1
|
Gill JM, Hussain SM, Ali S, Ghafoor A, Adrees M, Nazish N, Naeem A, Naeem E, Alshehri MA, Rashid E. Fish waste biorefinery: A novel approach to promote industrial sustainability. BIORESOURCE TECHNOLOGY 2025; 419:132050. [PMID: 39793671 DOI: 10.1016/j.biortech.2025.132050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
In pursuit of sustainability and resource efficiency, concept of the circular economy has emerged as a promising framework for industries worldwide. The global fish processing industry generates a significant amount of waste, posing environmental challenges and economic inefficiencies. The substantial volume of fish waste generated globally along with its environmental impact highlights the urgent need to adopt sustainable practices. However, there is significant transformative potential in leveraging fish processing waste to generate industrial value. There are numerous applications of fish processing waste such as extraction of enzymes, protein hydrolysates, collagen, and gelatin. Moreover, the capacity of fish waste to generate chitin, fish oil, and biofuels foresees a future for sustainable resource management. However, it is also necessary to emphasize the need for innovation, and cross-sector collaboration to unlock this potential. While challenges lie ahead, this review explores transformative power of circular economy in reshaping the fisheries industry towards more sustainable future.
Collapse
Affiliation(s)
- Javaeria Maqsood Gill
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab 38000, Pakistan
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, Punjab 51040, Pakistan
| | - Adan Naeem
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Eman Naeem
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Eram Rashid
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| |
Collapse
|
2
|
Cao YM, Zhang Y, Wang Q, Zhao R, Hou M, Yu ST, Wang KK, Chen YJ, Sun XQ, Liu S, Li JT. Skin hyperspectral imaging and machine learning to accurately predict the muscular poly-unsaturated fatty acids contents in fish. Curr Res Food Sci 2024; 9:100929. [PMID: 39628599 PMCID: PMC11612356 DOI: 10.1016/j.crfs.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/06/2024] Open
Abstract
The polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are critical determinants of the nutritional quality of fish. To rapidly and non-destructively determine the muscular PUFAs in living fish, an accuracy technique is urgently needed. In this study, we combined skin hyperspectral imaging (HSI) and machine learning (ML) methods to assess the muscular PUFAs contents of common carp. Hyperspectral images of the live fish skin were acquired in the 400-1000 nm spectral range. The spectral data were preprocessed using Savitzky-Golay (SG), multivariate scattering correction (MSC), and standard normal variable (SNV) methods, respectively. The competitive adaptive reweighted sampling (CARS) method was applied to extract the optimal wavelengths. With the skin spectra of fish, five ML methods, including the extreme learning machine (ELM), random forest (RF), radial basis function (RBF), back propagation (BP), and least squares support vector machine (LS-SVM) methods, were used to predict the PUFAs and EPA + DHA contents. With the spectral data processed with the SG, the RBF model achieved outstanding performance in predicting the EPA + DHA and PUFAs contents, yielding coefficients of determination (R2 P) of 0.9914 and 0.9914, root mean square error (RMSE) of 0.3352 and 0.3346, and mean absolute error (MAE) of 0.2659 and 0.2660, respectively. Finally, the visualization distribution maps under the optimal model would facilitate the direct determination of the fillet PUFAs and EPA + DHA contents. The combination of skin HSI and the optimal ML method would be promising to rapidly select living fish having high muscular PUFAs contents.
Collapse
Affiliation(s)
- Yi-Ming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Mingxi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shuang-Ting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
- Chinese Academy of Agricultural Sciences, Beijing, 100141, China
| | - Kai-Kuo Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Ying-Jie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shijing Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| |
Collapse
|
3
|
Meral R, Kına E, Ceylan Z. Low-Calorie Cookies Enhanced with Fish Oil-Based Nano-ingredients for Health-Conscious Consumers. ACS OMEGA 2024; 9:39159-39169. [PMID: 39310167 PMCID: PMC11411681 DOI: 10.1021/acsomega.4c06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
This study explored the effectiveness of fish oil (FO)-loaded nanoemulsions, averaging 197 nm in diameter, as fat substitutes in creating low-calorie cookies. The cookies' diameter, thickness, and spread ratio were measured, ranging from 46.33 to 57.15 mm, 6.45 to 7.51 mm, and 6.16 to 8.86, respectively. Notably, cookies containing nanoemulsions exhibited a significant increase in the spread ratio compared to the control. The control sample had the highest hardness value at 43.81 N, while the nanoemulsion group had the lowest at 26.98 N. The energy value, which was 508 kcal/100 g in the control group, decreased to 442 kcal/100 g in the group containing the nanoemulsion. The total n-3 fatty acid content in cookies rose from 0.46% in the control cookies to 3.90% in the cookies containing nanoemulsion. Sensory evaluations showed that cookies containing fish ol-loaded nanoemulsion received the highest scores, indicating that the fat reduction did not compromise the desired ″greasy″ sensation. This is especially noteworthy, as it showed that the fat content could be reduced by half without compromising the sensory quality. Utilizing FO-loaded nanoemulsions as a fat replacement in fat-reduced baked goods could provide valuable insights for other food products. The findings have significant implications for the food industry, suggesting that healthier, low-calorie baked goods can be developed without sacrificing physical quality and texture. This approach can cater to the growing market demand for health-conscious food options, potentially leading to new product innovations and enhanced nutritional profiles in a variety of food products.
Collapse
Affiliation(s)
- Raciye Meral
- Faculty
of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van 65080, Turkiye
| | - Erol Kına
- Department
of Computer Technology, Computer Technology Programme, Van Yüzüncü Yıl University
Özalp Vocational School, Van 65100, Turkiye
- Innovan
Entrepreneurship Centre, Van 65080, Turkiye
| | - Zafer Ceylan
- Faculty
of Science, Department, of Molecular Biology and Genetics, Bartin University, Bartin 74000, Turkiye
| |
Collapse
|
4
|
Eliuz EE, Ayas D. Developing fish oil emulsion gel enriched with Lentinula edodes single cell protein and its effect on controlling the growth of Acinetobacter baumannii. J Microbiol Methods 2024; 224:107006. [PMID: 39069135 DOI: 10.1016/j.mimet.2024.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, the characterization of fish oil (FO) emulsion gel (EGEL) containing single cell protein (SCP) produced from Lentinula edodes (L. edodes) and its potential inhibition against Acinetobacter baumannii (A. baumannii) were investigated. Oil extracted from the fish liver was emulsified with tween 80 and water, and then gelled using gelatin with the assistance of an ultrasonic homogenizer. The characteristics and surface analysis of SCP-EGEL were examined using FTIR (Fourier-transform infrared spectroscopy) and SEM (Scanning electron microscope). The particle size distribution and zeta potential of SCP-EGEL were measured using a Malvern Zetasizer. When SCP-EGEL was applied to the surface of the medium inoculated with A. baumannii, the inhibition zone (IZ) was 8.2 mm. An expansion of the IZ was observed (10.2 mm) when SCP-EGEL was applied to a fish skin (FS) surface prepared in the shape of a 6-mm diameter disc. In the SEM images, when SCP was added to lipo gel, the gel structure appeared flattened or swollen in some areas. The appearance of SCP cells being covered with gel gave the impression that they have a secondary wall. Therefore, the resulting complex can potentially be used as an additive in animal and human nutrition, in functional food coatings to suppress A. baumannii, and in fish feed to enrich it with protein.
Collapse
Affiliation(s)
- Elif Erdogan Eliuz
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey.
| | - Deniz Ayas
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
5
|
Ao S, Luo X, Huang M, Wu H, Chen Y, Chen H, Li J, Zhou Y, Yin X, Cai T, Yang Q, Deng L, Zhu K. Hyaluronic acid-poly(glyceryl)10-stearate nanoemulsion for co-delivery of fish oil and resveratrol: Enhancing bioaccessibility and antioxidant potency. Int J Biol Macromol 2024; 273:132835. [PMID: 38838882 DOI: 10.1016/j.ijbiomac.2024.132835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Hyaluronic acid (HA), an endogenous polysaccharide comprising alternating D-glucuronic acid and N-acetylglucosamine units, is renowned for its high hydrophilicity, biocompatibility, and biodegradability. These attributes have rendered HA invaluable across medical and drug delivery fields. HA can be altered through physical, chemical, or enzymatic methods to improve the properties of the modified substances. In this work, we synthesized a derivative via the esterification of HA with poly(glyceryl)10-stearate (PG10-C18), designated as HA-PG10-C18. This novel derivative was employed to fabricate a nano co-delivery system (HA-PG10-C18@Res-NE) for fish oil and resveratrol (Res), aiming to enhance their stability and bioaccessibility. An exhaustive investigation of HA-PG10-C18@Res-NE revealed that the HA-modified system displayed superior physicochemical stability, notably in withstanding oxidation and neutralizing free radicals. Moreover, in vitro simulated digestion underscored the system's enhanced bioaccessibility of Res and more efficient release of free fatty acids. These outcomes underscore the strategic advantage of HA in modifying PG10-C18 for nanoemulsion formulation. Consequently, HA-PG10-C18 stands as a promising emulsifier for encapsulating lipophilic bioactives in functional foods, nutraceuticals, and pharmaceuticals.
Collapse
Affiliation(s)
- Sha Ao
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Mengyu Huang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongze Wu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Yuanyuan Chen
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Haonan Chen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Jiafei Li
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xuguang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Tao Cai
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Qun Yang
- School of Medicine and Health, Shaoxing University Yuanpei College, 2799 Qunxian Middle Road, Shaoxing, Zhejiang 312000, China
| | - Liping Deng
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
6
|
Yang Z, Guo Y, Zeng C, Sun F, Wang Z, Zhang W, Tian T, Shan L, Zeng Y, Huang Z, Jiang L. Encapsulation and characterization of ω-3 medium- and long-chain triacylglycerols microencapsulated with different proteins as wall materials. Food Chem X 2024; 22:101363. [PMID: 38681229 PMCID: PMC11052903 DOI: 10.1016/j.fochx.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
In this study, ω-3 medium- and long-chain triacylglycerols (MLCTs) microcapsules with excellent performance were obtained using soy protein as the wall component to address the oxidation-related problems of MLCTs. Additionally, the effect of soy, whey, or pea proteins on microcapsules in terms of the changes in their structure and physicochemical properties was investigated. The results showed that the small particle size, low PDI (polydispersity index) and zeta potential, fast adsorption rate, and low interfacial tension of these protein-based samples fabricated through the O/W template method were conducive to maintaining the integrity of microcapsules during spray-drying. The microcapsules, characterized by a spherical shape, exhibited superior encapsulation efficiency of 94.56%, surpassing the findings of previous investigations. Overall, these microcapsules exhibited long-term storage stability and low controllable release rates, which could be utilized as carriers for liposoluble actives.
Collapse
Affiliation(s)
- Zhen Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yujie Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chili Zeng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tian Tian
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingyue Shan
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Yunxiang Zeng
- Wenzhou Vocational College of Science and Technology, Wenzhou 325000, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Dai W, He S, Huang L, Lin S, Zhang M, Chi C, Chen H. Strategies to reduce fishy odor in aquatic products: Focusing on formation mechanism and mitigation means. Food Chem 2024; 444:138625. [PMID: 38325089 DOI: 10.1016/j.foodchem.2024.138625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Aquatic products, integral to human diets, often bear a distinct fishy odor that diminishes their appeal. Currently, the formation mechanisms of these odoriferous compounds are not fully understood, complicating their effective control. This review aims to provide a comprehensive overview of key fishy compounds, with a focus on their formation mechanisms and innovative methods for controlling fishy odors. Fishy odors in aquatic products arise not only from the surrounding environment but also from endogenous transformations due to lipid autoxidation, enzymatic reactions, degradation of trimethylamine oxide, and Strecker degradation. Methods such as sensory masking, adsorbent and biomaterial adsorption, nanoliposome encapsulation, heat treatment, vacuum treatment, chemical reactions, and biological metabolic transformations have been developed to control fishy odors. Investigating the formation mechanisms of fishy odors will provide solid foundational knowledge that can inspire creative approaches to controlling these unpleasant odors.
Collapse
Affiliation(s)
- Wanting Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; College of Food, Nanchang University, Nanchang 330001, PR China; State Key Laboratory of Food Science and Resources, Nanchang 330001, PR China
| | - Shiying He
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Linshan Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Shufang Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Miao Zhang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Chengdeng Chi
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Huibin Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
8
|
Zeng X, Zhao J, Zhong W, Huang C, Zhi Z, Pang J, Wu C. Preparation and Characterization of Fish Oil Pickering Emulsions Stabilized by Resveratrol-Loaded Gliadin/Chitin Nanocrystal Composite Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38613496 DOI: 10.1021/acs.jafc.3c08012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Unsaturated fatty acids present in fish oil offer various physiological benefits to the human body. However, their susceptibility to oxidation severely limits their potential applications. The purpose of this study was to develop Pickering emulsions stabilized from a composite of resveratrol-loaded gliadin nanoparticles and oxidized chitin nanocrystals (GR/OC) to protect fish oil from oxidation. The effects of the GR/OC composite on the characterizations of fish oil Pickering emulsions were investigated, including the microstructure, physicochemical properties (stability and rheological behavior), and digestion properties in vitro. The results revealed that an increased concentration of the GR/OC composite significantly reduced the droplet size and improved the ambient stability of the emulsions (in terms of pH, ionic strength, temperature, and storage time). Confocal laser scanning microscopy images depicted that the GR/OC nanoparticles were uniformly dispersed at the interface between water and fish oil (W-O interface). This distribution formed a protective envelope around the droplets. Remarkably, the addition of 2% GR/OC nanoparticles stabilized the Pickering emulsions and showed the most positive effect on the antioxidant capacity compared to that of the control group. These stabilized emulsions maintained lower peroxide values and acid values, which were 1.5 times less than those of the blank control during the 14 day accelerated oxidation experiment. Furthermore, the Pickering emulsions stabilized by GR/OC nanoparticles exhibited the ability to protect fish oil from contamination by gastric juices and facilitate the intestinal absorption of omega-3 polyunsaturated fatty acids. The findings suggest that these GR/OC-stabilized Pickering emulsions offer a promising alternative for delivering fish oils in various industries, including the food industry.
Collapse
Affiliation(s)
- Xinxin Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianbo Zhao
- College of Mechanical and Electrical Engineering, Wuyi University, Wuyishan, Fujian 354300, China
| | - Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chen Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Dhiman A, Chopra R, Singh PK, Homroy S, Chand M, Talwar B. Amelioration of nutritional properties of bakery fat using omega-3 fatty acid-rich edible oils: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3175-3184. [PMID: 38105390 DOI: 10.1002/jsfa.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Bakery products have gained prominence in modern diets due to their convenience and accessibility, often serving as staple meals across diverse regions. However, the fats used in these products are rich in saturated fatty acids and often comprise trans fatty acids, which are considered as a major biomarker for non-communicable diseases like cardiovascular disorders, obesity and diabetes. Additionally, these fats lack the essential omega-3 fatty acids, which are widely known for their therapeutic benefits. They play a major role in lowering the risk of cardiovascular diseases, cancer and diabetes. Thus, there is need for incorporating these essential fatty acids into bakery fats. Nevertheless, fortifying food products with polyunsaturated fatty acids (PUFAs) poses several challenges due to their high susceptibility to oxidation. This oxidative deterioration leads to not only the formation of undesirable flavors, but also a loss of nutritional value in the final products. This review focuses on the development of healthier trans-fat-free bakery fat enriched with omega-3 fatty acids and its effect on the physicochemical, functional, sensory and nutritional properties of bakery fats and products. Further, the role of various technologies like physical blending, enzymatic interesterification and encapsulation to improve the stability of PUFA-rich bakery fat is discussed, where microencapsulation emerged as a novel and effective technology to enhance the stability and shelf life. By preventing deteriorative changes, microencapsulation ensures that the nutritional, physicochemical and sensory properties of food products remain intact. Novel modification methods like interesterification and microencapsulation used for developing PUFA-rich bakery fats have a potential to address the health risks occurring due to consumption of bakery fat having higher amount of saturated and trans fatty acids. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| |
Collapse
|
10
|
Eliuz EE, Yabalak E, Ayas D. Inhibition performance of almond shell hydrochar-based fish oil emulsion gel on Klebsiella pneumonia inoculated fish skin and its characteristics. Int J Biol Macromol 2024; 264:130529. [PMID: 38432281 DOI: 10.1016/j.ijbiomac.2024.130529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
In this study, the inhibition potential against Klebsiella pneumoniae (K. pneumoniae) and the characterization of fish oil (FO) emulsion gel (EGE) containing almond shell hydrochar (AH) were investigated. Oily water of mullet liver was emulsified using tween 80, then gelled using gelatin and finally immobilized into hydrochar using an ultrasonic homogenizer. Characteristics and surface analysis of hydrochar-based emulsion gel (HEGE) were examined using FTIR and SEM. Stability, particle size distribution and zeta potential of HEGE were measured. In this study, a zeta potential of -18.46 indicated that HEGE was more stable than EGE (35.7 mV). The addition of hydrochar to the emulsion gel containing micro-droplets enabled the structure to become fully layered and stable. Time-dependent inactivation of K. pneumoniae exposed to HEGE and fixed in 6 mm-fish skin was evaluated for the first time in this study. While the highest log reduction and percent reduction in the bacterial count were achieved within 5 min with 0.87 CFU/cm2 and 86.60% with EGE, the lowest log reduction and percent reduction were achieved with 0.003 CFU/cm2 and 0.082% with HEGE in 30 min. In conclusion, the almond shell hydrochar-immobilized emulsion gel is a functional adsorbent that can inhibit K. pneumonia, and its stability and performance make it a unique candidate for further studies in this field.
Collapse
Affiliation(s)
- Elif Erdogan Eliuz
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey.
| | - Erdal Yabalak
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343 Mersin, Turkey; Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343 Mersin, Turkey.
| | - Deniz Ayas
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
11
|
Valentim J, Afonso C, Gomes R, Gomes-Bispo A, Prates JA, Bandarra NM, Cardoso C. Influence of cooking methods and storage time on colour, texture, and fatty acid profile of a novel fish burger for the prevention of cognitive decline. Heliyon 2024; 10:e27171. [PMID: 38495145 PMCID: PMC10943333 DOI: 10.1016/j.heliyon.2024.e27171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Western diets are poor in healthy n-3 polyunsaturated fatty acids (n-3 PUFA), namely eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), iodine (I), and other nutrients that may protect against cognitive ageing. Given DHA richness in chub mackerel (Scomber colias), high vitamin B9 levels in quinoa (Chenopodium quinoa), and I abundance in the seaweed Saccorhiza polyschides, a functional hamburger rich in these nutrients by using these ingredients was developed. This research focused on the factors affecting its quality by examining the impact of cooking (steaming at 100 °C, roasting at 180 °C, grilling at 180 °C) and storage time (after 4 and 6 months at -20 °C) upon the product's properties. Cooking treatments were found to influence the burger's colour and texture, whereas storage duration impacted FA levels and the polyene index. Cooked burgers presented lighter (L*, 45.1-55.0 vs 36.9 ± 2.4) and more yellow colouration (b*, 15.8-17.8 vs 13.6 ± 1.0) than raw burgers. Cooked burgers also exhibited higher textural values across various parameters than their raw versions. Grilled burgers (excluding initial time) were firmer (50.0 ± 5.1 N) than those cooked otherwise (37.0-39.9 N). Regarding FA levels, a decrease in DHA was recorded after four months (21.8-23.0% vs 26.4-30.6%). The polyene index followed a similar trajectory, declining from 2.6 to 3.6 initially to 1.8-1.9 in the fourth month. Hence, the studied mackerel burger could be a promising source of EPA, DHA, and other n-3 PUFAs in human diets, optimally with a frozen storage duration of fewer than four months to preserve nutritional integrity.
Collapse
Affiliation(s)
- Jorge Valentim
- Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMAIP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMAIP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Romina Gomes
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMAIP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
- MEtRICs/DCTB/NOVA, School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516, Almada, Portugal
| | - Ana Gomes-Bispo
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMAIP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - José A.M. Prates
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMAIP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMAIP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| |
Collapse
|
12
|
Aydemir ME, Altun SK. Investigation of some quality properties of yogurt made from cow and sheep milk fortified with folic acid (B 9 ), biotin (B 7 ), and vitamin D 3. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1085-1091. [PMID: 37728986 DOI: 10.1002/jsfa.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effects on some physicochemical properties and starter cultures of yogurts enriched with vitamins at different concentrations during storage. For this purpose, yogurt was produced by adding the vitamins folic acid (B9 ), biotin (B7 ), and vitamin D3 in different concentrations to sheep and cow milk and stored at 4 °C. Physicochemical analyses and microbiological analyses were performed for each group of yogurt on days 0, 7, 14, and 21. RESULTS There was no significant difference (P > 0.05) between the groups in pH and titration acidity (%) during storage. It was determined that in the yogurts produced from sheep milk, the groups enriched with vitamins had a higher number of L. bulgaricus than the control group on the 7th day of storage. Moreover, the groups containing vitamin D3 exhibited a higher Lactobacillus bulgaricus count on the 21st day of storage. The highest L. bulgaricus counts on the 7th day in yogurts produced from cow's milk were observed in groups containing 0.5 mL of vitamin B9 and B7 . No mold or yeast growth was observed during storage in any of the yogurt groups made from cow and sheep milk. CONCLUSION In conclusion, it was determined that the enrichment of yogurt with vitamins B7 , B9 , and D3 did not adversely affect the quality of the yogurt; rather, it improved. We recommend that yogurt enriched with micronutrients be studied economically, and mass production should be initiated by yogurt companies as soon as possible. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mehmet Emin Aydemir
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Serap Kılıç Altun
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| |
Collapse
|
13
|
Jansen-Alves C, Martins Fonseca L, Doring Krumreich F, Zavareze EDR. Applications of propolis encapsulation in food products. J Microencapsul 2023; 40:567-586. [PMID: 37867427 DOI: 10.1080/02652048.2023.2274059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Propolis has beneficial health properties attributed to of phenolic compounds. However, its application is limited. Thus, encapsulation protects the bioactive compounds of propolis from degradation, allowing their release under controlled and specific conditions and increasing their solubility. In addition to protecting flavonoids, encapsulation also minimises the undesirable characteristics of propolis, such as strong odour. We brought attention to the high antioxidant and antimicrobial activities of encapsulated propolis, and its maintained biological activity enables more uses in different areas. Encapsulated propolis can be applied in food products as an ingredient. This review describes recent advances in improving the bioactivity of propolis extracts by using encapsulation techniques, and biopolymer research strategies, focusing on applications in food products. Encapsulated propolis has a promising market perspective due to the industrial and scientific-technological advancement, the increase in the amount of research, the improvement of propolis extraction techniques, and the need of consumers for innovative products.
Collapse
Affiliation(s)
- Cristina Jansen-Alves
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Elessandra Da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
14
|
Nava V, Turco VL, Licata P, Panayotova V, Peycheva K, Fazio F, Rando R, Di Bella G, Potortì AG. Determination of Fatty Acid Profile in Processed Fish and Shellfish Foods. Foods 2023; 12:2631. [PMID: 37444369 DOI: 10.3390/foods12132631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Seafood products are a crucial dietary source of n-3 polyunsaturated fatty acids (n-3 PUFA), which are essential for human health. However, the presence of these n-3 PUFA may be subject to changes related to different processing methods. The aim of this study was to determine the fatty acid composition, focusing on n-3 PUFA, in different processed fish and shellfish products of both EU and non-EU origin. The products were purchased from supermarkets and ethnic food shops in Messina (Italy). Gas chromatography with a flame-ionization detector (GC-FID) was used for analysis. Based on the fatty acid profile, the atherogenicity index (AI), thrombogenicity index (TI), and flesh lipid quality index (FLQ) were determined: 0.13-1.04 (AI), 0.19-0.89 (TI), and 0.41-29.90 (FLQ). The percentages of saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids fell within the following ranges: 13.55-50.48%, 18.91-65.58%, and 13.84-52.73%, respectively. Considering that all samples showed low AI and TI indices and that all processed fish products proved to be a good source of beneficial PUFAs, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), their consumption is recommended for humans.
Collapse
Affiliation(s)
- Vincenzo Nava
- BIOMORF Department, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Vincenzo Lo Turco
- BIOMORF Department, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Sciences, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | | | - Katya Peycheva
- Department of Chemistry, Medical University of Varna, 9002 Varna, Bulgaria
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Rossana Rando
- BIOMORF Department, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Giuseppa Di Bella
- BIOMORF Department, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | | |
Collapse
|
15
|
Naseem S, Imam A, Rayadurga AS, Ray A, Suman SK. Trends in fisheries waste utilization: a valuable resource of nutrients and valorized products for the food industry. Crit Rev Food Sci Nutr 2023; 64:9240-9260. [PMID: 37183680 DOI: 10.1080/10408398.2023.2211167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rise in fisheries production worldwide has caused a remarkable increase in associated anthropogenic waste. This poses significant concerns due to adverse environmental impacts and economic losses. Owing to its renewability, high abundance, and potential as a rich source of many nutrients and bioactive compounds, strategies have been developed to convert fish waste into different value-added products. Conventional and improved methods have been used for the extraction of biomolecules from fish waste. The extracted fish waste-derived value-added products such as enzymes, peptides, fish oil, etc. have been used to fortify different food products. This review aims to provide an overview of the nature and composition of fish waste, strategies for extracting biomolecules from fish waste, and the potential application of fish waste as a source of calcium and other nutrients in food fortification and animal feed has been discussed. In context to fishery waste mitigation, valorization, and circular bioeconomy approach are gaining momentum, aiming to eliminate waste while producing high-quality value-added food and feed products from fishery discards.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
| | - Arfin Imam
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | | | - Anjan Ray
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
16
|
Delfanian M, Yesiltas B, Moltke Sørensen AD, Ali Sahari M, Barzegar M, Ahmadi Gavlighi H, Jacobsen C. Interfacial effects of gallate alkyl esters on physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with sodium caseinate and OSA-modified starch. Food Chem 2023; 417:135923. [PMID: 36933428 DOI: 10.1016/j.foodchem.2023.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Effects of sodium caseinate (SC) and its combination with OSA-modified starch (SC-OS; 1:1) alone and with n-alkyl gallates (C0-C18) on the physical and oxidative stability of high-fat fish oil-in-water emulsion were evaluated. SC emulsion contained the smallest droplets and highest viscosity due to the fast adsorption at droplet surfaces. Both emulsions had non-Newtonian and shear-thinning behavior. A lower accumulation of lipid hydroperoxides and volatile compounds was found in SC emulsion due to its better Fe2+ chelating activity. The incorporated short-chain gallates (G1 > G0 ∼ G3) in SC emulsion had a strong synergistic effect against lipid oxidation compared to that of SC-OS emulsion. The better antioxidant efficiency of G1 can be related to its higher partition at the oil-water interface, while G0 and G3 had a higher partition into the aqueous phase. In contrast, G8, G12, and G16 added emulsions indicated higher lipid oxidation due to their internalization inside the oil droplets.
Collapse
Affiliation(s)
- Mojtaba Delfanian
- National Food Institute, Technical University of Denmark, Lyngby, Denmark; Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Mohammad Ali Sahari
- Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Barzegar
- Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
17
|
Cheng H, Chang X, Luo H, Tang H, Chen L, Liang L. Co-encapsulation of resveratrol in fish oil microcapsules optimally stabilized by enzyme-crosslinked whey protein with gum Arabic. Colloids Surf B Biointerfaces 2023; 223:113172. [PMID: 36736176 DOI: 10.1016/j.colsurfb.2023.113172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
O/W emulsion and its spray-dried microcapsule contain the oil phase and the protein matrix, providing the potential to co-encapsulate different antioxidants. However, antioxidants were generally encapsulated in the oil phase of microcapsule, its protein matrix is rarely used. It is first to prove the possibility to encapsulate resveratrol in the emulsified oil droplets at high wall/core ratios. The optimal microcapsule with 1.75% surface oil was fabricated with 15% transglutaminase-crosslinked WPI (TGase-WPI) and 5% gum Arabic (GA). Resveratrol mainly located in the protein matrix of initial emulsion and reconstituted microcapsule. The effects of TGase-WPI/GA microcapsule and resveratrol co-encapsulation on DHA/EPA and lipid hydroperoxides/TBARS were different. The interfacial protein, the partition of resveratrol in the emulsified oil droplets and its storage stability and inhibitory effect on size change of reconstituted microcapsules increased as the polyphenol increased. These results expand the potential use of spray-dried microcapsules as co-encapsulation carriers.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuan Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Ever Maple Food Science Technology Co., Ltd., Hangzhou, China
| | - Hui Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, China
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
18
|
Fan Z, Wang L, Jiang Q, Fan D, Xiao J, Wang M, Zhao Y. Effects of quercetin on emissions of aldehydes from heated docosahexaenoic acid (DHA)-fortified soybean oil. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130134. [PMID: 36303358 DOI: 10.1016/j.jhazmat.2022.130134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Home cooking has been considered as an indoor pollution problem since cooking oil fumes contain various toxic chemicals such as aldehydes. Fortifying edible oils with docosahexaenoic acid (DHA) has been applied to enhance the nutritional value of oils. This study designed a frying simulation system and examined the effect of oil type, DHA fortification, heating time, and addition of natural antioxidant on the emissions of aldehydes from heated oils. Results showed that linseed oil had the highest total aldehyde emissions, followed by soybean oil, peanut oil, and palm oil. Fortifying soybean oil with DHA increased the toxic aldehydes emitted. Quercetin, a flavonoid, significantly reduced aldehydes emitted from DHA-fortified soybean oil (by up to 39.80%) to levels similar to those of normal soybean oil. Further analysis showed that DHA-fortified soybean oil with quercetin had a significantly higher DHA and unsaturated fatty acids (UFAs) content than the control oil at each heating time point. The result indicated that quercetin inhibited emissions of aldehydes, at least in part, by protecting UFAs from oxidation. Collectively, quercetin could be used as a natural additive in DHA-fortified and normal cooking oils to reduce aldehyde emissions, indoor air pollution, and preserve functional DHA and other UFAs.
Collapse
Affiliation(s)
- Zhenyu Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Li Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingqing Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
19
|
Márquez-Ruiz G, Velasco J, Holgado F. Major dietary lipids in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516462 DOI: 10.1016/bs.afnr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this chapter, an overview of the major lipids in the diet with emphasis in nutritional aspects is provided. Triacylglycerols, i.e., glycerol esterified with three fatty acids, are the predominant constituents in dietary lipids. Therefore, this chapter focuses on the nature and nutritional significance of the main fatty acids in the diet and their possible modifications during food processing and commercialization. The main fatty acids in dietary lipids are grouped into saturated, monounsaturated and polyunsaturated fatty acids. Nutritional implications, the latest intervention trials and health recommendations will be discussed. A brief description of the major sources of lipids in the diet is included, oils and fats standing out. Other food sources shortly commented are milk and dairy products, meat, poultry and eggs, fish, and structured lipids designed to improve functional and nutritional properties. Modifications of fatty acids as a result of processing and commercialization are discussed because of their great relevance for their health implications, especially oxidation compounds and trans fatty acids.
Collapse
|
20
|
Pinela J, de la Fuente B, Rodrigues M, Pires TCSP, Mandim F, Almeida A, Dias MI, Caleja C, Barros L. Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction. Biomolecules 2022; 13:biom13010001. [PMID: 36671387 PMCID: PMC9855643 DOI: 10.3390/biom13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The seafood industry is often left out of the food waste discussion, but this sector is no exception, as it generates large amounts of various by-products. This study aimed to explore the potential of the microwave-assisted extraction (MAE) technique to obtain high-quality oil from fish by-products. The independent variables, which were time (1-30 min), microwave power (50-1000 W), and solid/liquid ratio (70-120 g/L) were combined in a 20-run experimental design coupled with the response surface methodology (RSM) for process optimization. The obtained oil yield values were fitted to a quadratic equation to build the theoretical models, which were statistically validated based on statistical criteria and used to predict the optimal MAE condition. The oil yields were significantly affected by the three independent variables through linear, quadratic, and/or interactive effects. Compared to a conventional Soxhlet extraction (SE), the optimal MAE conditions allowed between 60 and 100% of oil to be recovered in less than 19 min and with less solvent consumption. The fatty acid profiles of the oils obtained through SE and optimized MAE were characterized by gas chromatography with flame ionizing detection (GC-FID) after a derivatization process. These oils were constituted mainly of health, beneficial unsaturated fatty acids, such as oleic, docosahexaenoic (DHA), linoleic, and eicosapentaenoic (EPA) acids, which were not affected (p > 0.05) by the extraction methods. Interestingly, the oils obtained through MAE showed the best microbial growth inhibition results may have been due to thermolabile compounds, preserved via this unconventional non-thermal method. The oils also exhibited anti-inflammatory effects via nitric oxide production inhibition and cytotoxic potential especially, against breast and gastric adenocarcinoma cells. However, the threshold of toxicity should be further investigated. Overall, this work emerges as a future-oriented approach to upcycling fish by-products into high-quality oils that can be used in the formulation of pet food and other products.
Collapse
Affiliation(s)
- José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (J.P.); (L.B.)
| | - Beatriz de la Fuente
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, 46100 València, Spain
| | - Matilde Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - André Almeida
- ITS—Indústria Transformadora de Subprodutos S.A., Rua Padre Adriano, 61, Santo Antão do Tojal, 2660-119 Loures, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (J.P.); (L.B.)
| |
Collapse
|
21
|
Song R, Wang X, Deng S, Tao N. Lipidomic analysis and triglyceride profiles of fish oil: Preparation through silica gel column and enzymatic treatment. Food Res Int 2022; 162:112100. [DOI: 10.1016/j.foodres.2022.112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
22
|
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish-A Review. Foods 2022; 11:3669. [PMID: 36429260 PMCID: PMC9689683 DOI: 10.3390/foods11223669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.
Collapse
Affiliation(s)
- Ahtisham Ali
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Adnan Ali
- Livestock & Dairy Development Department, Abbottabad 22080, Pakistan
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
23
|
Zhang J, Yi C, Han J, Ming T, Zhou J, Lu C, Li Y, Su X. Gut microbiome and metabolome analyses reveal the protective effect of special high-docosahexaenoic acid tuna oil on d-galactose-induced aging in mice. Food Sci Nutr 2022; 10:3814-3827. [PMID: 36348794 PMCID: PMC9632196 DOI: 10.1002/fsn3.2978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/04/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2023] Open
Abstract
Aging is closely related to altered gut function and its microbiome composition. To elucidate the mechanisms involved in the preventive effect of special high-docosahexaenoic acid tuna oil (HDTO) on senescence, the effects of different doses of HDTO on the gut microbiome and metabolome of d-galactose-induced aging mice were studied. Deferribacteres and Tenericutes and uridine might be used as indicator bacteria and characteristic metabolites to identify aging, respectively. HDTO markedly improved the impaired memory and antioxidant abilities induced by d-galactose. At the phylum level, the abundance of Firmicutes and Tenericutes was significantly increased upon d-galactose induction, while that of Bacteroidetes, Proteobacteria, and Deferribacteres was significantly decreased. At the genus level, the variation mainly presented as an increase in the abundance of the Firmicutes genera Ligilactobacillus, Lactobacillus, and Erysipelothrix, the decrease in the abundance of the Bacteroidetes genera Bacteroides and Alistipes, the Firmicutes genus Dielma, and the Deferribacteres genus Mucispirillum. HDTO supplementation reversed the alterations in the intestinal flora by promoting the proliferation of beneficial flora during the aging process; the metabolic pathways, such as glycine-serine-threonine metabolism, valine-leucine-isoleucine biosynthesis, and some metabolic pathways involved in uridine, were also partially restored. Furthermore, the correlation analysis illustrated an obvious correlation between gut microbiota, its metabolites, and aging-related indices. Moreover, it is worth noting that the metabolic regulation by dietary intervention varied with different HDTO doses and did not present a simple additive effect; indeed, each dose showed a unique modulation mechanism.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
- Faculty of Food ScienceZhejiang Pharmaceutical CollegeNingboChina
| | - Congmin Yi
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Tinghong Ming
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Jun Zhou
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Ye Li
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| |
Collapse
|
24
|
Chen Y, Sun Y, Ding Y, Ding Y, Liu S, Zhou X, Wu H, Xiao J, Lu B. Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application. Crit Rev Food Sci Nutr 2022; 64:1677-1700. [PMID: 36062818 DOI: 10.1080/10408398.2022.2118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huawei Wu
- Ningbo Today Food Co Ltd, Ningbo, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
de la Fuente B, Pinela J, Calhelha RC, Heleno SA, Ferreira IC, Barba FJ, Berrada H, Caleja C, Barros L. Sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) head oils recovered by microwave-assisted extraction: nutritional quality and biological properties. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv Colloid Interface Sci 2022; 309:102781. [DOI: 10.1016/j.cis.2022.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
27
|
de la Fuente B, Pinela J, Mandim F, Heleno SA, Ferreira ICFR, Barba FJ, Berrada H, Caleja C, Barros L. Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chem 2022; 386:132778. [PMID: 35344720 DOI: 10.1016/j.foodchem.2022.132778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
Abstract
The efficiency of the microwave-assisted extraction (MAE) technique on recovering nutritional and bioactive oils from salmon (Salmo salar) side streams was evaluated and compared to Soxhlet extraction. The response surface methodology (RSM) coupled with a central composite rotatable design was used to optimize time, microwave power, and solid/liquid ratio of the MAE process in terms of oil yield. The optimal MAE conditions were 14.6 min, 291.9 W, 80.1 g/L for backbones, 10.8 min, 50.0 W, 80.0 g/L for heads, and 14.3 min, 960.6 W, 99.5 g/L for viscera, which resulted in a recovery of 69% of the total lipid content for backbones and heads and 92% for viscera. The oils obtained under optimal MAE conditions showed a healthy lipid profile as well as cytotoxic, antioxidant, anti-inflammatory, or antimicrobial properties. These results highlight that oils from underutilized salmon by-products could be exploited by different industrial sectors under the circular economy approach.
Collapse
Affiliation(s)
- Beatriz de la Fuente
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
28
|
Evaluation of Plant Protein Hydrolysates as Natural Antioxidants in Fish Oil-In-Water Emulsions. Antioxidants (Basel) 2022; 11:antiox11081612. [PMID: 36009330 PMCID: PMC9404908 DOI: 10.3390/antiox11081612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we evaluated the physical and oxidative stabilities of 5% w/w fish oil-in-water emulsions stabilized with 1%wt Tween20 and containing 2 mg/mL of protein hydrolysates from olive seed (OSM–H), sunflower (SFSM–H), rapeseed (RSM–H) and lupin (LUM–H) meals. To this end, the plant-based substrates were hydrolyzed at a 20% degree of hydrolysis (DH) employing a mixture 1:1 of subtilisin: trypsin. The hydrolysates were characterized in terms of molecular weight profile and in vitro antioxidant activities (i.e., DPPH scavenging and ferrous ion chelation). After incorporation of the plant protein hydrolysates as water-soluble antioxidants in the emulsions, a 14-day storage study was conducted to evaluate both the physical (i.e., ζ-potential, droplet size and emulsion stability index) and oxidative (e.g., peroxide and anisidine value) stabilities. The highest in vitro DPPH scavenging and iron (II)-chelating activities were exhibited by SFSM–H (IC50 = 0.05 ± 0.01 mg/mL) and RSM–H (IC50 = 0.41 ± 0.06 mg/mL). All the emulsions were physically stable within the storage period, with ζ-potential values below −35 mV and an average mean diameter D[4,3] of 0.411 ± 0.010 μm. Although LUM–H did not prevent lipid oxidation in emulsions, OSM–H and SFSM–H exhibited a remarkable ability to retard the formation of primary and secondary lipid oxidation products during storage when compared with the control emulsion without antioxidants. Overall, our findings show that plant-based enzymatic hydrolysates are an interesting alternative to be employed as natural antioxidants to retard lipid oxidation in food emulsions.
Collapse
|
29
|
Food Fortification Using Spray-Dried Emulsions of Fish Oil Produced with Maltodextrin, Plant and Whey Proteins-Effect on Sensory Perception, Volatiles and Storage Stability. Molecules 2022; 27:molecules27113553. [PMID: 35684490 PMCID: PMC9182505 DOI: 10.3390/molecules27113553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Fortification of foods with fish oil rich in n–3 fatty acids improves the nutritional value, but creates challenges with flavor and oxidative stability, especially during storage. Pea, soy, and sunflower proteins were used in combination with whey protein or maltodextrin to encapsulate fish oil by spray-drying. The use of whey protein compared with maltodextrin as wall material improved oxidative stability of spray-dried emulsions, although the use of whey protein increased the number of observed cracks in outer shell of the particles. Non- and encapsulated oil were used in cookies and chocolates to examine flavor characteristics by generic descriptive analysis and volatile products by solid-phase microextraction with gas chromatography-mass spectrometry. A long-term storage test at room temperature was conducted to evaluate the oxidative stability of the food models. Fortification changed the texture, odor, and flavor of the food models with fishy flavor being the most impactful attribute. For both food models, use of pea protein with maltodextrin resembled attributes of control the best. Fortification and encapsulation material also affected volatile profiles of food models. Both non-encapsulated oil and whey protein formulations performed well in regard to oxidative stability for both food models. Generally, the cookie model showed more potential for fortification than the chocolate one.
Collapse
|
30
|
Wen YQ, Xue CH, Zhang HW, Xu LL, Wang XH, Bi SJ, Xue QQ, Xue Y, Li ZJ, Velasco J, Jiang XM. Recombination of oxidized samples of DHA and purified sunflower oil reproduces the odor profile of impaired algae oil from Schizochytrium sp. and reveals the odor contribution of fatty acids other than DHA. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Cretton M, Malanga G, Mazzuca Sobczuk T, Mazzuca M. Marine lipids as a source of high-quality fatty acids and antioxidants. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2042555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Martina Cretton
- Facultad de Ciencias Naturales y Ciencias de la Salud, Departamento de Química, Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina
- CONICET - Centro de Investigación yTransferencia Golfo San Jorge (CIT-GSJ), Comodoro Rivadavia,Chubut, Argentina
| | - Gabriela Malanga
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Tania Mazzuca Sobczuk
- Departamento de Ingeniería Química, Campus de Excelencia Internacional Agroalimentario (CeiA3), Universidad de Almería, Spain
| | - Marcia Mazzuca
- Facultad de Ciencias Naturales y Ciencias de la Salud, Departamento de Química, Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina
- CONICET - Centro de Investigación yTransferencia Golfo San Jorge (CIT-GSJ), Comodoro Rivadavia,Chubut, Argentina
| |
Collapse
|
32
|
Espinosa-Andrews H, Morales-Hernández N, García-Márquez E, Rodríguez-Rodríguez R. Development of fish oil microcapsules by spray drying using mesquite gum and chitosan as wall materials: physicochemical properties, microstructure, and lipid hydroperoxide concentration. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hugo Espinosa-Andrews
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Norma Morales-Hernández
- Tecnología de Alimentos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Eristeo García-Márquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Noreste, Apodaca, Mexico
| | - Rogelio Rodríguez-Rodríguez
- Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Ameca, Mexico
| |
Collapse
|
33
|
Stephen NM, Maradagi T, Kavalappa YP, Sharma H, Ponesakki G. Seafood nutraceuticals: Health benefits and functional properties. RESEARCH AND TECHNOLOGICAL ADVANCES IN FOOD SCIENCE 2022:109-139. [DOI: 10.1016/b978-0-12-824369-5.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Wang J, Han L, Wang D, Sun Y, Huang J, Shahidi F. Stability and stabilization of omega-3 oils: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Rodionova N, Popov E, Zakharova N, Pozhidaeva E, Derkanosova A, Tychinin N, Khitrov A, Syromyatnikov M. Assessment of the effect of bioactive nutrients and probiotic microorganisms on the parameters of lipid metabolism in the body. POTRAVINARSTVO 2021. [DOI: 10.5219/1685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the work is a comparative study of the effect of vegetable nutrients - wheat germ oil (WGO), flour from wheat germ cake (WGC), and animal - concentrated tissue fish oil, origin on lipid metabolism indicators of students and university teachers, as well as an assessment of the probiotic factor in increasing the effectiveness of the target biologically active substances. The data obtained confirm the relation between the nutritional sufficiency of the body and the increase in lipid metabolism effectiveness and atherosclerosis risk reduction in students and teachers of an engineering university with the daily use of bioactive nutrients: WGO, WGCF, CTFO and their combinations with the biomass of lactobacilli and bifidobacteria consortium. The lipid metabolism was evaluated based on the analysis of indicators of the total cholesterol (TC) concentrations, high-density lipoproteins (HDL), low-density lipoproteins (LDL), triglycerides (TG), atherogenic index (AI). The values of these indicators were recorded before and after daily consuming the study foods for 30 days. The data obtained were analyzed for 3 age groups: 16 – 24, 25 – 44, and 45 – 65. It was found that WGO has the most effective antiatherosclerotic effect; the decrease in the TC level was 6.4%, the increase in the HDL concentration was 13.7%, the decrease in the LDL concentration was 11.3%, the decrease in the TG concentration was 17.1%, and the AI decreased by 22.6%, respectively. With WGCF, the changes in the studied parameters were 6.0, 12.3, 13.1, 13.1, and 22.1%, respectively. Together with probiotics WGO effectiveness increased in terms of the reduced TC level (1.9%), increased HDL concentration (8.2%), decreased LDL concentration (2.5%), reduced TG concentration (5.7%), and decreased AI (6.3%) for CTFO by 9.1, 26.1, 14.7, 24.1 and 31.2%, respectively. Thus, the dynamics of lipid metabolism indices objectively testifies to the positive effect of bioactive nutrients on human health indicators.
Collapse
|
36
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chávez-González ML, Aguilar CN, Chakravorty N, Verma HK, Utama GL. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Front Nutr 2021; 8:747956. [PMID: 34621776 PMCID: PMC8490651 DOI: 10.3389/fnut.2021.747956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Gujarat, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh, India
| | - Alok Kumar Gupta
- Division of Post-Harvest Management, ICAR-Central Institute for Subtropical Horticulture (Ministry of Agriculture and Farmers Welfare, Government of India), Lucknow, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Henu Kumar Verma
- Department of Immunopathology, Comprehensive Pneumology Center, Institute of Lungs Biology and Disease, Munich, Germany
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
37
|
Zhao P, Zhang X, Jin Y, Xu L. Long‐term stability of blends of sesame oil or soybean oil with tuna oil under daily use conditions. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Zhao
- School of Biological and Chemical Engineering Qingdao Technology College Qingdao Shandong China
| | - Xin Zhang
- Qingdao Sparta Analysis & Testing Co., Ltd. Qingdao Shandong China
| | - Yan Jin
- Novasana (Taicang) Bioscience Co., Ltd. Suzhou Jiangsu China
| | - Luyan Xu
- Department of Quality Control Bohi Agricultural Science Co., Ltd. Qingdao Shandong China
| |
Collapse
|
38
|
Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems. Foods 2021; 10:foods10071566. [PMID: 34359436 PMCID: PMC8305697 DOI: 10.3390/foods10071566] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Regular consumption of adequate quantities of lipids rich in omega-3 fatty acids is claimed to provide a broad spectrum of health benefits, such as inhibiting inflammation, cardiovascular diseases, diabetes, arthritis, and ulcerative colitis. Lipids isolated from many marine sources are a rich source of long-chain polyunsaturated fatty acids (PUFAs) in the omega-3 form which are claimed to have particularly high biological activities. Functional food products designed to enhance human health and wellbeing are increasingly being fortified with these omega-3 PUFAs because of their potential nutritional and health benefits. However, food fortification with PUFAs is challenging because of their low water-solubility, their tendency to rapidly oxidize, and their variable bioavailability. These challenges can be addressed using advanced encapsulation technologies, which typically involve incorporating the omega-3 oils into well-designed colloidal particles fabricated from food-grade ingredients, such as liposomes, emulsion droplets, nanostructured lipid carriers, or microgels. These omega-3-enriched colloidal dispersions can be used in a fluid form or they can be converted into a powdered form using spray-drying, which facilitates their handling and storage, as well as prolonging their shelf life. In this review, we provide an overview of marine-based omega-3 fatty acid sources, discuss their health benefits, highlight the challenges involved with their utilization in functional foods, and present the different encapsulation technologies that can be used to improve their performance.
Collapse
|
39
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
40
|
Yu F, Xue C, Zhang Z. Mechanical characterization of fish oil microcapsules by a micromanipulation technique. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Omega-3-Rich Oils from Marine Side Streams and Their Potential Application in Food. Mar Drugs 2021; 19:md19050233. [PMID: 33919462 PMCID: PMC8143521 DOI: 10.3390/md19050233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Rapid population growth and increasing food demand have impacts on the environment due to the generation of residues, which could be managed using sustainable solutions such as the circular economy strategy (waste generated during food processing must be kept within the food chain). Reusing discarded fish remains is part of this management strategy, since they contain high-value ingredients and bioactive compounds that can be used for the development of nutraceuticals and functional foods. Fish side streams such as the head, liver, or skin or the cephalothorax, carapace, and tail from shellfish are important sources of oils rich in omega-3. In order to resolve the disadvantages associated with conventional methods, novel extraction techniques are being optimized to improve the quality and the oxidative stability of these high-value oils. Positive effects on cardiovascular and vision health, diabetes, cancer, anti-inflammatory and neuroprotective properties, and immune system improvement are among their recognized properties. Their incorporation into different model systems could contribute to the development of functional foods, with market benefits for consumers. These products improve the nutritional needs of specific population groups in a scenario where noncommunicable diseases and pandemic crises are responsible for several deaths worldwide.
Collapse
|
42
|
Sridhar K, Sharma M, Choudhary A, Dikkala PK, Narsaiah K. Fish and garlic oils hybridized microcapsules: Fortification in functional bread. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kandi Sridhar
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan
| | - Minaxi Sharma
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| | - Alka Choudhary
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| | | | - Kairam Narsaiah
- Central Institute of Post‐Harvest Engineering and Technology Ludhiana India
| |
Collapse
|
43
|
Development of emulsion gelatin gels for food application: Physicochemical, rheological, structural and thermal characterization. Int J Biol Macromol 2021; 182:1-10. [PMID: 33775767 DOI: 10.1016/j.ijbiomac.2021.03.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
The current work aimed to prepare emulsion gels based on European eel skin gelatin (ESG). The results revealed that the ESG exhibited interesting antioxidant and functional properties in a dose-dependent manner. The ESG has a gel strength of 354.86 g and high gelling and melting temperatures of about 33 and 43 °C, respectively. Hence, based on its interesting gelling ability, the ESG-based gel was employed to stabilize European eel oil (EO) emulsions. In this context, two emulsions were prepared by homogenization or homogenization followed by sonication at EO:ESG weight ratios of 1:2 and 1:4. The physicochemical, textural, structural and thermal properties of emulsion gelatin-based gels (EGGs) were evaluated. The EGGs had a rigid and a cohesive gel network, according to the textural and microstructural analysis. Structural and thermogravimetric analyses showed the effective entrapment of EO in the ESG gel network.
Collapse
|
44
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|