1
|
El-Deeb EM, Elsayed HE, Ateya HB, Taha HS, Elgindi MR, Abouelenein D, Caprioli G, Lai KH, Mustafa AM, Moharram FA. Phenolic profiling and bioactivity assessment of in vitro propagated Psidium cattleianum Sabine: A promising study. Heliyon 2024; 10:e29379. [PMID: 38644814 PMCID: PMC11033136 DOI: 10.1016/j.heliyon.2024.e29379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Psidium cattleianum Sabine (strawberry guava) is an evergreen shrub that is grown as a fruiting hedge and has received significant consideration in the food and pharmaceutical disciplines. This study aims to set a promising protocol for in vitro propagation of P. cattleianum, along with profiling the phenolic content of the original plant (OP), induced callus (IC), and regenerated plantlets (RP) extracts, ultimately, evaluating their anti-inflammatory, antioxidant, and anticancer potential. Seeds were treated with commercial bleaching, HCl, and H2O2 to enhance the germination percentage and minimize the contamination percentage. Culturing sterilized leaf explants onto Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA), 2,4-dichloro phenoxy acetic acid, and kinetin showed the best callus induction, while supplementation of MS media with BA, adenine sulfate, naphthalene acetic acid, and gibberellic acid activated regeneration. Augmentation of MS media with indol-3-butyric acid recorded the maximum rooting percentage. Finally, the obtained rooted shoots were successfully acclimatized in sand and peat moss soil. HPLC-MS/MS profiles of OP, RP, and IC showed a variety of phenolic metabolites. IC extract decreased the viability of MCF-7, HepG2, and K-562 cancer cell lines. Also, OP exhibits strong antioxidant activity. P. cattleianum and its RP are profound sources of phenolic compounds promoted for promising applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Eman M. El-Deeb
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Heba E. Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hanaa B. Ateya
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hussein S. Taha
- Department of Plant Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed R. Elgindi
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ahmed M. Mustafa
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Anaya-Esparza LM, Aurora-Vigo EF, Villagrán Z, Rodríguez-Lafitte E, Ruvalcaba-Gómez JM, Solano-Cornejo MÁ, Zamora-Gasga VM, Montalvo-González E, Gómez-Rodríguez H, Aceves-Aldrete CE, González-Silva N. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023; 28:7752. [PMID: 38067479 PMCID: PMC10707804 DOI: 10.3390/molecules28237752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.
Collapse
Affiliation(s)
- Luis Miguel Anaya-Esparza
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Edward F. Aurora-Vigo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Ernesto Rodríguez-Lafitte
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Mexico;
| | - Miguel Ángel Solano-Cornejo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Victor Manuel Zamora-Gasga
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - César Eduardo Aceves-Aldrete
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Napoleón González-Silva
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| |
Collapse
|
3
|
Cardoso JDS, Cardoso Teixeira F, De Mello JE, Soares De Aguiar MS, Souto Oliveira P, Torchelsen Saraiva J, Vizzotto M, Borelli Grecco F, Lencina CL, Spanevello RM, Tavares RG, Stefanello FM, Stefanello FM. Psidium cattleianum fruit extract prevents systemic alterations in an animal model of type 2 diabetes mellitus: comparison with metformin effects. Biomarkers 2023; 28:238-248. [PMID: 36576409 DOI: 10.1080/1354750x.2022.2163695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: In this study, we aimed to determine the role of Psidium cattleianum extract (PCE) and compare its effects with those of metformin (Met) in an animal model with type 2 diabetes mellitus (T2DM).Methods: T2DM was induced in rats using a high-fat diet (HFD), followed by a single dose of streptozotocin (STZ). Met and PCE were administered intragastrically once a day throughout the experiment, and their effects on biochemical, inflammatory, oxidative, and histological parameters were evaluated.Results: Met and PCE prevented the increase in serum levels of glucose, total cholesterol (TC), triacylglycerol (TG), very low-density lipoprotein (VLDL) and interleukin-6 (IL-6) induced by T2DM, and restored redox homeostasis in the liver and brain. Met increased the serum levels of anti-inflammatory cytokine and interleukin-10 (IL-10). Furthermore, both treatments restored the liver and pancreas from marked cellular disorganisation, vacuolisation, and necrosis, with PCE being more effective than Met in recovering histological changes.Conclusion: PCE is a promising agent for the prevention of T2DM complications.
Collapse
Affiliation(s)
- Juliane De Souza Cardoso
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Julia Eisenhardt De Mello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Soares De Aguiar
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Juliane Torchelsen Saraiva
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Marcia Vizzotto
- Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária de Clima Temperado, Pelotas, Brazil
| | - Fabiane Borelli Grecco
- Laboratório de Patologia Animal, Programa de Pós-Graduação em Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Claiton Leoneti Lencina
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Rejane Giacomelli Tavares
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil.,Centro de Investigação em Biociências e Tecnologias da Saúde (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão s/n, Pelotas, RS, Brazil
| |
Collapse
|
4
|
Silviridoside: A New Triterpene Glycoside from Silene viridiflora with Promising Antioxidant and Enzyme Inhibitory Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248781. [PMID: 36557914 PMCID: PMC9785594 DOI: 10.3390/molecules27248781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
A new triterpene glycoside, silviridoside, was isolated from the aerial parts of Silene viridiflora (Caryophyllaceae) using different chromatographic techniques. The structure of silviridoside was comprehensively elucidated as 3-O-β-D-galacturonopyranosyl-quillaic acid 28-O-β-D-glucopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-fucopyranosyl ester by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). Silviridoside showed promising antioxidant activity in different antioxidant assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) (2.32 mg TE/g), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (1.24 mg TE/g), cupric-reducing antioxidant capacity (CUPRAC) (9.59 mg TE/g), ferric-reducing antioxidant power (FRAP) (5.13 mg TE/g), phosphomolybdenum (PHD) (0.28 mmol TE/g), and metal-chelating (MCA) (6.62 mg EDTA/g) assays. It exhibited a good inhibitory potential on acetylcholinesterase (AChE) (2.52 mg GALAE/g), butyrylcholinesterase (BChE) (7.16 mg GALAE/g), α-amylase (0.19 mmol ACAE/g), α-glucosidase (1.21 mmol ACAE/g), and tyrosinase (38.83 mg KAE/g). An in silico evaluation of the pharmacodynamic, pharmacokinetic, and toxicity properties of silviridoside showed that the new compound exhibited reasonable pharmacodynamic and pharmacokinetic properties without any mutagenic effect, but slight toxicity. Thus, it could be concluded that silviridoside could act as a promising lead drug for pharmaceutical and nutraceutical developments to combat oxidative stress and various disorders, but a future optimization is necessary.
Collapse
|
5
|
da Veiga Correia VT, da Silva PR, Ribeiro CMS, Ramos ALCC, Mazzinghy ACDC, Silva VDM, Júnior AHO, Nunes BV, Vieira ALS, Ribeiro LV, de Paula ACCFF, Melo JOF, Fante CA. An Integrative Review on the Main Flavonoids Found in Some Species of the Myrtaceae Family: Phytochemical Characterization, Health Benefits and Development of Products. PLANTS (BASEL, SWITZERLAND) 2022; 11:2796. [PMID: 36297820 PMCID: PMC9608453 DOI: 10.3390/plants11202796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
This integrative review aims to identify the main flavonoids present in some species of the Myrtaceae family. Studies published between 2016 and 2022 were selected, specifically those which were fully available and written in Portuguese, English, or Spanish, and which were related to the fruits araçá (Psidium cattleianum), cambuí (Myrciaria floribunda), gabiroba (Campomanesia xanthocarpa), jabuticaba (Plinia cauliflora), and jambolan (Syzygium cumini). Scientific studies were gathered and selected in Google Scholar, Scielo, and Science Direct indexed databases, out of which 14 were about araçá, 7 concerned cambuí, 4 were about gabiroba, 29 were related to jabuticaba, and 33 concerned jambolan, when we observed the pre-established inclusion criteria. Results showed that the anthocyanins, such as cyanidin, petunidin, malvidin, and delphinidin, were the mostly identified class of flavonoids in plants of the Myrtaceae family, mainly relating to the purple/reddish color of the evaluated fruits. Other compounds, such as catechin, epicatechin, quercetin, and rutin were also identified in different constituent fractions, such as leaves, peel, pulp, seeds, and in developed products, such as jams, desserts, wines, teas, and other beverages. It is also worth noting the positive health effects verified in these studies, such as anti-inflammatory qualities for jambolan, antidiabetic qualities for gabiroba, antioxidant qualities for araçá, and cardioprotective actions for jabuticaba, which are related to the presence of these phytochemicals. Therefore, it is possible to point out that flavonoids are important compounds in the chemical constitution of the studied plants of the Myrtaceae family, with promising potential in the development of new products by the food, chemical, and pharmaceutical industries due to their bioactive properties.
Collapse
Affiliation(s)
- Vinícius Tadeu da Veiga Correia
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Pâmela Rocha da Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Carla Mariele Silva Ribeiro
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Carolina do Carmo Mazzinghy
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Afonso Henrique Oliveira Júnior
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Bruna Vieira Nunes
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Luiza Santos Vieira
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas Victor Ribeiro
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | | | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Camila Argenta Fante
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
6
|
Woloszyn N, Krabbe RD, Fischer B, Bernardi JL, Duarte PF, Puton BMS, Cansian RL, Paroul N, Junges A. Use of pressurized liquid extraction technique to obtain extracts with biological and antioxidant activity from Mentha pulegium, Equisetum giganteum and Sida cordifolia. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113557. [PMID: 35684493 PMCID: PMC9181949 DOI: 10.3390/molecules27113557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022]
Abstract
In this study, conditions for the ultrasound-assisted extraction (UAE) of soluble polyphenols from Psidium cattleianum (PC) leaves were optimized using response surface methodology (RSM) by assessing the effect of extraction time (XET = 2, 4, and 6 min), sonication amplitude (XSA = 60, 80, and 100%), and pulse cycle (XPC = 0.4, 0.7, and 1 s). Furthermore, the optimized UAE conditions were compared with a conventional aqueous–organic extraction (AOE) method for extracting total phenolics; moreover, a phenolic profile using HPLC and antioxidant activity (DPPH, ABTS, and FRAP) were also compared. According to the RSM, the best conditions for UAE to extract the highest soluble polyphenol content and yield (158.18 mg/g dry matter [DM] and 15.81%) include a 100% sonication amplitude for 4 min at 0.6 s of pulse cycle. The optimal UAE conditions exhibited an effectiveness of 1.71 times in comparison to the AOE method for extracting total phenolics, in 96.66% less time; moreover, PC leaf extracts by UAE showed higher antioxidant values than AOE. Additionally, gallic, protocateic, chlorogenic, caffeic, coumaric, trans-cinnamic, 4-hydroxybenzoic, and syringic acids, as well as kaempferol were identified in PC leaves under UAE. PC leaf extracts are widely used for therapeutic and other industrial purposes; thus, the UAE proves to be a useful technology with which to improve the yield extraction of PC leaf phytochemicals.
Collapse
|
8
|
Application of araçá fruit husks (Psidium cattleianum) in the preparation of activated carbon with FeCl3 for atrazine herbicide adsorption. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
de Souza WFC, de Lucena FA, de Castro RJS, de Oliveira CP, Quirino MR, Martins LP. Exploiting the chemical composition of essential oils from Psidium cattleianum and Psidium guajava and its antimicrobial and antioxidant properties. J Food Sci 2021; 86:4637-4649. [PMID: 34486118 DOI: 10.1111/1750-3841.15889] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
The genus Psidium comprises several native Brazilian plants, such as the araçá and guava trees. They are interesting sources of essential oils (EOs) that can be used as natural preservatives in foods due to their bioactive properties. This work aimed to evaluate and correlate the biological properties of the EOs from araçá and guava leaves with their chemical compounds. The gas chromatography-mass spectrometry (GC/MS) was used to determine the chemical composition of EOs. The antimicrobial activity was tested against 16 foodborne pathogens and the antioxidant capacity was determined by ABTS, DPPH, and FRAP assays. The major compounds identified in the essential oil of araçá (EOA) were β-caryophyllene and β-elemene, representing 38.69% and 7.47%, respectively, whereas β-selinene (13.83%), α-humulene (10.90%), and β-caryophyllene (7.61%) were the major compounds identified in the essential oil of guava (EOG). Both EOs showed activity against Salmonella Enteritidis, with MIC being 1.41 µg/ml for the EOA and 1.37 µg/ml for the EOG. The EOA was more effective than the EOG against strains of Listeria monocytogenes and Pseudomonas aeruginosa, with the MIC being 1.41 µg/ml. The EOA showed 10.43, 12.35, and 3.92 µmol TE/ml at 90 µg/ml whereas the EOG showed 4.54, 8.94, and 3.43 µmol TE/ml at 88 µg/ml for ABTS, DPPH, and FRAP, respectively. Thus, the EOs demonstrated an effective action against foodborne pathogens and free radicals, indicative of their potential use as natural preservatives for foods. PRACTICAL APPLICATION: Guava and araçá are native Brazilian plants producers of essential oils, natural compounds with antimicrobial and antioxidant potential. The chemical composition of essential oils is responsible for its beneficial properties. The results demonstrated that the essential oils studied are rich in β-caryophyllene and has excellent activity against malefic microorganisms and free radicals, and can also be used as natural preservatives in foods.
Collapse
Affiliation(s)
| | - Fernando Azevedo de Lucena
- Department of Agroindustrial Management and Technology, Federal University of Paraíba, Bananeiras, Paraíba, Brazil
| | | | - Cybelle Pereira de Oliveira
- Department of Agroindustrial Management and Technology, Federal University of Paraíba, Bananeiras, Paraíba, Brazil
| | - Max Rocha Quirino
- Department of Basic and Social Sciences, Federal University of Paraíba, Bananeiras, Paraíba, Brazil
| | - Laésio Pereira Martins
- Department of Agroindustrial Management and Technology, Federal University of Paraíba, Bananeiras, Paraíba, Brazil
| |
Collapse
|
10
|
Rodríguez-Juan E, López S, Abia R, J. G. Muriana F, Fernández-Bolaños J, García-Borrego A. Antimicrobial activity on phytopathogenic bacteria and yeast, cytotoxicity and solubilizing capacity of deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
A. Mahrous E, Al-Abd AM, Salama MM, Fathy MM, Soliman FM, R. Saber F. Cattleianal and Cattleianone: Two New Meroterpenoids from Psidium cattleianum Leaves and Their Selective Antiproliferative Action against Human Carcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102891. [PMID: 34068314 PMCID: PMC8153265 DOI: 10.3390/molecules26102891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
The Myrteacae family is known as a rich source of phloroglucinols, a group of secondary metabolites with notable biological activities. Leaves of Psidium cattleianum were extracted with chloroform: methanol 8:2 to target the isolation of phloroglucinol derivatives. Isolated compounds were characterized using different spectroscopic methods: nuclear magnetic resonance (NMR), ultra-violet (UV) and mass spectrometry (MS). Two new phloroglucinols were evaluated for cytotoxicity against a panel of six human cancer cell lines, namely colorectal adenocarcinoma cells (HT-29 and HCT-116); hepatocellular carcinoma cells (HepG-2); laryngeal carcinoma (Hep-2); breast adenocarcinoma cells (MCF7 and MDA-MB231), in addition to normal human melanocytes HFB-4. Additionally, cell cycle analysis and annexin-V/FITC-staining were used to gain insights into the mechanism of action of the isolated compounds. The new phloroglucinol meroterpenoids, designated cattleianal and cattleianone, showed selective antiproliferative action against HT-29 cells with IC50’s of 35.2 and 32.1 μM, respectively. Results obtained using cell cycle analysis and annexin-V/FITC-staining implicated both necrosis and apoptosis pathways in the selective cytotoxicity of cattleianal and cattleianone. Our findings suggest that both compounds are selective antiproliferative agents and support further mechanistic studies for phloroglucinol meroterpenoids as scaffolds for developing new selective chemotherapeutic agents.
Collapse
Affiliation(s)
- Engy A. Mahrous
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el-Aini Street, Cairo 11562, Egypt; (E.A.M.); (M.M.S.); (M.M.F.); (F.M.S.); (F.R.S.)
| | - Ahmed M. Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy & Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4084, United Arab Emirates
- Pharmacology Department, Medical Division, National Research Centre, Cairo 11562, Egypt
- Correspondence: ; Tel.: +971-56-464-2929
| | - Maha M. Salama
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el-Aini Street, Cairo 11562, Egypt; (E.A.M.); (M.M.S.); (M.M.F.); (F.M.S.); (F.R.S.)
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Magda M. Fathy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el-Aini Street, Cairo 11562, Egypt; (E.A.M.); (M.M.S.); (M.M.F.); (F.M.S.); (F.R.S.)
| | - Fathy M. Soliman
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el-Aini Street, Cairo 11562, Egypt; (E.A.M.); (M.M.S.); (M.M.F.); (F.M.S.); (F.R.S.)
| | - Fatema R. Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el-Aini Street, Cairo 11562, Egypt; (E.A.M.); (M.M.S.); (M.M.F.); (F.M.S.); (F.R.S.)
| |
Collapse
|
12
|
Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants (Basel) 2021; 10:antiox10020216. [PMID: 33540565 PMCID: PMC7912872 DOI: 10.3390/antiox10020216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
There is an increasing demand for the use of new food packaging materials. In this study, natural jute fibers impregnated with a Petit Verdot Red Grape Pomace Extract (RGPE) was proposed as a new active food packaging material. Pressurized Liquid Extraction (PLE) and Enhanced Solvent Extraction (ESE) techniques were employed to obtain the bioactive RGPE. Afterward the supercritical solvent impregnation conditions to obtain RGPE-natural jute fibers were studied, by varying pressure, modifier percentage and dried RGPE mass. PLE technique offered the highest bioactive extract at 20 MPa, 55 °C, 1 h residence time using C2H5OH:H2O (1:1 v/v), providing an EC50 of 3.35 ± 0.25 and antibacterial capacity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (MIC of 12.0, 1.5 and 4.0 mg/mL RGPE respectively). The natural jute fibers impregnated with 3 mL of that RGPE (90 mg/mL) at 50 MPa and 55 °C generated the most efficient packing material with regards to its food preservation potential.
Collapse
|
13
|
Pharmacological Modulation of Smooth Muscles and Platelet Aggregation by Psidium cattleyanum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4291795. [PMID: 33101443 PMCID: PMC7568158 DOI: 10.1155/2020/4291795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Traditionally, in the Southern Asian countries, Psidium cattleyanum is a widely used plant for the management of various ailments such as gastrointestinal, respiratory, and cardiac disorders, but it lacks proof on a scientific basis, and therefore, this is the major emphasis of the current research work. Crude extract of Psidium cattleyanum (Pc.Cr) was preliminary analyzed for the presence of different classes of bioactive molecules. The aqueous and dichloromethane fractions of Pc.Cr were subjected to in vitro and in vivo studies. It was applied at variable concentrations (0.1-10 mg/ml) to isolated rabbit jejunum to investigate spasmolytic effect. Concentration dependent curves of calcium were constructed to check the calcium channel antagonistic activity. For the evaluation of tracheorelaxant activity, isolated tracheal tissue was treated with High-K+ (80 mM) and carbachol (CCh) and then challenged cumulatively with Pc.Cr. To study the antidiarrheal effect of the plant extract, castor oil-induced diarrhea model was adopted. For evaluation of the hypotensive effect of Pc.Cr, it was given intravenously to preanesthetized normotensive rats, and the response was recorded using pressure transducer. Platelet rich plasma was used for the assessment of the antiplatelet activity when challenged with purinergic and adrenergic agonists. Concentration-dependent inhibition of spontaneous and High-K+ mediated contractions in isolated jejunum was observed by the application of Pc.Cr. Contractions induced in isolated tracheal tissue by High-K+ and CCh were inhibited by application of Pc.Cr to these tissues. Similarly, application of Pc.Cr to High-K+ and phenylephrine (PE) treated aortic strips resulted in vasodilation. Platelet aggregation inhibition was shown by Pc.Cr against adenosine diphosphate (ADP) only. The antidiarrheal effect was observed as a reduction in the total number of feces in Pc.Cr-treated mice when given castor oil. Dose-dependent hypotension was seen in normotensive rats when treated with Pc.Cr intravenously. This study showed the spasmolytic, tracheorelaxant, vasodilator, platelet aggregation inhibitory, antidiarrheal, and hypotensive activities of P. cattleyanum which may be due to the blockage of calcium channels, but the involvement of any other pathway cannot be ignored.
Collapse
|