1
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Zhang Z, Ge M, Wu D, Li W, Chen W, Liu P, Zhang H, Yang Y. Resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles: Preparation, characterization and synergistic anti-inflammatory effects. Carbohydr Polym 2024; 332:121916. [PMID: 38431417 DOI: 10.1016/j.carbpol.2024.121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Resveratrol (RES) is a natural polyphenol with excellent biological activity. But the poor stability and bioavailability of RES severely limit its application. Thus, the resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles (DS-CS-RES NPs) were prepared using electrostatic self-assembly to solve these problems in this study. The structure of DS-CS-RES NPs was spherical or sub spherical shape with small average particle size (191.07 nm), which was characterized by FT-IR, FS, XRD and TEM. DS-CS-RES NPs exhibited good stability and RES had a sustainable release from the nanoparticles in gastrointestinal digestion. Meanwhile, DS-CS-RES NPs could improve the inflammatory injury of LPS stimulated RAW264.7 macrophages by inhibiting the production of NO, IL-1β, IL-6 and TNF-α. Furthermore, DS-CS-RES NPs had strong anti-inflammatory activity by regulating protein levels of NF-κB p65, STAT1 and TLR4 through NF-κB and JAK-STAT1 signaling pathway in vitro, and sulfated H. erinaceus β-glucan-chitosan nanoparticle (DS-CS NPs) and RES had synergistic anti-inflammatory effect. Overall, DS-CS NPs can serve as a potential green and safe functional carrier for encapsulating resveratrol, which can improve its anti-inflammatory activity. This work may be conducive to the development of functional carrier for encapsulating RES and applications of hydrophobic active molecules in functional foods or medicines.
Collapse
Affiliation(s)
- Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Meili Ge
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Haiyun Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
3
|
Mahajan K, Bhattacharya S. The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine. Curr Top Med Chem 2024; 24:686-721. [PMID: 38409730 DOI: 10.2174/0115680266287101240214071718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Nanocarriers have emerged as a promising class of nanoscale materials in the fields of drug delivery and biomedical applications. Their unique properties, such as high surface area- tovolume ratios and enhanced permeability and retention effects, enable targeted delivery of therapeutic agents to specific tissues or cells. However, the inherent instability of nanocarriers poses significant challenges to their successful application. This review highlights the importance of nanocarrier stability in biomedical applications and its impact on biocompatibility, targeted drug delivery, long shelf life, drug delivery performance, therapeutic efficacy, reduced side effects, prolonged circulation time, and targeted delivery. Enhancing nanocarrier stability requires careful design, engineering, and optimization of physical and chemical parameters. Various strategies and cutting-edge techniques employed to improve nanocarrier stability are explored, with a focus on their applications in drug delivery. By understanding the advances and challenges in nanocarrier stability, this review aims to contribute to the development and implementation of nanocarrier- based therapies in clinical settings, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- Department of Quality Assurence, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, 425405, India
| |
Collapse
|
4
|
Silva PM, Gonçalves C, Pastrana LM, Coimbra MA, Vicente AA, Cerqueira MA. Recent advances in oral delivery systems of resveratrol: foreseeing their use in functional foods. Food Funct 2023; 14:10286-10313. [PMID: 37947452 DOI: 10.1039/d3fo03065b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Herein, we review the current state-of-the-art on the use of micro- and nano-delivery systems, a possible solution to some of the drawbacks associated with the incorporation of resveratrol in foods. Specifically, we present an overview of a wide range of micro-nanostructures, namely, lipidic and polymeric, used for the delivery of resveratrol. Also, the gastrointestinal fate of resveratrol-loaded micro-nanostructures, as a critical parameter for their use as functional food, is explored in terms of stability, bioaccessibility, and bioavailability. Different micro-nanostructures are of interest for the development of functional foods given that they can provide different advantages and properties to these foods and even be tailor-made to address specific issues (e.g., controlled or targeted release). Therefore, we discuss a wide range of micro-nanostructures, namely, lipidic and polymeric, used to deliver resveratrol and aimed at the development of functional foods. It has been reported that the use of some production methodologies can be of greater interest than others, for example, emulsification, solvent displacement and electrohydrodynamic processing (EHDP) enable a greater increase in bioaccessibility. Additionally, the use of coatings facilitates further improvements in bioaccessibility, which is likely due to the increased gastric stability of the coated micro-nanostructures. Other properties, such as mucoadhesion, can also help improve bioaccessibility due to the increase in gut retention time. Additionally, cytotoxicity (e.g., biocompatibility, antioxidant, and anti-inflammatory) and possible sensorial impact of resveratrol-loaded micro- and nano-systems in foods are highlighted.
Collapse
Affiliation(s)
- Pedro M Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Manuel A Coimbra
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio A Vicente
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
5
|
Rashwan AK, Osman AI, Abdelshafy AM, Mo J, Chen W. Plant-based proteins: advanced extraction technologies, interactions, physicochemical and functional properties, food and related applications, and health benefits. Crit Rev Food Sci Nutr 2023:1-28. [PMID: 37966163 DOI: 10.1080/10408398.2023.2279696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Even though plant proteins are more plentiful and affordable than animal proteins in comparison, direct usage of plant-based proteins (PBPs) is still limited because PBPs are fed to animals as feed to produce animal-based proteins. Thus, this work has comprehensively reviewed the effects of various factors such as pH, temperature, pressure, and ionic strength on PBP properties, as well as describes the protein interactions, and extraction methods to know the optimal conditions for preparing PBP-based products with high functional properties and health benefits. According to the cited studies in the current work, the environmental factors, particularly pH and ionic strength significantly affected on physicochemical and functional properties of PBPs, especially solubility was 76.0% to 83.9% at pH = 2, while at pH = 5.0 reduced from 5.3% to 9.6%, emulsifying ability was the lowest at pH = 5.8 and the highest at pH 8.0, and foaming capacity was lowest at pH 5.0 and the highest at pH = 7.0. Electrostatic interactions are the main way for protein interactions, which can be used to create protein/polysaccharide complexes for food industrial purposes. The extraction yield of proteins can be reached up to 86-95% with high functional properties using sustainable and efficient routes, including enzymatic, ultrasound-, microwave-, pulsed electric field-, and high-pressure-assisted extraction. Nondairy alternative products, especially yogurt, 3D food printing and meat analogs, synthesis of nanoparticles, and bioplastics and packaging films are the best available PBPs-based products. Moreover, PBPs particularly those that contain pigments and their products showed good bioactivities, especially antioxidants, antidiabetic, and antimicrobial.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University-Assiut Branch, Assiut, Egypt
| | - Jianling Mo
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Bai BMY, Wang TT, Chen XA, Wu CC. Pathogen inhibition and indication by gelatin nonwoven mats with incorporation of polyphenol derivatives. RSC Adv 2023; 13:31602-31615. [PMID: 37908665 PMCID: PMC10613854 DOI: 10.1039/d3ra05905g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
There is a need for non-pharmaceutical intervention methods that can prevent and indicate the risk of airborne disease spread. In this study, we developed a nonwoven mat based on the polyphenol gallic acid, which can inhibit pathogens growth and also indicate pathogen levels in the surrounding environment. Using nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and high-performance liquid chromatography, we characterized this novel gelatin-based nonwoven mat and investigated the mechanism governing its ability to indicate pathogen levels. We demonstrated that the incorporation of gallic acid serves a vital role in indicating the presence of bacteria, causing the nonwoven mat to change in color from white to brown. We have proposed a plausible mechanism for this color change behavior based on a reaction of gallic acid with components excreted by bacteria, including glutamate, valine, and leucine. The concentrations of these components reflect the bacterial counts, enabling a real-time indication of pathogen levels in the surrounding air. In summary, the nonwoven mat presented herein can serve as an excellent antibacterial agent and as an indicator of nearby bacteria for fabricating personal protection equipment like filtration mask.
Collapse
Affiliation(s)
- By Meng-Yi Bai
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology TR-917, AAEON Building, No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei City 10607 Taiwan Republic of China
- Adjunct Appointment to the National Defense Medical Center Taipei 11490 Taiwan Republic of China
| | - Ting-Teng Wang
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology TR-917, AAEON Building, No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei City 10607 Taiwan Republic of China
| | - Xin-An Chen
- Institute of Prevention Medicine, National Defense Medical Center Taipei 11490 Taiwan Republic of China
| | - Chia-Chun Wu
- Institute of Prevention Medicine, National Defense Medical Center Taipei 11490 Taiwan Republic of China
| |
Collapse
|
7
|
Li D, Wei Z, Li X. Development, Characterization and Resveratrol Delivery of Hollow Gliadin Nanoparticles: Advantages over Solid Gliadin Nanoparticles. Foods 2023; 12:2436. [PMID: 37444174 DOI: 10.3390/foods12132436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hollow nanoparticles have attracted extensive attention due to their advantages such as high loading capacity and superior stability. However, the complexity of the preparation process and harmfulness of the used raw materials have limited their application in the food field. Based on this, hollow gliadin nanoparticles (HGNPs) were developed using a Na2CO3 sacrificial template method. The findings of this study suggested that HGNPs could be regarded as a delivery system for resveratrol (Res) and they exhibited excellent delivery performance. Compared with solid gliadin nanoparticles (SGNPs), the HGNPs displayed smaller particle sizes, better physical stability, higher encapsulation efficiency, stronger resistance to ultraviolet light and a more sustained release of Res in the gastrointestinal tract. This work is of practical significance for the development and utilization of protein-based nanoparticles with hollow structures as a delivery system for sensitive bioactives.
Collapse
Affiliation(s)
- Duoduo Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaolong Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
8
|
Pulse electric field assisted process for extraction of Jiuzao glutelin extract and its physicochemical properties and biological activities investigation. Food Chem 2022; 383:132304. [DOI: 10.1016/j.foodchem.2022.132304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 01/10/2023]
|
9
|
Li X, Zhang ZH, Qiao J, Qu W, Wang MS, Gao X, Zhang C, Brennan CS, Qi X. Improvement of betalains stability extracted from red dragon fruit peel by ultrasound-assisted microencapsulation with maltodextrin. ULTRASONICS SONOCHEMISTRY 2022; 82:105897. [PMID: 34990969 PMCID: PMC8799603 DOI: 10.1016/j.ultsonch.2021.105897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 05/24/2023]
Abstract
Natural betalains can be potential food additives because of their antioxidant activities, but they have poor thermal stability. In this study, betalains were extracted from red dragon fruit peel, and then encapsulated with maltodextrin by ultrasound method to increase the physicochemical properties of betalains microcapsules. The encapsulation efficiency of the betalains was above 79%, and the particle size and Zeta potential values were 275.46 nm and -29.01 mV, respectively. Compared to the control sample, onset temperature and DPPH free radical scavenging of betalains microcapsules under the modest ultrasound treatment (200 W, 5 min) was increased by 1.6 °C and 12.24%, respectively. This increase could be due to the ability of ultrasonification to create interactions between maltodextrin and betalains (as evidenced by FT-IR). Therefore, modest ultrasound treatment can be used for microcapsulation to improve the stability of betalains, and then expand the application of betalains in heat processed food field.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiaqi Qiao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Man-Sheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West XianJiahu Road, Changsha 410205, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | | | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03867-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Ali HE, Radwan RR. Synthesis, characterization and evaluation of resveratrol-loaded functionalized carbon nanotubes as a novel delivery system in radiation enteropathy. Eur J Pharm Sci 2021; 167:106002. [PMID: 34517108 DOI: 10.1016/j.ejps.2021.106002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Radiation-induced enteropathy is a major clinical challenge during radiotherapy. Resveratrol displays beneficial pharmacological activities; however, low oral bioavailability limits its effectiveness. This study aims at preparing methacrylic acid (MAAc) functionalized multi-walled carbon nanotubes (MWCNTs-MAAc) as carriers for pH triggered controlled release of resveratrol in an effort to improve the drug therapeutic potential. MWCNTs-MAAc were prepared using radiation technique and then characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform-infrared (FT-IR) spectroscopy. In vitro drug release profile at different pH values was analyzed. Furthermore, the designed RES-MWCNTs-MAAc nanocomplex was evaluated against radiation-induced enteropathy in rats. Oral administration of RES-MWCNTs-MAAc restored colonic redox state and elevated antioxidant enzymes activities glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) and reduced colonic inflammatory mediators tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interferone-γ (IFN-γ) contents in addition to declining the intrinsic apoptotic pathway as evidenced by down-regulation of Bax and caspase-3 proteins expression accompanied by up-regulation of Bcl-2 protein expression. RES-MWCNTs-MAAc was more efficient than free resveratrol due to the delivery system that allowed prolonged resveratrol release at target site. Thus, this formulation could serve as a beneficial anti-inflammatory approach for patients during radiotherapy.
Collapse
Affiliation(s)
- Hussein E Ali
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt.
| |
Collapse
|
12
|
Effect of Tannic Acid Concentration on the Physicochemical, Thermal, and Antioxidant Properties of Gelatin/Gum Arabic–Walled Microcapsules Containing Origanum onites L. Essential Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|