1
|
Liu M, Zhao B, Wang P, Wang B, Li J, Meng N, Li H, Sun J, Sun B. The regulatory mechanism of mannan from millet Huangjiu on flavor release. Carbohydr Polym 2025; 348:122808. [PMID: 39562083 DOI: 10.1016/j.carbpol.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
Huangjiu, the national wine of China, has the characteristics of low grain consumption, low alcohol content and high nutrition, which aligns with the world's beverage wine consumption trend. The research on glutinous rice huangjiu from southern China is more extensive, while millet huangjiu from northern China has received less attention, hindering the diversified development of huangjiu. Polysaccharides play an important role in huangjiu's health activity and flavor characteristics. In this study, the polysaccharide components in millet huangjiu were separated and identified for the first time, and the influence of polysaccharides on the flavor release was explored through sensory evaluation, SPME-GC-MS, threshold determination and isothermal titration calorimetry. The millet huangjiu polysaccharide HJ-1 was composed of →3)-α-Manp(1→, α-Manp-(1→, →2,6)-α-Manp-(1→, →3)-α-Xylp-(1→ and →3)-β-Arap-(1→. HJ-1 (0.1-1 mg/mL) could regulate the release performance of key flavor compounds in millet huangjiu, inhibit the herbal, fruity and alcoholic aromas, and promote the sweet and rice aromas. Further studies showed that HJ-1 formed complexes with ethyl acetate, acetic acid, 2,3-butanediol and γ-butyrolactone through van der Waals forces and hydrogen bonds, and the process was a spontaneous exothermic entropy reduction reaction. This study provides a new idea for optimizing the overall aroma of huangjiu and improving its sensory quality.
Collapse
Affiliation(s)
- Mengyao Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Baolong Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Pengyun Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Jinchen Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Nan Meng
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Zheng S, Huang M, Yang W, Wang Z, Ren Q, Li H, Wu J, Meng N, Li J, Wang B. Preparation of Fangxian traditional Xiaoqu and its evolution of microbial communities and aroma compounds during fermentation. Food Res Int 2025; 199:115344. [PMID: 39658149 DOI: 10.1016/j.foodres.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Fangxian traditional Xiaoqu (FTXQ) is an important factor in the formation of unique aroma of Fangxian Huangjiu. FTXQ with only Polygonum hydropiper L. and FTXQ with Polygonum hydropiper L. and multiple herbs were prepared. Together with their seed Qu, three fermentation broths (FBs) were obtained and used during brewing to investigate differences in microorganisms, aroma compounds, and sensory evaluation. The results indicated that the core communities, including Enterococcus, and Saccharomyces, and 150 volatile aroma compounds, such as phenethyl alcohol were identified, and they showed close relationships. Twenty-three bacterial genera, including Enterococcus, 10 fungal genera like Saccharomyces, and 58 compounds, such as isoamyl octanoate, were the microorganisms and compounds responsible for the differences in the three FBs at different fermentation stages. The herbs added to Xiaoqu could enhance the overall aroma intensities of FBs and probably benefit in inhibiting the production of foodborne pathogens like Cronobacter during brewing.
Collapse
Affiliation(s)
- Siman Zheng
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Mingquan Huang
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wu Yang
- Industry Development Center of Fangxian Huangjiu, Shiyan 442100, China
| | | | - Qing Ren
- Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hailan Li
- Beijing Zhonghe Liquor Co., Ltd, Beijing 102400, China
| | - Jihong Wu
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Nan Meng
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinchen Li
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bowen Wang
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
3
|
Hou S, Liang Z, Wu Q, Cai Q, Weng Q, Guo W, Ni L, Lv X. Metagenomics reveals the differences in flavor quality of rice wines with Hongqu and Maiqu as the fermentation starters. Food Microbiol 2025; 125:104647. [PMID: 39448157 DOI: 10.1016/j.fm.2024.104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Chinese rice wine (CRW) is an alcoholic beverage made mainly from rice or grain through saccharification and fermentation with Jiuqu (starter). Jiuqu makes an important contribution to the formation of the flavor characteristics of rice wine. Hongqu and Maiqu are two kinds of Jiuqu commonly used in CRW brewing. This study compared the microbial community, biogenic amines (BAs), and volatile flavor components (VFCs) of two types of rice wine brewed with Hongqu and Maiqu as fermentation agents. The results showed that the amino acid content of rice wine fermented with Maiqu (MQW) was significantly lower than that of rice wine fermented with Hongqu (HQW). On the contrary, the majority of BAs in MQW were significantly higher than those in HQW, except for putrescine. Multivariate statistical analysis indicated that most of the VFCs detected were enriched in HQW, while ethyl 3-phenylpropanoate and citronellol were enriched in MQW. The results of metagenomic analysis showed that Weissiella, Enterobacter, Leuconostoc, Kosakonia, Saccharomyces, Aspergilus and Monascus were identified as the predominant microbial genera in HQW brewing process, while Saccharopolyspora, Lactococcus, Enterobacter, Leuconostoc, Kosakonia, Pediococcus, Pantoea, Saccharomyces, Aspergillus, Lichtheimia and Nakaseomyces were the predominant microbial genera in MQW brewing. In addition, some VFCs and BAs were strongly correlated with dominant microbial genera in HQW and MQW brewing. Bioinformatics analysis showed that the abundance of genes involved in BAs synthesis in MQW brewing was much higher than that in HQW brewing, while the abundances of genes related to metabolic pathway of characteristic VFCs in HQW brewing were obviously higher than those in MQW, which explained the differences in flavor quality between HQW and MQW from the perspective of microbial genes. Collectively, these findings provide scientific evidence for elucidating the contribution of different microbial genera to the formation of flavor quality of CRW, and is helpful for screening beneficial microbes to enhance flavor quality and drinking comfort of CRW.
Collapse
Affiliation(s)
- Siwen Hou
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Qi Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Qiqi Cai
- School of Light Industry, Liming Vocational University, Quanzhou, Fujian, 362000, PR China
| | - Qibiao Weng
- Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fuzhou, Fujian, 350200, PR China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China; Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fuzhou, Fujian, 350200, PR China.
| |
Collapse
|
4
|
Shen C, Yu Y, Zhang X, Zhang H, Chu M, Yuan B, Guo Y, Li Y, Zhou J, Mao J, Xu X. The dynamic of physicochemical properties, volatile compounds and microbial community during the fermentation of Chinese rice wine with diverse cereals. Food Res Int 2024; 198:115319. [PMID: 39643362 DOI: 10.1016/j.foodres.2024.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the impact of liquid state fermentation on the key flavor compounds and microbial community structure in Chinese rice wine brewed from five different raw materials: buckwheat, sorghum, japonica rice, glutinous rice, and black rice. Using HS-SPME-GC-MS and HPLC, the volatile compounds were analyzed across various grain liquefaction methods, detecting 82 volatiles, including esters, alcohols, aldehydes, and acids. The concentration of flavor compounds such as esters, amino acids, phenolic acids, and organic acids varied significantly depending on the raw material used. Based on odor activity values, 31 key compounds were identified, including 15 ethyl esters, like ethyl laurate, responsible for the unique and complex aroma of the rice wines. Bitter amino acids, making up over 50 % of the total amino acids, were predominant. Among the varieties, the buckwheat-fermented wine exhibited the highest ester content (27.39 mg/L), nearly double that of other samples, along with elevated amino acids (1.47 mg/mL) and phenolic acids (904.29 mg/L). Black rice ranked second in amino acid content (0.93 mg/mL), while glutinous rice had the highest organic acid content (239.76 mg/mL). Metagenomic sequencing on the fifth day of fermentation revealed significant differences in microbial community structure among the raw materials. Saccharomyces, Aspergillus, Thermomyces, Epicoccus, and Albertella were dominant fungi, while Weissella, Thermoactinomyces, Bacillus, and Saccharopolyspora were dominant bacteria. Sensory analysis showed that buckwheat-fermented rice wine was distinguished by its honey, floral, creamy, and umami attributes, while balancing alcohol, acidity, bitterness, and Qu aroma. The results demonstrate the significant influence of raw material selection and liquefaction method on both flavor profile and microbial diversity in Chinese rice wine.
Collapse
Affiliation(s)
- Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xue Zhang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Haoqiang Zhang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Mengjia Chu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Biao Yuan
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Yinping Li
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jiandi Zhou
- National Engineering Research Center of Huangjiu, China Shaoxing Yellow Rice Wine Group Co., Ltd., Shaoxing 312000, China
| | - Jian Mao
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Yan Y, Zou M, Tang C, Ao H, He L, Qiu S, Li C. The insights into sour flavor and organic acids in alcoholic beverages. Food Chem 2024; 460:140676. [PMID: 39126943 DOI: 10.1016/j.foodchem.2024.140676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Alcoholic beverages have developed unique flavors over millennia, with sourness playing a vital role in their sensory perception and quality. Organic acids, as crucial flavor compounds, significantly impact flavor. This paper reviews the sensory attribute of sour flavor and key organic acids in alcoholic beverages. Regarding sour flavor, research methods include both static and dynamic sensory approaches and summarize the interaction of sour flavor with aroma, taste, and mouthfeel. In addition, this review focuses on identifying key organic acids, including sample extraction, chromatography, olfactometry/taste, and mass spectrometry. The key organic acids in alcoholic beverages, such as wine, Baijiu, beer, and Huangjiu, and their primary regulatory methods are discussed. Finally, future avenues for the exploration of sour flavor and organic acids by coupling machine learning, database, sensory interactions and electroencephalography are suggested. This systematic review aims to enhance understanding and serve as a reference for further in-depth studies on alcoholic beverages.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mingxin Zou
- Guizhou Tangzhuag Chinese Liquor Limited Company, Zunyi 564500, Guizhou Province, China
| | - Cui Tang
- Liupanshui Agricultural and Rural Bureau, Liupanshui 553002, Guizhou Province, China
| | - Hongyan Ao
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Laping He
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuyi Qiu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Yu H, Li Z, Zheng D, Chen C, Ge C, Tian H. Exploring microbial dynamics and metabolic pathways shaping flavor profiles in Huangjiu through metagenomic analysis. Food Res Int 2024; 196:115036. [PMID: 39614478 DOI: 10.1016/j.foodres.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
In the production of Huangjiu (Chinese rice wine), fermentation microbiota plays a crucial role in flavor formation. This study investigates the microbial dynamics and metabolic pathways that shape the flavor profiles of Huangjiu using different starters. Sensory evaluation and metabolite analysis of six starters revealed significant differences in ester, fruity, and sweet aromas. Saccharomyces, Aspergillus, and Rhizopus were identified as the dominant genera significantly impacting fermentation. Metagenomic species and functional gene annotations of Huangjiu starters elucidated the metabolic pathways for key flavor compounds synthesis pathways. Enzyme genes involved in these pathways were classified and annotated to microbial genera using the NR database, identifying 231 classes of relevant catalytic enzymes and 154 microbial genera. A metabolic relationship between flavor compound formation and different microbial genera was established using catalytic enzymes as a bridge. This study highlights the impact of starter composition on the final product and provides new insights for optimizing starters to enhance Huangjiu flavor quality.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Ziqing Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Danwei Zheng
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chang Ge
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
7
|
Song X, Liao D, Zhou Y, Huang Q, Lei S, Li X. Correlation between physicochemical properties, flavor characteristics and microbial community structure in Dushan shrimp sour paste. Food Chem X 2024; 23:101543. [PMID: 39022783 PMCID: PMC11252767 DOI: 10.1016/j.fochx.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Dushan shrimp sour paste (DSSP), a traditional Guizhou condiment, and its unique flavor is determined by the fermentation microbiota. However, the relationship between the microbiota structure and its flavor remains unclear. This study identified 116 volatile flavor compounds using electronic nose and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) techniques, of which 19 were considered as key flavor compounds, mainly consisting of 13 esters and 1 alcohol. High-throughput sequencing technique, the bacterial community structure of nine groups of DSSPs was determined. Further analysis revealed Vagococcus, Lactococcus, and Tepidimicrobium as key bacteria involved in flavor formation. This study contributes to our understanding of the relationship between bacterial communities and the flavor formation, and provides guidance for screening starter culture that enhance the flavor of DSSP in industrial production.
Collapse
Affiliation(s)
- Xiaojuan Song
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Dan Liao
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yan Zhou
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Shicheng Lei
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Li X, Yang Y, Fan X, Hu X. Microbial Community Dynamics and Metabolite Changes during Wheat Starch Slurry Fermentation. Foods 2024; 13:2586. [PMID: 39200513 PMCID: PMC11353887 DOI: 10.3390/foods13162586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Wheat starch fermentation slurry is the main substrate for producing Ganmianpi, a traditional Chinese fermented wheat starch-based noodle. In the present work, the microbial population dynamics and metabolite changes in wheat starch fermentation slurry at different fermentation times (0, 1, 2, 3, and 4 days) were measured by using high-throughput sequencing analysis and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) methods. The texture and sensory properties of Ganmianpi made from fermented starch slurry are also evaluated. The results showed that Latilactobacillus curvatus and Leuconostoc citreum were the dominant bacteria in wheat starch fermentation slurry, while Saccharomyces cerevisiae and Kazachstania wufongensis were identified as the main species of fungi. With the extension of fermentation time, the reducing sugar content first increased and then decreased, when the titratable acidity content showed an increasing trend, and the nonvolatile acid was significantly higher than the volatile acid. A total of 62 volatile flavor compounds were identified, and the highest content is alcohols, followed by acids. Fermentation significantly reduced the hardness and chewiness of Ganmianpi, and increased its resilience and cohesiveness. Ganmianpi made from fermented starch slurry for two and three days showed a higher sensory score than other samples. The present study is expected to provide a theoretical basis for exploiting the strains with potential for commercial application as starter cultures and quality improvement of Ganmianpi.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China; (Y.Y.); (X.F.); (X.H.)
| | | | | | | |
Collapse
|
9
|
Gao Y, Wang Y, Hu L, Wang N, Cui F, Ying S, Hu F. Research on the brewing technology of Dangshen Huangjiu with low biogenic amines and high functional factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6330-6341. [PMID: 38563388 DOI: 10.1002/jsfa.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Biogenic amines (BA) are hazardous components in Huangjiu (HJ). To ensure the quality of Dangshen Huangjiu (DSHJ), an orthogonal experiment L9 (33) was proposed to optimize the process by the main brewing factors (pre-fermentation temperature, pre- and post-fermentation time) that may affect BA and functional factors in DSHJ. DSHJ was produced with low BA content and high functional factors. Gas chromatography-ion mobility spectrometry combined with a multivariate statistical method (GC-IMS-MSM) was used to analyze the volatile components in the brewing process of DSHJ. RESULTS The optimum brewing process parameters of DSHJ were as follows: pre-fermentation temperature, 28 °C; pre-fermentation time, 9 days; post-fermentation time, 18 days. The average content of BA in DSHJ was 33.12 mg L-1, and the sensory score, total phenol content and DPPH free radical scavenging rate of DSHJ were significantly higher than those of HJ. A total of 14 esters, 7 acids, 7 alcohols, 1 ketone, 5 aldehydes and 1 pyrazine in DSHJ and HJ were identified by GC-IMS. There were no significant differences (P > 0.05) in DSHJ and HJ in the soaking rice and saccharification stage. 11 components, such as ethyl acetate, and 12 components, such as acetic acid, were the different components of HJ and DSHJ in pre-fermentation and post-fermentation stages, respectively. In the post-fermentation stage, the contents of 8 components in DSHJ such as ethyl acetate were higher than in HJ. CONCLUSION The preparation process parameters of DSHJ optimized by orthogonal experiments can ensure that DSHJ has the advantages of low BA content, high total phenol content and good antioxidant activity. Sensory score and GC-IMS-MSM analysis found that DSHJ prepared using the optimal process had the characteristics of good taste and rich aroma. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingrui Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| | - Linhai Hu
- Jiayuguan First People's Hospital, Jiayuguan, China
| | - Nan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| | - Fang Cui
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| | | | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| |
Collapse
|
10
|
Zhu M, Deng Z, Tie Y, Quan S, Zhang W, Wu Z, Pan Z, Qin J, Wu R, Luo G, Gomi K. Unveiling the synthesis of aromatic compounds in sauce-flavor Daqu from the functional microorganisms to enzymes. Food Res Int 2024; 190:114628. [PMID: 38945581 DOI: 10.1016/j.foodres.2024.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Aromatic compounds serve as the primary source of floral and fruity aromas in sauce-flavor (Maotai flavor) baijiu, constituting the skeleton components of its flavor profile. Nevertheless, the formation mechanism of these compounds and key aroma-producing enzymes in sauce-flavor Daqu (fermentation agent, SFD) remain elusive. Here, we combined metagenomics, metaproteomics, metabolomics, and key enzyme activity to verify the biosynthesis pathway of aromatic compounds and to identify key enzymes, genes, and characteristic microorganisms in SFD. The results showed that the later period of fermentation was critical for the generation of aromatic compounds in SFD. In-situ verification was conducted on the potential key enzymes and profiles in various metabolites, providing comprehensive evidence for the main synthetic pathways of aromatic compounds in SFD. Notably, our results showed that primary amine oxidase (PrAO) and aldehyde dehydrogenase (ALDH) emerged as two key enzymes promoting aromatic compound synthesis. Additionally, two potential key functional genes regulating aromatics generation were identified during SFD fermentation through correlation analysis between proteins and relevant metabolites, coupled with in vitro amplification test. Furthermore, original functional strains (Aspergillus flavus-C10 and Aspergillus niger-IN2) exhibiting high PrAO and ALDH production were successfully isolated from SFD, thus validating the results of metagenomics and metaproteomics analyses. This study comprehensively elucidates the pathway of aromatic compound formation in SFD at the genetic, proteomic, enzymatic, and metabolomic levels, providing new ideas for the investigation of key flavor substances in baijiu. Additionally, these findings offer valuable insights into the regulatory mechanisms of aromatic compounds generation.
Collapse
Affiliation(s)
- Min Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhao Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Tie
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shikai Quan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China.
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengfu Pan
- Danquan Guangxi Co., Ltd., Hechi 547000, China
| | | | - Renfu Wu
- Danquan Guangxi Co., Ltd., Hechi 547000, China
| | - Guorong Luo
- Danquan Guangxi Co., Ltd., Hechi 547000, China
| | - Katsuya Gomi
- Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| |
Collapse
|
11
|
Wang H, Shang R, Gao S, Huang A, Huang H, Li W, Guo H. Characterization of key aroma compounds in a novel Chinese rice wine Xijiao Huojiu during its biological-ageing-like process by untargeted metabolomics. Heliyon 2024; 10:e34396. [PMID: 39130457 PMCID: PMC11315155 DOI: 10.1016/j.heliyon.2024.e34396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Xijiao Huojiu (Xijiao), an ancient Chinese rice wine (ACRW), is produced using traditional methods, which involve biological-ageing-like process and result in distinctive sensory profiles. However, its aroma composition is still unclear. In this study, the aroma characteristics of three samples with varying ageing times were examined. Xijiao_SCT, with a short cellar time, exhibited a strong fruity and floral aroma and a less grain-like aroma. Conversely, Xijiao_LCT, which had a long cellar time, had a deep cocoa- and caramel-like aroma. A total of 27 key odorants that greatly influenced the aroma characteristics of Xijiao were identified. Comparative studies were used to identify 12 key odorants that distinguish Xijiao from modern Chinese rice wine (MCRW) and grape wines (GW). Additionally, 13 dominant latent ageing markers differentiated Xijiao_SCT from Xijiao_LCT. Our results suggested that ACRW and MCRW have overlapping but distinct volatile metabolomic profiles, highlighting the characteristics of ACRW during ageing process.
Collapse
Affiliation(s)
- Han Wang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Rui Shang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Suying Gao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Ancheng Huang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Honghui Huang
- Shenzhen Haohao Biotechnology Company Ltd., Shenzhen, 518028, China
| | - Wenyang Li
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
12
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Liu B, Li Q. Effect of a New Fermentation Strain Combination on the Fermentation Process and Quality of Highland Barley Yellow Wine. Foods 2024; 13:2193. [PMID: 39063277 PMCID: PMC11276116 DOI: 10.3390/foods13142193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Yellow wine fermented from highland barley is an alcoholic beverage with high nutritional value. However, the industrialization of barley yellow wine has been constrained to a certain extent due to the lack of a systematic starter culture. Therefore, the present study aims to simulate barley yellow wine fermentation using a starter culture consisting of Rhizopus arrhizus, Saccharomyces cerevisiae, Pichia kudriavzevii, and Lacticaseibacillus rhamnosus. In this study, changes in enzyme activity, fermentation characteristics, volatile substance production, and amino acid content during the fermentation of highland barley yellow wine brewed with different starter cultures were evaluated. The results of this study show that regulating the proportion of mixed starter bacteria can effectively control the various stages of the fermentation process and improve the organoleptic characteristics and quality of yellow wine to varying degrees. Additionally, we found that the addition of probiotics could effectively improve the palatability of yellow wine. To the best of our knowledge, we have validated for the first time the use of the above multispecies starter culture, consisting of R. arrhizus, S. cerevisiae, P. kudriavzevii, and L. rhamnosus, in the production of highland barley yellow wine. The obtained findings provided reference data for optimizing highland barley yellow wine fermentation.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
13
|
Ma Y, Wei Z, Xiao X, Yu K, Huang H, Tan J, Wang Y, Du Y, Li Y. Investigating the impact of various sorghum types on the key aroma compounds of Sichuan Xiaoqu Baijiu through application of the sensomics approach. Food Chem X 2024; 22:101367. [PMID: 38756476 PMCID: PMC11096981 DOI: 10.1016/j.fochx.2024.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
The aroma of Sichuan Xiaoqu Baijiu (SXB) greatly benefits from the use of sorghum as its primary brewing ingredient. Nevertheless, the impact of different sorghum variety on the primary aroma compounds of SXB has not been thoroughly investigated. Gas chromatography-mass spectrometry (GC-MS) in conjunction with headspace solid phase microextraction (HS-SPME) and liquid-liquid extraction (LLE) were employed in this investigation. Using 5 sorghum varieties as raw materials, five different types of SXB were analysed for their aroma compounds using GC-MS, GC-O, AEDA, aroma recombination, and aroma omission. Key aroma compounds of SXB were successfully identified as ethyl acetate, ethyl 2-methylbutyrate, isoamyl acetate, ethyl hexanoate, ethyl heptanoate, ethyl lactate, ethyl octanoate, ethyl decanoate, phenylethyl acetate, ethyl laurate, ethyl palmitate, isoamyl alcohol, phenylethanol, 1,1-diethoxyethane, 3-hydroxy-2- butanone, furfural, and glacial acetic acid. Glacial acetic acid, ethyl acetate, ethyl lactate, phenylethyl acetate, acetoin, phenylethanol, and ethyl caproate were found to be the seven major aroma compounds that had the biggest impact on the variations of the five SXB aroma properties, according to partial least squares regression (PLS-R) analysis. The collinear network analysis also revealed that the largest positive correlation weight was discovered between the protein and furfural content, tannin content and cereal-like aroma profile while the highest negative correlation weight was found between the moisture and acetoin content. This study is a valuable resource for understanding how raw materials control the directional regulation of the sensory quality of the SXB liquor body.
Collapse
Affiliation(s)
- Yi Ma
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Ziyun Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Xiongjun Xiao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Kangjie Yu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Huiling Huang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Jianxia Tan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Yue Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Yong Du
- Wuliangye Yibin Co., Ltd, China
| | | |
Collapse
|
14
|
Liu M, Deng N, Li H, Hou X, Zhang B, Wang J. Characterization and comparison of flavors in fresh and aged fermented peppers: Impact of different varieties. Food Res Int 2024; 182:114187. [PMID: 38519195 DOI: 10.1016/j.foodres.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
The flavor profiles of fresh and aged fermented peppers obtained from four varieties were thoroughly compared in this study. A total of 385 volatile compounds in fermented pepper samples were detected by flavoromics (two-dimensional gas chromatography-time-of-flight mass spectrometry). As fermentation progressed, both the number and the total concentration of volatile compounds changed, with esters, alcohols, acids, terpenoids, sulfur compounds, and funans increasing, whereas hydrocarbons and benzenes decreased. In contrast to the fresh fermented peppers, the aged fermented samples exhibited lower values of pH, total sugars, and capsaicinoids but higher contents of organic acids and free amino acids. Furthermore, the specific differences and characteristic aroma substances among aged fermented peppers were unveiled by multivariate statistical analysis. Overall, 64 volatiles were screened as differential compounds. In addition, Huanggongjiao samples possessed the most abundant differential volatiles and compounds with odor activity values > 1, which were flavored with fruity, floral, and slightly phenolic odors. Correlation analysis demonstrated that the levels of 23 key aroma compounds (e.g., ethyl 2-methylbutyrate, 1-butanol, and ethyl valerate) showed a significantly positive correlation with Asp, Glu and 5 organic acids. By contrast, there is a negative association between the pH value and total sugar. Overall, aging contributed significantly to the flavor attributes of fermented peppers.
Collapse
Affiliation(s)
- Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Na Deng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Xiaoyi Hou
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China.
| |
Collapse
|
15
|
Qu S, Jia X, An Q, Zhang N, Fan G, Li Z, Hu Z. Effects of irradiation on the aging and sensory quality of navel orange distilled spirits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:979-992. [PMID: 37715570 DOI: 10.1002/jsfa.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND 60 Co-γ irradiation can simulate the effects of aging and enhance the flavor of distilled spirits. The present study aimed to investigate the effects of 0, 2, 4, 6, 8 and 10 kGy 60 Co-γ irradiation doses on the key aroma components in newly produced navel orange distilled spirits and thus determine the mechanism of their aging distilled spirits. RESULTS The identification of aroma compounds demonstrated that ethyl hexanoate, d-limonene, ethyl octanoate, 3-methyl-1-butanol and linalool are the key aroma compounds in navel orange distilled spirits, which were increased except for linalool with irradiation doses of 2-6 kGy. Irradiation treatment simulated the effects of the aging of navel orange distilled spirits by promoting the content of total acids, total esters and aldehydes. Irradiation doses of 2-6 kGy increased the aroma intensity of navel orange distilled spirits, reaching an optimum at 6 kGy. However, irradiation doses as high as 8 and 10 kGy decreased the content of esters in navel orange distilled spirits, which led to a deterioration of the spirit flavor. CONCLUSION Low doses of 60 Co-γ irradiation can simulate the effects of the aging by increasing the content of key aromatic compounds in navel orange distilled spirits. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shasha Qu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenglun Li
- Zigui County Qugu Food Co. Ltd, Yichang, China
| | - Zhaoxing Hu
- Zigui County Qugu Food Co. Ltd, Yichang, China
| |
Collapse
|
16
|
Zhao J, Gao Z. Dynamic changes in microbial communities and flavor during different fermentation stages of proso millet Baijiu, a new product from Shanxi light-flavored Baijiu. Front Microbiol 2024; 15:1333466. [PMID: 38318340 PMCID: PMC10839113 DOI: 10.3389/fmicb.2024.1333466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Proso millet, a high-quality fermentation material used for Chinese yellow wine production, can produce special flavored substances; however, its role in improving the flavor and altering microbial communities of light-flavored Baijiu during fermentation remain unknown. Thus, we aimed to investigate the effect of proso millet on improving the flavor of light-flavored Baijiu and altering microbial communities during different fermentation stages. Methods The dynamic changes in the microbial communities and flavor of proso millet (50%) + sorghum (50%) mixed fermentation samples were analyzed through intermittent sampling on days 7, 14, 21, and 28 of the fermentation process. Microbial high-throughput sequencing and the analysis of flavor characteristics were conducted through 16S DNA/ ITS amplicon sequencing and gas chromatography (multi-capillary column)-ion mobility spectrometry, respectively. Results Proso millet significantly changed the core flavor compound composition of traditional light-flavored Baijiu from ethyl acetate, ethyl hexanoate, ethyl hexanoate dimer, ethyl butanoate, ethyl lactate, and butyl acetate to oct-2-ene, 2-butanol, propyl propanoate, 2-pentenal, and 4-methylpentanal. The amplicon sequencing analysis revealed that the alpha diversity parameters of bacterial and fungal communities, including the Chao1, Pielou_e, Shannon, and Simpson indices, for proso millet-sorghum mixed fermentation samples were significantly higher than those for sorghum fermentation samples (p < 0.05). Of the 40 most significant microbial genera in two treatments, proso millet significantly increased the abundance of 12 bacterial and 18 fungal genera. Among the 40 most significant bacterial and fungal species, 23 bacterial species belonged to the Lactobacillus genus, whereas the 30 primary fungal species belonged to 28 different genera. The analysis of the relationship between microbial changes and the main flavor compounds of light-flavored Baijiu showed that bacteria from the Weissella, Acinetobacter, Bacteroides, Psychrobacter, Pseudarthrobacter, Lactococcus, Chloroplast, Saccharopolyspora, Psychrobacter, Saccharopolyspora, Pseudonocardiaceae, Bacteroides genera and fungi from the Thermoascus, Aspergillus, Pichia, Rhizomucor, Papiliotrema, Hyphopichia, and Mucor genera significantly inhibited the synthesis of ethyl hexanoate, ethyl butanoate, ethyl lactate ethyl lactate, and butyl acetate but increased the synthesis of ethyl acetate (p < 0.05). Moreover, these microbes exhibited a significantly greater abundance in proso millet-sorghum mixed fermentation samples than in sorghum samples. The synthesis of special flavored compounds in proso millet Baijiu was significantly positively correlated with the presence of fungi from the Rhizopus, Papiliotrema, Wickerhamomyces, Aspergillus, and Thermoascus genera but negative correlated with the presence of bacteria from the Weissella, Acinetobacter, Psychrobacter, Pseudarthrobacter, Bacteroides, and Saccharopolyspora genera. Regarding ethanol content, the low alcohol content of Fenjiu may be due to the significantly high abundance of fungi from the Psathyrella genus and bacteria from the Staphylococcus, Kroppenstedtia, Brevibacterium, and Acetobacter genera during fermentation. In summary, proso millet significantly altered the flavor of light-flavored Baijiu by inducing the formation of a special microbial community; however, it did not increase alcohol concentration. Discussion This study lays the foundation for future research on Baijiu fermentation. Additionally, the study findings may help improve the production efficiency and elevate the quality and flavor of the final product.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, China
| | - Zhenfeng Gao
- College of Food Science and Engineering, Shanxi Agriculture University, Jinzhong, China
| |
Collapse
|
17
|
Zhang B, Wang J, Jiang X, Huang M, Liu H, Meng N, Wu J, Zhao D. Comparative study on key odorants of Jiujiang Fenggang Huangjiu and their succession regularities during aging using sensory-directed flavor analysis. Food Chem 2024; 430:137052. [PMID: 37549629 DOI: 10.1016/j.foodchem.2023.137052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Huangjiu was a Chinese national alcohol with a unique flavor. The key odorants in Jiujiang Fenggang Huangjiu (JJFG) and their succession regularities during aging were systematically researched by a sensomics analysis approach. The volatiles of JJFG were isolated by solvent-assisted flavor evaporation, 77 odorants were identified using gas chromatography-olfactometry-mass spectrometry combined with odor-specific magnitude estimation. Three aroma recombinants, prepared using odorants with odor activity values ≥ 1, all showed good similarities with their corresponding samples (92.1%∼97.5%). After omission/addition tests, 7 new key aroma compounds were found in JJFG, including 1-octen-3-one, 1-pentanol, guaiacol, ethyl 2-hydroxy-4-methylpentanoate, 2-phenethyl acetate, ethyl butanoate, and (E,Z)-2,6-nonadienal. Using orthogonal partial least squares-discriminant analysis, 20 compounds with VIP ≥ 1 were found to be important indicators during aging of JJFG. Among them, sotolon, 3-methylsulfanylpropanal, et al. increased with aging. The improved solid-phase extraction can effectively quantify sotolon, with a recovery rate of 80.96%∼91.75%.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Xinye Jiang
- Beijing Shenzhou Weiye Technology Co., Ltd, Beijing 102400, China.
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Hongqin Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
18
|
Ma W, Liang Z, He B, Wu Y, Chen Y, He Z, Chen B, Lin X, Luo L. Changes in the characteristic volatile aromatic compounds in tuna cooking liquid during fermentation and deodorization by Lactobacillus plantarum RP26 and Cyberlindnera fabianii JGM9-1. Food Chem X 2023; 20:100900. [PMID: 38144760 PMCID: PMC10739757 DOI: 10.1016/j.fochx.2023.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023] Open
Abstract
Tuna cooking liquid has unpleasant aroma. In our previous studies, Cyberlindnera fabianii JGM9-1 and Lactobacillus plantarum RP26 demonstrated the ability to degrade this unpleasant aroma. However, the mechanism of microbial deodorization remains unclear. In this study, tuna cooking liquid was fermented using JGM9-1 alone, RP26 alone, and a combination of both strains. Changes in volatile aromatic compounds during fermentation were analyzed using HS-SPME-GC/MS. The unpleasant aroma of tuna cooking liquid were nine characteristic aromatic compounds associated with fishy, stinky, and greasy aromas. Furthermore, we found that the fermentation of microbes removed these unpleasant aromatic compounds and replaced them with pleasant aromatic compounds that contributed to fruity, grassy, and floral aromas. Finally, we screened 21 strong pairwise correlations between the production and consumption of characteristic volatile aromatic compounds by RP26 and JGM9-1, through HCA, VIP, OAV and Spearman's pairwise correlation analysis. These results help to clarify the metabolic mechanisms of microbial deodorization in tuna cooking liquid.
Collapse
Affiliation(s)
- Wenjing Ma
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Zhangcheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Bing He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Yuxi Wu
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Yan Chen
- Fuzhou Hongdong Foods Co., Ltd, Fuzhou, Fujian, China
- Fujian Shenlan Biotechnology Co., Ltd, Fuzhou, Fujian, China
| | - Zhigang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Bingyan Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Lianyu Luo
- Fuzhou Hongdong Foods Co., Ltd, Fuzhou, Fujian, China
- Fujian Shenlan Biotechnology Co., Ltd, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Chen G, Li W, Yang Z, Liang Z, Chen S, Qiu Y, Lv X, Ai L, Ni L. Insights into microbial communities and metabolic profiles in the traditional production of the two representative Hongqu rice wines fermented with Gutian Qu and Wuyi Qu based on single-molecule real-time sequencing. Food Res Int 2023; 173:113488. [PMID: 37803808 DOI: 10.1016/j.foodres.2023.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
Hongqu rice wine, a famous traditional fermented alcoholic beverage, is brewed with traditional Hongqu (mainly including Gutian Qu and Wuyi Qu). This study aimed to compare the microbial communities and metabolic profiles in the traditional brewing of Hongqu rice wines fermented with Gutian Qu and Wuyi Qu. Compared with Hongqu rice wine fermented with Wuyi Qu (WY), Hongqu rice wine fermented with Gutian Qu (GT) exhibited higher levels of biogenic amines. The composition of volatile flavor components of Hongqu rice wine brewed by different fermentation starters (Gutian Qu and Wuyi Qu) was obviously different. Among them, ethyl acetate, isobutanol, 3-methylbutan-1-ol, ethyl decanoate, ethyl palmitate, ethyl oleate, nonanoic acid, 4-ethylguaiacol, 5-pentyldihydro-2(3H)-furanone, ethyl acetate, n-decanoic acid etc. were identified as the characteristic aroma-active compounds between GT and WY. Microbiome analysis based on high-throughput sequencing of full-length 16S rDNA/ITS-5.8S rDNA amplicons revealed that Lactococcus, Leuconostoc, Pseudomonas, Serratia, Enterobacter, Weissella, Saccharomyces, Monascus and Candida were the predominant microbial genera during the traditional production of GT, while Lactococcus, Lactobacillus, Leuconostoc, Enterobacter, Kozakia, Weissella, Klebsiella, Cronobacter, Saccharomyces, Millerozyma, Monascus, Talaromyces and Meyerozyma were the predominant microbial genera in the traditional fermentation of WY. Correlation analysis revealed that Lactobacillus showed significant positive correlations with most of the characteristic volatile flavor components and biogenic amines. Furthermore, bioinformatical analysis based on PICRUSt revealed that microbial enzymes related to biogenic amines synthesis were more abundant in GT than those in WY, and the enzymes responsible for the degradation of biogenic amines were less abundant in GT than those in WY. Collectively, this study provides important scientific data for enhancing the flavor quality of Hongqu rice wine, and lays a solid foundation for the healthy and sustainable development of Hongqu rice wine industry.
Collapse
Affiliation(s)
- Guimei Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Wenlong Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Yijian Qiu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China.
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China.
| |
Collapse
|
20
|
Chen G, Yuan Y, Tang S, Yang Z, Wu Q, Liang Z, Chen S, Li W, Lv X, Ni L. Comparative analysis of microbial communities and volatile flavor components in the brewing of Hongqu rice wines fermented with different starters. Curr Res Food Sci 2023; 7:100628. [PMID: 38021257 PMCID: PMC10660030 DOI: 10.1016/j.crfs.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
As one of the quintessential representatives of Chinese rice wine, Hongqu rice wine is brewed with glutinous rice as the main raw material and Hongqu (Gutian Qu or Wuyi Qu) as the fermentation starter. The present study aimed to investigate the impact of Hongqu on the volatile compositions and the microbial communities in the traditional production of Gutian Hongqu rice wine (GT) and Wuyi Hongqu rice wine (WY). Through the OPLS-DA analysis, 3-methylbutan-1-ol, isobutanol, ethyl lactate, ethyl acetate, octanoic acid, diethyl succinate, phenylethyl alcohol, hexanoic acid and n-decanoic acid were identified as the characteristic volatile flavor components between GT and WY. Microbiome analysis revealed significant enrichments of Lactobacillus, Pediococcus, Aspergillus and Hyphopichia in WY brewing, whereas Monascus, Saccharomyces, Pantoea, and Burkholderia-Caballeronia-Paraburkholderia were significantly enriched in GT brewing. Additionally, correlation analysis showed that Saccharomyces, Lactobacillus, Weissella and Pediococcus were significantly positively correlated wih most characteristic volatile components. Conversely, Picha, Monascus, Franconibacter and Kosakonia showed significant negative correlations with most of the characteristic volatile components. Furthermore, bioinformatical analysis indicated that the gene abundances for enzymes including glucan 1,4-alpha-glucosidase, carboxylesterase, alcohol dehydrogenase, dihydroxy-acid dehydratase and branched-chain-amino-acid transaminase were significantly higher in WY compared to GT. This finding explains the higher content of higher alcohols and characteristic esters in WY relative to GT. Collectively, this study provides a theoretical basis for improving the flavor profile of Hongqu rice wine and establishing a solid scientific foundation for the sustainable development of Hongqu rice wine industry.
Collapse
Affiliation(s)
- Guimei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yujie Yuan
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Suwen Tang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Qi Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Wenlong Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xucong Lv
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Fujian Huizelong Alcohol Co., Ltd, Pingnan County, Ningde, Fujian, 352303, PR China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| |
Collapse
|
21
|
Wang J, Wang D, Huang M, Sun B, Ren F, Wu J, Meng N, Zhang J. Identification of nonvolatile chemical constituents in Chinese Huangjiu using widely targeted metabolomics. Food Res Int 2023; 172:113226. [PMID: 37689963 DOI: 10.1016/j.foodres.2023.113226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 09/11/2023]
Abstract
Huangjiu is a traditional Chinese alcoholic beverage, whose non-volatile chemical profile remains unclarified. Here, the non-volatile compounds of Huangjiu were first identified using a widely targeted metabolomics analysis. In total, 1146 compounds were identified, 997 of them were identified in Huangjiu for the first time. Moreover, 113 compounds were identified as key active ingredients of traditional Chinese medicines and 78 components were found as active pharmaceutical ingredients against 389 diseases. In addition, the comparative analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that Huangjiu from different regions differ in metabolite composition. Cofactor and amino acid biosynthesis and ABC transport were the dominant metabolic pathways. Furthermore, 7 metabolic pathways and 77 metabolic pathway regulatory markers were further found to be related with the different characteristics of different Huangjius. This study provides a theoretical and material basis for the quality control, health efficacy, and industrial development of Huangjiu.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Danqing Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jihong Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Nan Meng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinglin Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
22
|
Mao X, Yue SJ, Xu DQ, Fu RJ, Han JZ, Zhou HM, Tang YP. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS OMEGA 2023; 8:32311-32330. [PMID: 37720734 PMCID: PMC10500577 DOI: 10.1021/acsomega.3c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Chinese rice wine (CRW) is a traditional and unique alcoholic beverage in China, favored by many consumers for its rich aroma, unique taste, and complex ingredients. Its flavor is primarily composed of volatile and nonvolatile compounds. These flavor compounds are partly derived from grains and starters (Qu), while the other part is produced by microbial metabolism and chemical reactions during the brewing process. Additionally, ethyl carbamate (EC) in CRW, a hazardous chemical, necessitates controlling its concentration during brewing. In recent years, numerous new brewing techniques for CRW have emerged. Therefore, this paper aims to collect aroma descriptions and thresholds of flavor compounds in CRW, summarize the relationship between the brewing process of CRW and flavor formation, outline methods for reducing the concentration of EC in the brewing process of CRW, and summarize the four stages (pretreatment of grains, fermentation, sterilization, and aging process) of new techniques. Furthermore, we will compare the advantages and disadvantages of different approaches, with the expectation of providing a valuable reference for improving the quality of CRW.
Collapse
Affiliation(s)
- Xi Mao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jian-Zhang Han
- Xi’an
DaKou Wine Company Ltd., Xi’an 710300, Shaanxi Province, China
| | - Hao-Ming Zhou
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| |
Collapse
|
23
|
Tan C, Tao L, Xie J, Yu Z, Tian Y, Zhao C. The Effects of Ultrasonic and Gamma Irradiation on the Flavor of Potato Wines Investigated by Sensory Omics. Foods 2023; 12:2821. [PMID: 37569090 PMCID: PMC10417215 DOI: 10.3390/foods12152821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Aroma is one of the most fascinating and least-known mysteries of Baijiu research. The volatile compounds (VOCs) of potato wine were evaluated by sensory omics techniques in order to comprehend their overall flavor characteristics and investigate the effects of ultrasonic treatment and gamma irradiation therapy on the aroma of the wine. The findings revealed that a total of 14 flavor compounds were identified by GC-MS. Isoamyl alcohol, ethyl octanoate, and 1,1-diethoxyethane were the key aroma components, according to GC-O analysis. A total of 50 volatile substances were identified by GC-IMS. After being subjected to irradiation and ultrasonic treatment, the alcohol level of the potato wine reduced while the esters content increased. By calculating the relative odor activity value, a total of 29 aroma components were classified as key aroma compounds (ROAV > 1). According to the results of the sensory evaluation-fruity, Fen-flavor, and sweet-and the acceptability of the irradiated and ultrasonicated potato wine were improved. Therefore, the use of ultrasonic and irradiation therapy in potato wine, as well as the overall aroma building of potato wine, can be supported theoretically by this study.
Collapse
Affiliation(s)
- Chunlei Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Zhijin Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Pu’er University, Pu’er 665000, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
24
|
Zheng S, Zhang W, Ren Q, Wu J, Zhang J, Wang B, Meng N, Li J, Huang M. The Production of Intensified Qu and Its Microbial Communities and Aroma Variation during the Fermentation of Huangjiu (Chinese Rice Wine). Foods 2023; 12:2674. [PMID: 37509766 PMCID: PMC10378853 DOI: 10.3390/foods12142674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, intensified Qu (IQ) has been gradually applied to brewing in order to improve the aroma of Huangjiu (Chinese rice wine). In this study, Saccharomyces cerevisiae and Wickerhamomyces anomalus solutions were added to Fengmi Qu (FMQ) from Fangxian, China to produce IQ, and brewing trial was conducted. High-throughput sequencing (HTS) was used to analyze the microbial community in fermentation broth of IQ (IQFB). Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and sensory evaluation were performed to analyze volatile aroma compounds (VACs) in sample without Qu and both fermentation broths. The results showed that Pediococcus, Cronobacter, Enterococcus, Weissella, and Acinetobacter and Saccharomycopsis, Wickerhamomyces, and Saccharomyces were dominant bacterial and fungal groups, respectively. A total of 115 VACs were detected, and the content of esters including ethyl acetate, isoamyl acetate, and so on was noticeably higher in IQFB. The finding of sensory evaluation reflected that adding pure yeast to Qu could enhance fruit and floral aromas. Correlation analysis yielded 858 correlations between significant microorganisms and different VACs. In addition, prediction of microbial community functions in IQFB revealed global and overview maps and carbohydrate metabolism to be the main one. This study is advantageous for further regulation of the fermentation process of Huangjiu by microbial means.
Collapse
Affiliation(s)
- Siman Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wendi Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qing Ren
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinchen Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
25
|
Yu H, Li Q, Guo W, Ai L, Chen C, Tian H. Unraveling the difference in flavor characteristics of Huangjiu fermented with different rice varieties using dynamic sensory evaluation and comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. Front Nutr 2023; 10:1160954. [PMID: 37426180 PMCID: PMC10324613 DOI: 10.3389/fnut.2023.1160954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
To investigate the specific differences in flavor characteristics of Huangjiu fermented with different rice varieties, dynamic sensory evaluation, comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) and multivariate statistical analysis were employed. Dynamic sensory evaluation methods including temporal dominance of sensations (TDS) and temporal check all that apply (TCATA) were applied to explore the differences and variations in sensory attributes. The sensory results showed that the intensity of astringency and post-bitterness in the Huangjiu fermented with glutinous rice was weaker while ester and alcoholic aroma were more prominent than the one fermented with japonica rice. The results of free amino acids and aroma compounds analysis indicated that the amino acids were mainly sweet and bitter amino acids, and some key aroma compounds were predominant in the Huangjiu fermented with glutinous rice, such as ethyl butyrate (OAV: 38-59), 3-methylthiopropionaldehyde (OAV: 47-96), ethyl caprylate (OAV: 30-38), while nonanal, phenyl acetaldehyde and vanillin contributed significantly to the Huangjiu fermented with japonica rice. The multivariate statistical analysis further confirmed that 17 compounds (VIP > 1 and p < 0.05) could be supposed to be the key compouns that cause significant flavor differences in Huangjiu samples fermented with different brewing rice. Moreover, partial least-squares analysis revealed that most compounds (ethyl butyrate, 3-penten-2-one, isoamyl acetate, and so on) correlated with ester and alcoholic aroma. The results could provide basic data and theoretical basis for the selection of raw materials in Huangjiu.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qiaowei Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wei Guo
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
26
|
Xia D, Tan X, Wang L, Li Z, Hou A, Zhu Y, Lai L, Wang Y. GC-MS Coupled with Rate-All-That-Apply (RATA) to Analyse the Volatile Flavor Substances of Yellow Wine during Fermentation. Foods 2023; 12:foods12101992. [PMID: 37238809 DOI: 10.3390/foods12101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Yellow glutinous rice wine is a traditional Chinese beverage created by soaking, boiling, and fermenting glutinous rice. The majority of current studies on the flavor of yellow glutinous rice wine are based on instrumental analysis, with sensory analysis being overlooked. In this study, 36 volatile chemicals in the fermentation process of yellow wine were annotated by GC-MS and then an OPLS-DA model was built to screen out 13 distinctive substances (VIP > 1, p < 0.01). The relative odor activity value (ROAV) was calculated using the threshold values of these chemicals and 10 substances, including alcohols, esters, and aldehydes, were found as key contributors to the overall flavor of yellow wine. Following that, consumers quantified the sensory descriptors of yellow wine using rate-all-that-apply (RATA), and correspondence analysis revealed three groups of characteristic flavors and odors. Alcohols and esters were found to be key producers of flowery and fruity scents in yellow wine, according to correlation analysis. We discovered two alcohols that are rarely found in yellow wine: [R,R]-2,3-butanediol and 1-phenylethanol. The former was found to be favorably connected with wine scent and pungent odor, and its specific effect on flavor should be researched further.
Collapse
Affiliation(s)
- Di Xia
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Xu Tan
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Li Wang
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Yan Zhu
- Tianjin of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqi Road, Tianjin 300308, China
| | - Ling Lai
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| |
Collapse
|
27
|
Wu X, Zhang Y, Zhong Q. Optimization of the Brewing Conditions of Shanlan Rice Wine and Sterilization by Thermal and Intense Pulse Light. Molecules 2023; 28:molecules28073183. [PMID: 37049943 PMCID: PMC10096255 DOI: 10.3390/molecules28073183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
This study aimed to optimize the brewing conditions of Shanlan rice wine (SRW) and select a suitable sterilization method. The response surface method experiment was used to optimize the brewing process of SRW. LC-MS/MS (liquid chromatography–tandem mass spectrometry) and GC-MS (gas chromatography–mass spectrometry) were used to analyze the physicochemical components, free amino acids, and flavor metabolites of the thermal-sterilized SRW and the SRW sterilized by intense pulsed light (IPL), respectively. Results showed that the optimum fermentation conditions of SRW were as follows: fermentation temperature, 24.5 °C; Qiuqu amount (the traditional yeast used to produce SRW), 0.78%; water content, 119%. Compared with the physicochemical properties of the control, those of the SRWs separately treated with two sterilization methods were slightly affected. The 60 s pulse treatment reduced the content of bitter amino acids, maintained sweet amino acids and umami amino acids in SRW, and balanced the taste of SRW. After pasteurization, the ester content in wine decreased by 90%, and the alcohol content decreased to different degrees. IPL sterilization slightly affected the ester content and increased the alcohol content. Further analysis of the main flavor metabolites showed that 60 s pulse enhanced the important flavor-producing substances of SRW. In conclusion, 60 s pulse is suitable for sterilizing this wine.
Collapse
Affiliation(s)
- Xiaoqian Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Yunzhu Zhang
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Qiuping Zhong
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| |
Collapse
|
28
|
Zhou C, Zhou Y, Liu T, Li B, Hu Y, Zhai X, Zuo M, Liu S, Yang Z. Effects of Protein Components on the Chemical Composition and Sensory Properties of Millet Huangjiu (Chinese Millet Wine). Foods 2023; 12:foods12071458. [PMID: 37048279 PMCID: PMC10093938 DOI: 10.3390/foods12071458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Millet Huangjiu is a national alcoholic beverage in China. The quality of Chinese millet Huangjiu is significantly influenced by the protein components in the raw materials of millet. Therefore, in this study, the impact of different protein components on the quality of millet Huangjiu was investigated by adding exogenous proteins glutelin and albumin either individually or in combination. The study commenced with the determination of the oenological parameters of different millet Huangjiu samples, followed by the assessment of free amino acids and organic acids. In addition, the volatile profiles of millet Huangjiu were characterized by employing HS-SPME-GC/MS. Finally, a sensory evaluation was conducted to evaluate the overall aroma profiles of millet Huangjiu. The results showed that adding glutelin significantly increased the contents of total soluble solids, amino acid nitrogen, and ethanol in millet Huangjiu by 32.2%, 41.5%, and 17.7%, respectively. Furthermore, the fortification of the fermentation substrate with glutelin protein was found to significantly enhance the umami (aspartic and glutamic acids) and sweet-tasting (alanine and proline) amino acids in the final product. Gas chromatography-quadrupole mass spectrometry coupled with multivariate statistical analysis revealed distinct impacts of protein composition on the volatile organic compound (VOC) profiles of millet Huangjiu. Excessive glutelin led to an over-accumulation of alcohol aroma, while the addition of albumin protein proved to be a viable approach for enhancing the ester and fruity fragrances. Sensory analysis suggested that the proper amount of protein fortification using a Glu + Alb combination could enhance the sensory attributes of millet Huangjiu while maintaining its unique flavor characteristics. These findings suggest that reasonable adjustment of the glutelin and albumin contents in millet could effectively regulate the chemical composition and improve the sensory quality of millet Huangjiu.
Collapse
Affiliation(s)
- Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yaojie Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqian Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Min Zuo
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Yu H, Li Q, Guo W, Chen C, Ai L, Tian H. Dynamic analysis of volatile metabolites and microbial community and their correlations during the fermentation process of traditional Huangjiu (Chinese rice wine) produced around Winter Solstice. Food Chem X 2023; 18:100620. [PMID: 36993869 PMCID: PMC10041457 DOI: 10.1016/j.fochx.2023.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Traditional Huangjiu produced around Winter Solstice has higher quality and a more harmonious aroma. To investigate the variations of volatile metabolites and microbial communities during fermentation, gas chromatography-ion migration chromatography (GC-IMS), gas chromatography-mass spectroscopy (GC-MS) and high-throughput sequencing were employed. Aroma compounds results showed that alcohols and phenols increased before 45 days of fermentation and then decreased after 45 days, while esters gradually increased. Fungal genera Saccharomyces, Aspergillu, and Rhizomucor were dominant, whereas Staphylococcus, Pediococcus and Weissella were the dominant bacterial genera in the late stage. In addition, 11 genera such as Lactobacillus, Saccharopolyspora and Aspergillus (|r| > 0.6, p < 0.05) may contributed to traditional Huangjiu ecosystem stability. Moreover, correlation analysis indicated the dominant microorganisms (Saccharopolyspora, Staphylococcus, Lactobacillus, Saccharomyces and Aspergillus) were positively correlated with key compounds. These results provided theoretical guidance for further study on the flavor regulation of traditional Huangjiu via microbial community level and microbial augmentation.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qiaowei Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wei Guo
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
- Corresponding author at: Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
30
|
Flavor characteristics of hulless barley wine fermented with mixed starters by molds and yeasts isolated from Jiuqu. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Analysis of the Microbial Community Structure and Volatile Metabolites of JIUYAO in Fangxian, China. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
JIUYAO is an important saccharification starter in the production of huangjiu and is also an important source of flavor. In this study, the microbial community structure of JIUYAO from Fangxian was studied by high-throughput sequencing (HTS) technology for the first time. The volatile flavor compounds of the JIUYAO metabolites were also analyzed by headspace solid-phase microextraction combined with full two-dimensional gas chromatography-mass spectrometry (HS-SPME-GC×GC/MS) for the first time. The results showed that there were 15 dominant bacterial genera, including Weissella, Pediococcus, unclasssified_k_norank_d_Bacteria, Lactobacillus, Leuconostoc, etc. Thirteen species of dominant fungi included Wickerhamomyces, Saccharomycopsis, Rhizopus, etc. The different samples of JIUYAO were similar in their microbial species, but the number of species was significantly different. A total of 191 volatile flavor compounds (VFCs) were detected, among which esters, alcohols, acids, and alkenes were the main flavor compounds, and 21 terpenoids were also detected. In addition, the functional prediction of micro-organisms in JIUYAO revealed that global and overview maps, amino acid metabolism, and carbohydrate metabolism were the dominant categories. Through correlation analysis, 538 potential correlations between the dominant micro-organisms and the different flavor compounds were obtained. This study revealed the interactions between the micro-organisms and the volatile metabolites in JIUYAO, which provided reliable data for the analysis of the microbial community structure of Fangxian JIUYAO and provided theoretical support for the quality evaluation of JIUYAO.
Collapse
|
32
|
Chen P, Liu Y, Wu J, Yu B, Zhao H, Huang M, Zheng F. Sensory-directed decoding of key aroma compounds from Jiugui-series Baijiu, the representative of Fuyu-flavor-type Baijiu (FFTB). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Liang Z, Yang C, He Z, Lin X, Chen B, Li W. Changes in characteristic volatile aroma substances during fermentation and deodorization of Gracilaria lemaneiformis by lactic acid bacteria and yeast. Food Chem 2022; 405:134971. [DOI: 10.1016/j.foodchem.2022.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
34
|
Li M, Zhan P, Wang P, Tian H, Geng J, Wang L. Characterization of Aroma-active Compounds Changes of Xiecun Huangjius with Different Aging Years Based on Odor Activity Values and Multivariate Analysis. Food Chem 2022; 405:134809. [DOI: 10.1016/j.foodchem.2022.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
35
|
Yu H, Li Q, Xie J, Chen C, Lou X, Ai L, Tian H. Characterization of Bitter Compounds in Shaoxing Huangjiu by Quantitative Measurements, Taste Recombination, and Omission Experiments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12907-12915. [PMID: 36183262 DOI: 10.1021/acs.jafc.2c02867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excessive and uncoordinated bitterness of Shaoxing Huangjiu, a traditional Chinese rice wine, reduces its acceptance by consumers. To determine the compounds responsible for this bitterness, gas chromatography-mass spectrometry and high-performance liquid chromatography were performed on four types of Shaoxing Huangjiu (Yuanhong, Huadiao, Shanniang, and Xiangxue wine) for targeted quantitation of candidate compounds known to contribute to bitterness. Calculations of dose-over-threshold factors revealed that isoamyl alcohol, 1-hexanol, phenylethanol, ethyl butyrate, ethyl lactate, furfural, histidine, and arginine were important bitter compounds. Taste recombination experiments demonstrated that a recombination model constructed using the screened known bitter compounds showed good similarity with the original sample in bitter taste. Furthermore, omission experiments revealed that isobutanol, isoamyl alcohol, 1-hexanol, phenylethanol, ethyl acetate, ethyl butyrate, ethyl lactate, furfural, arginine, and valine were the compounds affecting the bitter taste perception. This study provides a certain guiding effect on the bitterness control and taste improvement of Shaoxing Huangjiu.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qiaowei Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingru Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinman Lou
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
36
|
Peng Q, Zheng H, Meng K, Yu H, Xie G, Zhang Y, Yang X, Chen J, Xu Z, Lin Z, Liu S, Elsheery NI, Wu P, Fu J. Quantitative study on core bacteria producing flavor substances in Huangjiu (Chinese yellow rice wine). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Xu Y, Wang Y, Li R, Sun P, Chen D, Shen J, Feng T. Characteristic aroma analysis of finger citron in four different regions based on
GC‐MS‐HS‐SPME
and
ROAV. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Xu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yi Wang
- Jinhua Academy of Agricultural Sciences, Jinhua Zhejiang China
| | - Ruixiang Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ping Sun
- Jinhua Academy of Agricultural Sciences, Jinhua Zhejiang China
| | - Da Chen
- Department of Animal, Veterinary and Food Sciences University of Idaho, 875 Perimeter Drive Moscow United States
| | - Jiansheng Shen
- Jinhua Academy of Agricultural Sciences, Jinhua Zhejiang China
| | - Tao Feng
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
38
|
Chen X, Jia X, Yang S, Zhang G, Li A, Du P, Liu L, Li C. Optimization of ultrasonic-assisted extraction of flavonoids, polysaccharides, and eleutherosides from Acanthopanax senticosus using response surface methodology in development of health wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Yang Y, Ai L, Mu Z, Liu H, Yan X, Ni L, Zhang H, Xia Y. Flavor compounds with high odor activity values (OAV > 1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association. Food Chem 2022; 383:132370. [PMID: 35183960 DOI: 10.1016/j.foodchem.2022.132370] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/22/2022] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Aging is an essential operation to perfect the flavor quality of Hungjiu. In this study, formation mechanism of flavor compounds responsible for the characteristic flavor of aged Huangjiu was investigated. The contents of umami and bitter free amino acids (FAA) increased with the storage period prolonged, while that of sweet FAA showed downward trend. Gas chromatograph-mass spectrometry and principal component analysis indicated that the volatile flavor compounds with OAV exceed 1, especially middle-chain fatty-acid-ethyl-esters and aromatic compounds, dominated the characteristic flavor of aged Huangjiu. Low field-NMR was firstly applied to characterize the molecular association between water and dissolved flavor compounds in aged Huangjiu. The results showed that basic amino acids contributed greatly to the flavor formation of aged Huangjiu via molecular association. In addition, the molecular association significantly promoted the accumulation of flavor compounds with OAV > 1, especially ethyl esters.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Haodong Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xin Yan
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou, Fujian 200093, People's Republic of China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd, Shanghai 200120, People's Republic of China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| |
Collapse
|
40
|
Zhang Q, Shi J, Wang Y, Zhu T, Huang M, Ye H, Wei J, Wu J, Sun J, Li H. Research on interaction regularities and mechanisms between lactic acid and aroma compounds of Baijiu. Food Chem 2022; 397:133765. [PMID: 35905622 DOI: 10.1016/j.foodchem.2022.133765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
Abstract
This study investigated the interactions between lactic acid (LA) and odorants of Baijiu using headspace solid phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS), ultraviolet absorption spectroscopy (UV) and nuclear magnetic resonance (NMR). The HS-SPME-GC-MS analysis results showed that LA promoted the volatilities of most of low boiling acids, esters, alcohols, aldehydes and ketones, especially short-chain branched esters were promoted by 41-49%. In contrast, LA suppressed the volatilities of most aromatic compounds. UV spectroscopy, thermodynamic analysis, and NMR combined with theoretical calculations further revealed that the interactions between LA and 4-ethyl-2-methoxyphenol (4-EP), 2-methoxy-4-methylphenol (2-MP) and 1-butanol were dominated by van der Waals forces and supplemented by electrostatic interactions, which included hydrogen bonds formed between the carboxyl group in LA and the hydroxyl and methoxy groups in 4-EP or 2-MP and π-hydrogen bonds between the hydrogen of the carboxyl group of LA and the benzene ring of 4-EP or 2-MP.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd., Beijing 101301, China
| | - Jie Shi
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Ying Wang
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd., Beijing 101301, China
| | - Tingting Zhu
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd., Beijing 101301, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hong Ye
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinwang Wei
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd., Beijing 101301, China.
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
41
|
Adsorption of Phthalate Acid Esters by Activated Carbon: The Overlooked Role of the Ethanol Content. Foods 2022; 11:foods11142114. [PMID: 35885356 PMCID: PMC9323295 DOI: 10.3390/foods11142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Ethanol has great effects on the adsorption of phthalate acid esters (PAEs) on activated carbon (AC), which are usually overlooked and hardly studied. This study investigated the overlooked effects of ethanol on the adsorption of PAEs in alcoholic solutions. The adsorption capacities of dibutyl phthalate (DBP) on AC in solutions with ethanol contents of 30, 50, 70, and 100 v% were only 59%, 43%, 19%, and 10% of that (16.39 mg/g) in water, respectively. The ethanol content increase from 50 v% to 100 v% worsened the adsorption performances significantly with the formation of water–ethanol–DBP clusters (decreasing from 13.99 mg/g to 2.34 mg/g). The molecular dynamics simulation showed that the DBP tended to be distributed farther away from the AC when the ethanol content increased from 0 v% to 100 v% (the average distribution distance increased from 5.25 Å to 15.3 Å). The PAEs with shorter chains were more affected by the presence of ethanol than those with longer chains. Taking DBP as an example, the adsorption capacity of AC in ethanol (0.41 mg/g) is only 2.2% of that in water (18.21 mg/g). The application results in actual Baijiu samples showed that the adsorption of PAEs on AC had important effects on the Baijiu flavors.
Collapse
|
42
|
Sensomics-assisted flavor decoding of coarse cereal Huangjiu. Food Chem 2022; 381:132296. [DOI: 10.1016/j.foodchem.2022.132296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
|
43
|
Zhao Y, Suyama T, Wu Z, Zhang W. Characterization of variations and correlations between flavor metabolites and microbial communities of industrial paocai brine during fermentation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yajiao Zhao
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Taikei Suyama
- National Institute of Technology Akashi College Akashi 674‐8501 Japan
| | - Zhengyun Wu
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Wenxue Zhang
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
- School of Liquor‐Brewing Engineering Sichuan University Jinjiang College Meishan 620860 China
| |
Collapse
|
44
|
Yan Y, Sun L, Xing X, Wu H, Lu X, Zhang W, Xu J, Ren Q. Microbial succession and exploration of higher alcohols-producing core bacteria in northern Huangjiu fermentation. AMB Express 2022; 12:79. [PMID: 35716260 PMCID: PMC9206695 DOI: 10.1186/s13568-022-01418-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/08/2022] [Indexed: 01/16/2023] Open
Abstract
Higher alcohols (HAs) are abundant compounds that provide important flavors in Huangjiu, but they also cause hangover. Previous studies have shown the production of HAs to be related to yeast, but the correlations between HAs and other microorganisms are rarely reported. In this study, we detected changes in levels of HAs and microbial dynamics during the Huangjiu fermentation process. Relationships were characterized using Pearson’s correlation coefficient. The functional core HA-producing bacteria were selected by bidirectional orthogonal partial least squares (O2PLS). The result showed that 2-methyl-1-propanol, phenethyl alcohol and 3-methyl-1-butanol were the principle HAs present at high levels. Lactococcus and Saccharomyces were predominant at the genus level of bacteria and fungi, respectively. A total of 684 correlations between HAs and microorganisms were established. Five genera were screened as functional core HA-producing bacteria. Our findings might provide some new inspiration for controlling the content of HAs, enhancing international prestige and market expansion of Huangjiu.
Collapse
Affiliation(s)
- Yi Yan
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Leping Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Xuan Xing
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Huijun Wu
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China. .,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China.
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China. .,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China.
| |
Collapse
|
45
|
Nguyen NTH, Wang WY, Huang WL, Huang CL, Chiang TY. Metagenomics analyses of microbial dynamics associated with putative flavor development in mash fermentation of sake. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Lu L, Zhang J, Wu F, Xie G, Shan Z, Liu X. Flavor profile variations of Huangjiu brewed in different traditional Chinese solar terms. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Through long-term research on Huangjiu fermentation, it has been found that the quality of Huangjiu closely associated with Chinese 24-solar term through long-term investigations. Therefore, this study was conducted to explore the characteristic and property indexes differences of Huangjiu—like aroma and flavor profile, and physicochemical properties—brewed in different solar terms by choosing five representative fermentation times of Shaoxing Huangjiu.
Results
Huangjiu samples in current study all meet the national standards of traditional semi-dry Huangjiu. There are significant differences of physicochemical properties like acidity and amino nitrogen among different solar-term groups. Forty-three detected volatiles were applied by PCA and PLS-DA analyses to differentiate main factors. Volatiles mainly loaded to four PCs, which accounted for 86.5%. Nineteen volatiles were discriminated to significantly differentiate solar-term groups. OAV analysis found 14 compounds with OAV > 1, while correlation analysis between volatiles and the outcomes of sensory evaluation displayed the various properties of Huangjiu on aroma and flavor due to the various combination of volatiles, reducing sugar, acidity and amino nitrogen. After national wine inspector evaluated and scored Huangjiu fermented in different solar terms, Huangjiu brewed in Winter Solstice exhibited the highest performance, whose score is 91.0, and praised as the gold medal product.
Conclusion
The methodology of this study can help to produce more types of adorable flavor and aroma of alcoholic beverages to consumers, build varietal Huangjiu or other alcoholic beverages through fermenting guidance by solar term, and even expand the applications of traditional Chinese 24-solar term.
Collapse
|
47
|
Wang R, Zhang Y, Lu H, Liu J, Song C, Xu Z, Yang H, Shang X, Feng T. Comparative Aroma Profile Analysis and Development of a Sensory Aroma Lexicon of Seven Different Varieties of Flammulina velutipes. Front Nutr 2022; 9:827825. [PMID: 35571949 PMCID: PMC9097501 DOI: 10.3389/fnut.2022.827825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Flammulina Velutipes (F. velutipes) is widely planted all over the world and is rich in nutrients, which is of great benefit to the human body. However, the research on the aroma of F. velutipes is relatively rare, which limits the application of F. velutipes in deep processing, resulting in a single product and edible method of F. velutipes. The purpose of this study was to find out the aroma compounds contributing to the sensory properties of F. velutipes to promote the application of different varieties of F. velutipes in deep processing. Aromas of 7 species of F. velutipes were described and evaluated by sensory evaluation experiment. The volatile compounds in seven kinds of F. velutipes were detected by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (GC-MS). A total of 74 volatile compounds were found, including 23 alcohols, 5 aldehydes, 2 phenols, 1 acid, 16 esters, 7 ketones, 1 ether, 13 hydrocarbons, 1 sulfide, 1 acyl compound, and 4 heterocyclic compounds. It was also found that the sensory evaluation results of sample F, C, and E had a high correlation with the content of compound, and the correlation between sample B and sample A was also high. A lexicon for describing aroma attributes of F. velutipes was developed and they could be grouped into categories, such as fruity (apple-like, banana-like, cucumber-like, citrus-like and berry-like), alcoholic (whisky-like, fermented fruit-like), milky (creamy-like), floral (hyacinth-like, phoenix-like, iris-like and mint-like), sulfurous (onion-like), and musty (mud-like). This research will provide a theoretical basis for the future study of F. velutipes aroma and the development and application of F. velutipes products.
Collapse
Affiliation(s)
- Ruijuan Wang
- Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, National Research Center for Edible Fungi Biotechnology and Engineering, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yueyan Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huan Lu
- Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, National Research Center for Edible Fungi Biotechnology and Engineering, Shanghai, China
| | - Jianyu Liu
- Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, National Research Center for Edible Fungi Biotechnology and Engineering, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chunyan Song
- Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, National Research Center for Edible Fungi Biotechnology and Engineering, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhen Xu
- Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, National Research Center for Edible Fungi Biotechnology and Engineering, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui Yang
- Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, National Research Center for Edible Fungi Biotechnology and Engineering, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaodong Shang
- Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, National Research Center for Edible Fungi Biotechnology and Engineering, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
48
|
|
49
|
Zhao W, Qian M, Dong H, Liu X, Bai W, Liu G, Lv XC. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Unraveling the difference in aroma characteristics of Huangjiu from Shaoxing region fermented with different brewing water, using descriptive sensory analysis, comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry and multivariate data analysis. Food Chem 2022; 372:131227. [PMID: 34627089 DOI: 10.1016/j.foodchem.2021.131227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
To investigate the specific difference in aroma characteristics of Huangjiu (Chinese rice wine) in Shaoxing region fermented with different brewing water, descriptive sensory analysis, comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) and multivariate statistical analysis were employed. The descriptive sensory analysis proved that Huangjiu fermented with Jianhu water had higher overall aroma intensity, and was more prominent in ester, sweet and alcoholic aroma than those fermented with deionized water and Nenjiang water. The results of aroma components analysis by GC × GC-qMS showed that the Huangjiu fermented with Jianhu water had higher concentration of some key aroma compounds, such as ethyl butyrate (OAV: 29-196), isoamyl acetate (OAV: 11-18) and ethyl hexanoate (OAV: 38-47). The multivariate statistical analysis further confirmed that 14 compounds could be used as key markers to distinguish the Huangjiu samples fermented with different brewing water. The correlation network between the volatile compounds in Huangjiu and the inorganic components in water indicated that the ions played an important role in the formation of the difference in aroma characteristics among the samples.
Collapse
|