1
|
Serrano-Sandoval SN, Parralejo-Sanz S, Lobo MG, Cano MP, Antunes-Ricardo M. A bio-guided search of anti-steatotic compounds in Opuntia stricta var. dillenii by fast centrifugal partition chromatography. Food Chem 2025; 464:141682. [PMID: 39447270 DOI: 10.1016/j.foodchem.2024.141682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The fruit extract of Opuntia stricta var. dillenii (OSDE) has been recognized for its effects on hepatic steatosis, but the compounds responsible for this activity have yet to be precisely identified. This work aimed to evaluate the anti-steatotic effect of OSDE and its different fractions obtained by fast centrifugal-partition chromatography (FCPC) to identify the compounds potentially responsible for this biological activity. Hepatic lipid accumulation and triglyceride content were evaluated, as well as cellular antioxidant activity and inhibition of lipid peroxidation. Pool 1-Pool 4 showed lower lipid accumulation than OSDE in liver cells, while a greater reduction in triglyceride levels, even lower than OSDE and lovastatin (LOV), was observed for Pool 1, 9, and 10. Compared to OSDE, Pools 1,6, 7, and 12 showed higher cellular antioxidant effects, whereas OSDE showed better lipid peroxidation inhibition than all of Pools. Quinic and piscidic acids were the main bioactive present in Pool 1, exhibiting +1597 % and + 997 % increases in their content related to OSDE, respectively. Likewise, the most abundant compounds in Pool 2- Pool 4 were betalains such as betanin and isobetanin, with +163 % and + 162 % of increases in their concentration related to OSDE, respectively. Antioxidant effects in Pools 6 and 7 correlated with higher phenolic acid concentration. OSDE significantly reduced triglyceride levels in a steatotic-induced model. Although OSDE showed anti-steatotic effects, they were more pronounced for some of its constituents in FCPC Pools. Results suggested that these compounds might be potentially responsible for this anti-steatotic effect. FCPC fractionation facilitated the separate biological evaluation of OSDE constituents and thus identified them. Future studies should focus on validating these anti-steatotic effects in in vivo models.
Collapse
Affiliation(s)
- Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo Leon, Mexico.
| | - Sara Parralejo-Sanz
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain.
| | - M Gloria Lobo
- Departamento de Producción Vegetal en Zonas Tropicales y Subtropicales, Instituto Canario de Investigaciones Agrarias, 38270 Tenerife, Spain.
| | - M Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain.
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
2
|
Coqueiro JM, Costa LD, Silva LCE, Dos Santos Conceição L, da Silva Cardoso P, Ferreira Ribeiro CD, Otero DM. Trends in research on cacti: the food of the future. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4939-4949. [PMID: 38314878 DOI: 10.1002/jsfa.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Cacti are a distinguished group of plants that stand out for their great nutritional values, diverse uses, and unique morphology, allowing them to grow and thrive under different conditions such as dry, xeric, and even low-temperature environments. The world is going through significant climate changes that are affecting the agriculture system. Therefore, sustainable and multifunctional crops, as many species of the Cactaceae family are, might be a good alternative in the near future. In this work, the uses of cacti in human food were analyzed through a scientific prospection from the point of view of their temporal and spatial distribution and potential uses. Brazil is the country with more publications related to the scope of this work, followed by Mexico. The presence of cacti in these countries can influence their interest in these species, which might reflect the results encountered in this study. The uses and ethnobotanical applications of cacti vary in different countries worldwide. Cactus is consumed fresh (in salads), in preparations (jams and sweets), and juices, being also present in traditional dishes in countries like Mexico. This study emphasizes cacti's importance in people's diets and ongoing world changes. Their ability to thrive even in hot environments with low water resources will lead to a greater focus on these species in the upcoming years. Furthermore, these plants have great flavor and contain several beneficial chemical compounds with desirable nutritional and health properties. Therefore, knowledge dissemination combined with technological innovations will allow greater use of these multifunctional species for human consumption. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Patrick da Silva Cardoso
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Salvador, Brazil
| | - Camila Duarte Ferreira Ribeiro
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Salvador, Brazil
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Salvador, Brazil
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
3
|
Lopes Francisco CR, Soltanahmadi S, Porto Santos T, Lopes Cunha R, Sarkar A. Addressing astringency of grape seed extract by covalent conjugation with lupin protein. Curr Res Food Sci 2024; 9:100795. [PMID: 39036623 PMCID: PMC11260025 DOI: 10.1016/j.crfs.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Astringency of phenolic-rich foods is a key tactile perception responsible for acceptability/rejection of plant extracts as ingredients in formulations. Covalent conjugation of phenolic extracts with plant proteins might be a promising strategy to control astringency, but suffers from a lack of mechanistic understanding from the lubrication point of view. To shed light on this, this ex vivo study evaluated the effect of conjugation of a phenolic grape seed extract (GSE) with legume protein (lupin, LP) on tribological and surface adsorption performance of GSE in the absence and presence of human saliva (ex vivo). Tribological results confirmed GSE had an inferior lubrication capacity as compared to LP. The lubrication performance of LP-GSE dispersions was comparable to their corresponding LP dispersion (p > 0.05) when covalently conjugated with LP (LP-GSE) with increasing LP:GSE ratio up to 1:0.04 w/w and at a specific degree of conjugation (DC: 2%). Tribological and surface adsorption measurements confirmed the tendency of GSE to interact with human saliva (ex vivo, n = 17 subjects), impairing the lubricity of salivary films. The covalent bonding of LP to GSE hindered GSE's interaction with human saliva, implying the potential influence of covalent conjugation on attenuating astringency. LP appeared to compete with human saliva for surface adsorption and governed the lubrication behaviour in LP-GSE dispersions. Findings from this study provide valuable knowledge to guide the rational design of sustainable, functional foods using conjugation of phenolics with plant proteins to incorporate larger proportions of health-promoting phenolics while controlling astringency, which needs validation by sensory trials.
Collapse
Affiliation(s)
- Cristhian Rafael Lopes Francisco
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862, São Paulo, Campinas, Brazil
| | - Siavash Soltanahmadi
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Tatiana Porto Santos
- Laboratory of Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Rosiane Lopes Cunha
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862, São Paulo, Campinas, Brazil
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Danielski R, Shahidi F. Nutraceutical Potential of Underutilized Tropical Fruits and Their Byproducts: Phenolic Profile, Antioxidant Capacity, and Biological Activity of Jerivá ( Syagrus romanzoffiana) and Butiá ( Butia catarinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4035-4048. [PMID: 38349961 DOI: 10.1021/acs.jafc.3c06350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Jerivá and butiá are under-valued tropical fruits lacking scientific evidence about their nutraceutical potential. Therefore, they were investigated for their phenolic compound composition and biological activities. Free, esterified, and insoluble-bound polyphenols were obtained from powdered jerivá and butiá pomace and seeds. The total phenolic estimation in seeds (jerivá, 36.45 mg GAE/g; butiá, 45.79 mg GAE/g) exceeded pomaces (jerivá, 23.77 mg GAE/g; butiá, 18.69 mg GAE/g). Phenolic extracts demonstrated antidiabetic and antiobesity potential, inhibiting α-glucosidase (30.51-98.43%) and pancreatic lipase (19.66-41.98%). They also suppressed free radical-induced damage to DNA (21.46-92.48%) and LDL-cholesterol (8.27-23.20%). Identified phenolics (51) included multiple phenolic acids, flavonoids, and tannins, predominantly gallic acid derivatives/conjugates. This is the first study to provide a detailed description of the phenolic profile of these fruits and their byproducts coupled with their bioactivities. Butiá and jerivá were demonstrated to be outstanding sources of polyphenols with high nutraceutical potential for bioeconomic exploration.
Collapse
Affiliation(s)
- Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada
| |
Collapse
|
5
|
Monteiro SS, Almeida RL, Santos NC, Pereira EM, Silva AP, Oliveira HML, Pasquali MADB. New Functional Foods with Cactus Components: Sustainable Perspectives and Future Trends. Foods 2023; 12:2494. [PMID: 37444232 DOI: 10.3390/foods12132494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The growing interest in a healthy lifestyle has contributed to disseminating perspectives on more sustainable natural resource management. This review describes promising aspects of using cacti in the food industry, addressing sustainable, nutritional, and functional aspects of the plant's production. Our study provides an overview of the potential of cacti for the food industry to encourage the sustainable cultivation of underutilized cactus species and their commercial exploitation. The commercial production of cacti has advantages over other agricultural practices by mitigating damage to ecosystems and encouraging migration to sustainable agriculture. The application of cactus ingredients in food development has been broad, whether in producing breads, jellies, gums, dyes, probiotics, and postbiotic and paraprobiotic foods. However, in the field of probiotic foods, future research should focus on technologies applied in processing and researching interactions between probiotics and raw materials to determine the functionality and bioactivity of products.
Collapse
Affiliation(s)
- Shênia Santos Monteiro
- Post-Graduate Program in Engineering and Management of Natural Resources, Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Raphael Lucas Almeida
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Newton Carlos Santos
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Amanda Priscila Silva
- Post-Graduate Program in Process Engineering, Center for Science and Technology, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Hugo Miguel Lisboa Oliveira
- Post-Graduate Program in Process Engineering, Center for Science and Technology, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Post-Graduate Program in Engineering and Management of Natural Resources, Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| |
Collapse
|
6
|
Insights into the pigment and non-pigment phenolic profile of polyphenol extracts of jujube peel and their antioxidant and lipid-lowering activities. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Zhang X, Li M, Zhen L, Wang Y, Wang Y, Qin Y, Zhang Z, Zhao T, Cao J, Liu Y, Cheng G. Ultra-High Hydrostatic Pressure Pretreatment on White Que Zui Tea: Chemical Constituents, Antioxidant, Cytoprotective, and Anti-Inflammatory Activities. Foods 2023; 12:628. [PMID: 36766156 PMCID: PMC9914134 DOI: 10.3390/foods12030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Herbal tea has numerous biological activities and exhibits broad benefits for human health. In China, the flower buds of Lyonia ovalifolia are traditionally processed as herbal tea, namely White Que Zui tea (WQT). This study was aimed to evaluate the effect of ultra-high hydrostatic pressure (UHHP) pretreatment on the chemical constituents and biological activities of free, esterified, and insoluble-bound phenolic fractions from WQT. A total of 327 chemical constituents were identified by a quasi-targeted metabolomics analysis. UHHP pretreatment extremely inhibited reactive oxygen species (ROS) production and cell apoptosis in H2O2-induced HepG2 cells, and it increased the activities of intracellular antioxidant enzymes (SOD and CAT) and GSH content in different phenolic fractions from WQT. In addition, after UHHP pretreatment, the anti-inflammatory effects of different phenolic fractions from WQT were improved by inhibiting the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in LPS-induced RAW264.7 cells. Thus, the UHHP method might be a potential pretreatment strategy for improving the bioavailability of phytochemicals from natural plants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mengcheng Li
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Li Zhen
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuyue Qin
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhihong Zhang
- The Faculty of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Zhao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
8
|
Dhawale S, Pandit M, Thete K, Ighe D, Gawale S, Bhosle P, Lokwani DK. In silico approach towards polyphenols as targeting glucosamine-6-phosphate synthase for Candida albicans. J Biomol Struct Dyn 2023; 41:12038-12054. [PMID: 36629053 DOI: 10.1080/07391102.2022.2164797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Candida albicans is one of the most common species of fungus with life-threatening systemic infections and a high mortality rate. The outer cell wall layer of C. albicans is packed with mannoproteins and glycosylated polysaccharide moieties that play an essential role in the interaction with host cells and tissues. The glucosamine-6-phosphate synthase enzyme produces N-acetylglucosamine, which is a crucial chemical component of the cell wall of Candida albicans. Collectively, these components are essential to maintain the cell shape and for infection. So, its disruption can have serious effects on cell growth and morphology, resulting in cell death. Hence, it is considered a good antifungal target. In this study, we have performed an in silico approach to analyze the inhibitory potential of some polyphenols obtained from plants. Those can be considered important in targeting against the enzyme glucosamine-6-phosphate synthase (PDB-2VF5). The results of the study revealed that the binding affinity of complexes theaflavin and 3-o-malonylglucoside have significant docking scores and binding free energy followed by significant ADMET parameters that predict the drug-likeness property and toxicity of polyphenols as potential ligands. A molecular dynamic simulation was used to test the validity of the docking scores, and it showed that the complex remained stable during the period of the simulation, which ranged from 0 to 100 ns. Theaflavins and 3-o-malonylglucoside may be effective against Candida albicans using a computer-aided drug design methodology that will further enable researchers for future in vitro and in vivo studies, according to our in silico study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sachin Dhawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Madhuri Pandit
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Kanchan Thete
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Dnyaneshwari Ighe
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Sachin Gawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Pallavi Bhosle
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | | |
Collapse
|
9
|
Tang SR, Sun YX, Gu TT, Cao FF, Shen YB, He JP, Xie ZX, Li C. Phenolic compounds from Gomphrena globosa L.: phytochemical analysis, antioxidant, antimicrobial, and enzyme inhibitory activities in vitro. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Shi-Rong Tang
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Yan-Xi Sun
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Ting-Ting Gu
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Feng-Feng Cao
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Ying-Bin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ju-Ping He
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Zhen-Xing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Chao Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Nunes IDS, Schnorr C, Perondi D, Godinho M, Diel JC, Machado LMM, Dalla Nora FB, Silva LFO, Dotto GL. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H 2 Generation and Use of the Biochars for CO 2 Capture. Molecules 2022; 27:7515. [PMID: 36364342 PMCID: PMC9658530 DOI: 10.3390/molecules27217515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/12/2023] Open
Abstract
This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g-1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g-1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2.
Collapse
Affiliation(s)
- Isaac dos S. Nunes
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Carlos Schnorr
- Department of Natural and Exact Sciences, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Daniele Perondi
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul—UCS, Caxias do Sul 95070-560, Brazil
| | - Marcelo Godinho
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul—UCS, Caxias do Sul 95070-560, Brazil
| | - Julia C. Diel
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Lauren M. M. Machado
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Fabíola B. Dalla Nora
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Luis F. O. Silva
- Department of Natural and Exact Sciences, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| |
Collapse
|
11
|
Determination of amino acid content, fatty acid profiles, and phenolic compounds in non-conventional edible fruits of seven species of palm trees (Arecaceae) native to the southern half of South America. Food Res Int 2022; 162:111995. [DOI: 10.1016/j.foodres.2022.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
|
12
|
Martínez EMM, Sandate-Flores L, Rodríguez-Rodríguez J, Rostro-Alanis M, Parra-Arroyo L, Antunes-Ricardo M, Serna-Saldívar SO, Iqbal HMN, Parra-Saldívar R. Underutilized Mexican Plants: Screening of Antioxidant and Antiproliferative Properties of Mexican Cactus Fruit Juices. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020368. [PMID: 33672994 PMCID: PMC7918198 DOI: 10.3390/plants10020368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023]
Abstract
Cacti fruits are known to possess antioxidant and antiproliferative activities among other health benefits. The following paper evaluated the antioxidant capacity and bioactivity of five clarified juices from different cacti fruits (Stenocereus spp., Opuntia spp. and M. geomettizans) on four cancer cell lines as well as one normal cell line. Their antioxidant compositions were measured by three different protocols. Their phenolic compositions were quantified through high performance liquid chromatography and the percentages of cell proliferation of fibroblasts as well as breast, prostate, colorectal, and liver cancer cell lines were evaluated though in vitro assays. The results were further processed by principal component analysis. The clarified juice from M. geomettizans fruit showed the highest concentration of total phenolic compounds and induced cell death in liver and colorectal cancer cells lines as well as fibroblasts. The clarified juice extracted from yellow Opuntia ficus-indica fruit displayed antioxidant activity as well as a selective cytotoxic effect on a liver cancer cell line with no toxic effect on fibroblasts. In conclusion, the work supplies evidence on the antioxidant and antiproliferative activities that cacti juices possess, presenting potential as cancer cell proliferation preventing agents.
Collapse
|