1.170 µg/kg for Cd, 0.427 µg/kg for Hg, 1.404 µg/kg for Pb, 4.892 mg/kg for NO2-, and 41.788 mg/kg for NO3-. These values did not exceed the permissible standards for the calculated indicators. There were also no statistically significant differences in the content of Cd, Hg, and Pb, as well as nitrates (III) and nitrates (V), in the tested juices depending on the method of cultivation and juice production. However, statistically significant differences in As content were found between juices from conventional and organic cultivation (1.032 µg/kg vs. 0.458 µg/kg) and juices from concentrate and not from concentrate (1.164 µg/kg vs. 0.460 µg/kg). There were no statistically significant differences with respect to impurities in fibers. It is shown that the consumption of chokeberry juice and fiber in the amount normally consumed does not pose a health risk associated with the intake of toxic substances; in the case of long-term fiber consumption, the Pb content should be monitored. In particular, organic juices and those not from fruit concentrate are recommended due to the lower As content.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland;
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (J.S.); (K.S.)
| | - Jolanta Soroczyńska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (J.S.); (K.S.)
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (J.S.); (K.S.)
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland;
| |
Collapse
|
9
|
Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Res Int 2022; 161:111809. [DOI: 10.1016/j.foodres.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
10
|
Trabert A, Schmid V, Keller J, Emin MA, Bunzel M. Chemical composition and technofunctional properties of carrot (Daucus carota L.) pomace and potato (Solanum tuberosum L.) pulp as affected by thermomechanical treatment. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractFiber rich by-products derived from primary agri-food production such as carrot pomace and potato pulp are available in large quantities, but their functional properties do not necessarily meet the requirements for use in specific food applications. Thermomechanical treatment (extrusion) of carrot pomace and potato pulp changes both dietary fiber polysaccharide structures and technofunctionality of the materials. Solubility of dietary fiber constituents changes, resulting in higher levels of water- and ethanol-soluble poly-/oligosaccharides. On a structural level, particularly arabinans and galactans as neutral side chains of type I rhamnogalacturonan were degraded under thermomechanical stress. Galacturonic acid portions (preferably from homogalacturonan or rhamnogalacturonan I) and their degree of methylation were also negatively affected. On a functional level, water absorption of potato pulp increased up to three times following extrusion, whereas water absorption of carrot pomace decreased with extrusion processing. The observed, enhanced swelling behavior for extruded carrot pomace was accompanied by higher complex viscosity of the dispersions. Swelling of potato pulp particles increased largely (up to 25 times) following extrusion, resulting in highly viscous pastes. Phytochemicals were retained up to 50%, heat-induced contaminants were formed only to a small extent (up to 8.1 mg 5-hydroxymethylfurfural·kg− 1 dry matter for carrot pomace; up to 71 µg acrylamide·kg− 1 dry matter for potato pulp).
Graphical abstract
Collapse
|
11
|
Frühbauerová M, Červenka L, Hájek T, Pouzar M, Palarčík J. Bioaccessibility of phenolics from carob (Ceratonia siliqua L.) pod powder prepared by cryogenic and vibratory grinding. Food Chem 2022; 377:131968. [PMID: 34995960 DOI: 10.1016/j.foodchem.2021.131968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 11/04/2022]
Abstract
Carob pod powder prepared by cryogenic (CG) and vibratory grinding for 4 min (VG-4) and 8 min (VG-8) was evaluated for its antioxidant properties, and phenolic content. The bioaccessibility of phenolics was determined after the oral, gastric, and intestinal digestion phases in vitro. CG carob powder had a higher total phenolic content (6.46 mg gallic acid/g) and antioxidant capacities in terms of DPPH (15.60 mg Trolox/g) and ABTS (28.58 mg Trolox/g) assays. Quercitrin (44.54-64.68 μg/g) and cinnamic acid (27.48-31.40 μg/g) were the most abundant phenolics in all carob powder samples determined by liquid chromatography. The bioaccessibility of only ferulic acid (108%) had increased after digestion of the CG carob powder. Vibratory grinding (VG-4 and VG-8) improved the bioaccessibility of cinnamic acid (86-87%), vanillic acid (87-95%), quercitrin (33-34%), and naringenin (19-22%). A better bioaccessibility of phenolic constituents was observed for vibratory ground carob powder.
Collapse
Affiliation(s)
- Michaela Frühbauerová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 53210, Czech Republic.
| | - Libor Červenka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 53210, Czech Republic.
| | - Tomáš Hájek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 53210, Czech Republic.
| | - Miloslav Pouzar
- Institute of Environmental and Chemical Engineering and Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 53210, Czech Republic.
| | - Jiří Palarčík
- Institute of Environmental and Chemical Engineering and Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 53210, Czech Republic.
| |
Collapse
|
12
|
Wang G, Lu M, Zhang S, Ji J, Li B, Li J, Zhang L, Yang D, Wang W, Guan C. Anthocyanin release and absorption properties of boiling pigmented rice using an in vitro digestion model. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Berry fruit by-products are a source of polyphenol compounds and highly nutritious oils and can be reused to fulfill the requirements of the circular economy model. One of the methods of obtaining polyphenol-rich extracts or oils is extraction. Applying conventional solvent extraction techniques may be insufficient to reach high polyphenol or lipid fraction yields and selectivity of specific compounds. Alternative extraction methods, mainly ultrasound-assisted extraction, pulsed electric field-assisted extraction, microwave-assisted extraction and supercritical fluid extraction, are ways to improve the efficiency of the isolation of bioactive compounds or oils from berry fruit by-products. Additionally, non-conventional techniques are considered as green extraction methods, as they consume less energy, solvent volume and time. The aim of this review is to summarize the studies on alternative extraction methods and their relationship to the composition of extracts or oils obtained from berry waste products.
Collapse
|
14
|
Raczkowska E, Nowicka P, Wojdyło A, Styczyńska M, Lazar Z. Chokeberry Pomace as a Component Shaping the Content of Bioactive Compounds and Nutritional, Health-Promoting (Anti-Diabetic and Antioxidant) and Sensory Properties of Shortcrust Pastries Sweetened with Sucrose and Erythritol. Antioxidants (Basel) 2022; 11:antiox11020190. [PMID: 35204072 PMCID: PMC8868510 DOI: 10.3390/antiox11020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
In this study, an attempt was made to develop shortcrust pastries containing different amounts of chokeberry pomace (0%, 10%, 30%, 50%), modulating their degree of sweetness via the application of sucrose or erythritol. The obtained products were assessed for their nutritional value (energy value, protein, fats, dietary fibre, sugars, minerals). Bioactive compounds, as well as antioxidant and anti-diabetic properties in an in vitro model and sensory attributes, were also analysed. Increasing the proportion of chokeberry pomace in shortcrust pastries improved their nutritional value, especially their energy value (reduction of nearly 30% for shortcrust pastries with 50% pomace sweetened with erythritol), nutritional fibre content (10-fold higher in shortcrust pastries with the highest proportion of pomace) and potassium, calcium, magnesium, and iron content. Chokeberry pomace was also a carrier of 14 bioactive compounds. The most beneficial antioxidant and anti-diabetic effect was shown for shortcrust pastries containing 50% chokeberry pomace. In addition, it was shown that the use of erythritol as a sweetener has a beneficial effect on the perception of sensory attributes. Finally, it was shown that the developed products could be excellent alternatives to traditional shortcrust pastries and, at the same time, be a good way to utilize waste from the fruit industry.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland;
- Correspondence: ; Tel.: +48-71-320-7756
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland; (P.N.); (A.W.)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland; (P.N.); (A.W.)
| | - Marzena Styczyńska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland;
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland;
| |
Collapse
|
15
|
Schmid V, Mayer-Miebach E, Behsnilian D, Briviba K, Karbstein HP, Emin MA. Enrichment of starch-based extruded cereals with chokeberry (Aronia melanocarpa) pomace: Influence of processing conditions on techno-functional and sensory related properties, dietary fibre and polyphenol content as well as in vitro digestibility. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Gan J, Xie L, Peng G, Xie J, Chen Y, Yu Q. Systematic review on modification methods of dietary fiber. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106872] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Ou J. Incorporation of polyphenols in baked products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:207-252. [PMID: 34507643 DOI: 10.1016/bs.afnr.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bakery foods, including breads, cakes, cookies, muffins, rolls, buns, crumpets, pancakes, doughnuts, waffles, and bagels, etc., have been an important diet of humans for thousands of years. As the nutraceuticals with various biological activities, polyphenols, especially polyphenol-enriched products are widely used in bakery foods. The polyphenol-enriched products are mainly from fruits and vegetables, including fruits in whole, juice, puree, jam, and the powder of dried fruits, pomace, and peels. Incorporation of these products not only provide polyphenols, but also supply other nutrients, especially dietary fibers for bakery products. This chapter discussed the thermal stability of different types of polyphenols during baking, and the effect of polyphenols on the sensory attributes of baked foods. Moreover, their role in mitigation of reactive carbonyl species and the subsequent formation of advanced glycation end products, antioxidant and antimicrobial activities have been also discussed. Since polyphenols are subjected to high temperature for dozens of minutes during baking, future works need to focus on the chemical interactions of polyphenols and their oxidized products (quinones) with other food components, and the safety consequence of these interactions.
Collapse
Affiliation(s)
- Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China.
| |
Collapse
|
18
|
The Study of Thermal Properties of Blackberry, Chokeberry and Raspberry Seeds and Oils. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The seeds of berry fruits are a component of fruit waste occurring in the production process. Circular economy rules focus on decreasing the amount of waste produced and reusing by-products when it is possible. To determine the possible applications of the studied fruit industry wastes, the thermal properties of berry seeds and of oil extracted from the tested material were examined. Differential scanning calorimetry (DSC), modulated differential scanning calorimetry (MDSC), and thermogravimetry (TG) of blackberry, chokeberry, and raspberry seeds were carried out. The properties of oil extracted in the Soxhlet apparatus were studied by pressure differential scanning calorimetry (PDSC), TG, and gas chromatography (GC) measurements. The results show that berry seeds lipids are from different melting fraction groups with a dominance of low-melting fraction, which consists of mono- and polyunsaturated fatty acids. There are also occurring residues of carbohydrates and inorganic, thermostable substances in the studied seeds. A GC analysis of oil confirms that the polyunsaturated fatty acids (PUFA) are most abundant and amount to 78.72 ± 0.06% in blackberry seed oil, 73.79 ± 0.14% in chokeberry seed oil, and 82.74 ± 0.03% in raspberry seed oil. The PDSC study showed that the most oxidative stable oil is blackberry seed oil, followed by raspberry and chokeberry seed oils. According to the obtained results, berry seeds can be used as a source of oil in food or other production chains. However, more detailed characteristics of berry seed oils are needed to determine their applicability.
Collapse
|
19
|
Schmid V, Trabert A, Keller J, Bunzel M, Karbstein HP, Emin MA. Defined shear and heat treatment of apple pomace: impact on dietary fiber structures and functional properties. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03776-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFood by-products can be modified by extrusion processing. However, the impact of thermal and mechanical stress, respectively, on the structure and thus functional properties of dietary fiber-rich food by-products is still unknown. In the extrusion process, thermal and mechanical stress are coupled, not constant, and difficult to measure or calculate. Thus, their influence on structural changes and functional properties cannot be evaluated separately. In this work, a specific shear cell, denoted by closed cavity rheometer, was used to treat apple pomace with defined thermal and/or mechanical stress. Dietary fiber composition and fiber polysaccharide structures appeared to be more susceptible to high temperatures than mechanical stress. With increasing temperature (and mechanical stress) soluble and low-molecular-weight soluble dietary fiber contents increased, whereas insoluble fiber contents decreased. Arabinans as rhamnogalacturonan type I polysaccharides and galacturonic acid containing pectic polysaccharides were identified as being most susceptible to degradation under these conditions. Furthermore, the defined treatment affected the functional properties. Although changes in the water solubility index (WSI) and/or the water absorption index (WAI) were not detected up to 90 °C, WSI and WAI decreased significantly at a treatment temperature of 120 °C. However, at very high temperatures (160 °C), WSI and WAI increased. The application of shear and longer treatment times resulted in higher WSI values and complex viscosities as compared to low shear stress.
Graphic abstract
Collapse
|
20
|
Huang L, Dong JL, Zhang KY, Zhu YY, Shen RL, Qu LB. Thermal processing influences the physicochemical properties, in vitro digestibility and prebiotics potential of germinated highland barley. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Schmid V, Steck J, Mayer-Miebach E, Behsnilian D, Bunzel M, Karbstein HP, Emin MA. Extrusion Processing of Pure Chokeberry ( Aronia melanocarpa) Pomace: Impact on Dietary Fiber Profile and Bioactive Compounds. Foods 2021; 10:518. [PMID: 33801434 PMCID: PMC8001653 DOI: 10.3390/foods10030518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
The partial substitution of starch with dietary fiber (DF) in extruded ready-to-eat texturized (RTE) cereals has been suggested as a strategy to reduce the high glycemic index of these food products. Here, we study the impact of extrusion processing on pure chokeberry (Aronia melanocarpa) pomace powder (CPP) rich in DF and polyphenols (PP) focusing on the content and profile of the DF fractions, stability of PP, and techno-functional properties of the extrudates. Using a co-rotating twin-screw extruder, different screw speeds were applied to CPP with different water contents (cw), which resulted in specific mechanical energies (SME) in the range of 145-222 Whkg-1 and material temperatures (TM) in the range of 123-155 °C. High molecular weight soluble DF contents slightly increase with increasing thermomechanical stress up to 16.1 ± 0.8 g/100 g dm as compared to CPP (11.5 ± 1.2 g/100 g dm), but total DF (TDF) contents (58.6 ± 0.8 g/100 g dm) did not change. DF structural analysis revealed extrusion-based changes in the portions of pectic polysaccharides (type I rhamnogalacturonan) in the soluble and insoluble DF fractions. Contents of thermolabile anthocyanins decrease linearly with SME and temperature from 1.80 ± 0.09 g/100 g dm in CPP to 0.24 ± 0.06 g/100 g dm (222 Whkg-1, 155 °C), but phenolic acids and flavonoids appear to be largely unaffected. Resulting techno-functional (water absorption and water solubility) and physical properties related to the sensory characteristics (expansion, hardness, and color) of pure CPP extrudates support the expectation that granulated CPP extrudates may be a suitable food ingredient rich in DF and PP.
Collapse
Affiliation(s)
- Vera Schmid
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut (MRI), 76131 Karlsruhe, Germany; (V.S.); (D.B.)
- Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (H.P.K.); (M.A.E.)
| | - Jan Steck
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.S.); (M.B.)
| | - Esther Mayer-Miebach
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut (MRI), 76131 Karlsruhe, Germany; (V.S.); (D.B.)
| | - Diana Behsnilian
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut (MRI), 76131 Karlsruhe, Germany; (V.S.); (D.B.)
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.S.); (M.B.)
| | - Heike P. Karbstein
- Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (H.P.K.); (M.A.E.)
| | - M. Azad Emin
- Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (H.P.K.); (M.A.E.)
| |
Collapse
|
22
|
Schmid V, Trabert A, Keller J(S, Bunzel M, Karbstein HP, Emin MA. Functionalization of Enzymatically Treated Apple Pomace from Juice Production by Extrusion Processing. Foods 2021; 10:foods10030485. [PMID: 33668342 PMCID: PMC7996331 DOI: 10.3390/foods10030485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.
Collapse
Affiliation(s)
- Vera Schmid
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
| | - Antje Trabert
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Judith (Schäfer) Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Heike P. Karbstein
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
| | - M. Azad Emin
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
- Correspondence: ; Tel.: +49-721-608-48311
| |
Collapse
|
23
|
Effects of extrusion processing on the physiochemical and functional properties of lupin kernel fibre. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Boruczkowska H, Boruczkowski T, Figurska-Ciura D, Drożdż W. Effect of addition of dried potato pulp on selected quality characteristics of shortcrust pastry cookies. Open Life Sci 2020; 15:735-741. [PMID: 33817261 PMCID: PMC7747520 DOI: 10.1515/biol-2020-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/15/2022] Open
Abstract
Potato pulp is a nuisance waste from the production of potato starch, containing large amounts of dietary fiber; therefore, addition of the pulp to food may have a positive effect on the nutritional value of food products. To increase the amount of dietary fiber, shortcrust pastry cookies were baked by replacing some of the flour (20-100%) with an equivalent amount of dried potato pulp. In all the tested variants, correct confectionery products were obtained. The color of finished product (measured using Konica-Minolta CM-5 spectrophotometer) and mechanical properties of raw dough and baked cookies (subjected to a tensile test, using INSTRON 5544 Tensile Tester) were determined. Furthermore, the samples were subjected to sensory consumer assessment (evaluated on a 7-point hedonic scale). Colorimetric tests of the cookies showed a slight shift in their color from yellow toward green but at the same time lowering its saturation. Strength tests show that only the replacement of more than 40% of flour by the dried pulp resulted in a significant increase in the hardness of baked products. Regarding the tests with consumers, cookies containing up to 40% potato pulp were acceptable. Such a large addition of potato pulp to shortcrust pastry cookies creates new opportunities for this waste management.
Collapse
Affiliation(s)
- Hanna Boruczkowska
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Boruczkowski
- Department of Human Nutrition, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Danuta Figurska-Ciura
- Department of Human Nutrition, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Wioletta Drożdż
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
25
|
Modification of Apple Pomace by Extrusion Processing: Studies on the Composition, Polymer Structures, and Functional Properties. Foods 2020; 9:foods9101385. [PMID: 33019534 PMCID: PMC7601807 DOI: 10.3390/foods9101385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/29/2023] Open
Abstract
By-products of fruit and vegetable processing are an inexpensive and sustainable source of dietary fiber, potentially offering valuable functional properties such as water binding and thickening. Due to these favorable properties, they can be utilized to reformulate widely-consumed foods, e.g., bakery products or beverages. In this study, apple pomace was used as a model system to study whether extrusion technology affects food by-product functionality and thus has the potential to broaden the application of by-products in foods. The effect of the process parameters and the extent of thermo-mechanical treatment on the structural and functional properties of apple pomace were analyzed after extrusion trials using various screw speeds, water contents, and barrel temperatures. Compared to the raw material, apple pomace extruded at Tbarrel = 100 °C, n = 700 min-1 and mH2O = 17% showed an increased water solubility up to 33%. The water absorption increased from 5 to 19 Pa·s and the paste viscosity from 5 to 339 Pa·s by extrusion processing. Analyses of dietary fiber contents and fiber polysaccharide structures revealed that thermo-mechanical stress (n = 700 min-1, mH2O = 22%) increased the content of soluble dietary fiber from 12.5 to 16.7 g/100 g dry matter, and that the harshest conditions even enabled the formation of low-molecular-weight dietary fiber. Arabinans (as neutral rhamnogalacturonan I side chains) appeared to be most sensitive to thermo-mechanical stress, whereas xylans (i.e., a group of minor polysaccharides) were an example of a more stable fiber polysaccharide. Also, the degree of methylation of the pectic polysaccharides was strongly reduced from 50% to 15% when thermo-mechanical stress was applied. Imaging and pore size analysis showed that extrusion processing could disrupt the rigid cell wall macromolecular structure.
Collapse
|
26
|
The influence of the extrusion process on the nutritional composition, physical properties and storage stability of black chokeberry pomaces. Food Chem 2020; 334:127548. [PMID: 32712487 DOI: 10.1016/j.foodchem.2020.127548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
The study examined the influence of the process of extrusion on the physical properties and nutritional composition of black chokeberry pomaces. It has been determined that the extrusion process resulted in a reduction of the content of anthocyanins and fibre, but an increase of the contribution of simple sugars. In order to assess the phase transitions occurring in the products, a state diagram was utilized, which was constructed using the freezing and vitrification curve and values characterizing the conditions of maximum cryoconcentration. The determined values of critical water activity (based on water activity concepts) indicate that pomaces and extrudates retain crispiness in storage under moderate environmental relative humidity conditions. However, in the case of the glass transition concept, the determined values of water activity indicate that products stored in room temperature must be protected against the influence of humidity.
Collapse
|