1
|
Guo L, Liu B, Liang C, Sun W, Jiang Y, Yun X, Lu L, Zhao X, Xu N. Casein hydrolysate in naturally-fermented buckwheat sourdough: Effects on fermented and physicochemical characteristics, texture, and bacterial microbial composition. Int J Food Microbiol 2024; 417:110705. [PMID: 38640815 DOI: 10.1016/j.ijfoodmicro.2024.110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
The effect of a casein hydrolysate (CH) on the fermentation and quality of a naturally-fermented buckwheat sourdough (NFBS) were investigated, through assessing the fermentation characteristics, carbohydrate and protein degradation, texture, and bacterial composition of NFBS. According to the assaying data, CH might both increase the amount of lactic acid bacteria by 2.62 % and shorten the fermentation period by at least 3 h, subsequently leading to enhanced degradation of carbohydrate and protein, accompanied by a softer texture. More importantly, CH increased the relative abundance of lactobacillus in NFBS, making it the dominant bacterial genus and inhibited the growth of spoilage bacteria. In addition, Spearman correlation analysis indicated that the pH value, lactic and acetic acid contents, carbohydrates, protease activity, and these textural indices like hardness, elasticity, and adhesion had a positive/negative correlation with the bacterial composition of NFBS (Spearman correlation coefficient: -0.93-0.95). CH was thus regarded to be helpful to NFBS processing and production mainly by shortening its fermentation time, improving its fermentation performance, causing a finer texture and microstructure, and changing bacterial composition.
Collapse
Affiliation(s)
- Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of State Administration for Market Regulation, Beijing 100050, China; Food Laboratory of Zhongyuan, Luohe 462300, China; National Research Center of Dairy Engineering and Technology, Harbin 150030, China
| | - Biqi Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chen Liang
- College of Medicine and Biological information Engineering, Hunnan Campus, Northeastern University, Shenyang 110167, China
| | - Wen Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of State Administration for Market Regulation, Beijing 100050, China; Food Laboratory of Zhongyuan, Luohe 462300, China; National Research Center of Dairy Engineering and Technology, Harbin 150030, China
| | - Xueqi Yun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lin Lu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinhuai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Ning Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Obadi M, Li Y, Xu B. Recent advances in extending the shelf life of fresh wet noodles: Influencing factors and preservation technologies. J Food Sci 2023; 88:3626-3648. [PMID: 37548645 DOI: 10.1111/1750-3841.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Fresh wet noodles (FWNs) are popular among people and have attracted increasing attention because of their characteristics of freshness, chewiness, good taste, and better maintenance of noodle flavor. However, due to the high moisture content and abundance of nutrients in FWN, they are prone to spoilage, which shortens their shelf life and reduces their quality, greatly restricting their large-scale production. Therefore, seeking effective preservation methods to prolong the shelf life is a major breakthrough for the industrialization of FWN. The present review provides a comprehensive overview of the main factors that contribute to the spoilage and degradation of FWN. These factors encompass microorganisms, moisture content, nutritional composition, enzymes, and storage temperature. Moreover, the recent developments in novel shelf-life extension technology applied to FWN, such as chemical preservatives, natural preservatives, physical treatment technologies, and composite preservation technology, are presented and discussed. From the literature reviewed, the application of technologies, such as adding preservatives, modified atmosphere packaging, microwave, cold plasma, ozone, and other technologies, has a certain effect on improving the shelf life of FWN, but the single preservation technology still has some deficiencies. In order to further improve the preservation efficiency, using two or more preservation methods is an important direction for future research on the preservation technology of FWN.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuntong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Jishou University, Jishou, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Nishimura M, Tanaka T, Murata S, Miyabe A, Ishige T, Kawasaki K, Yokoyama M, Hashimoto N, Yamagata K, Nagano H, Tojo-Nishimura S, Matsushita K. Extension of bacterial rDNA sequencing for simultaneous methylation detection and its application in microflora analysis. Sci Rep 2023; 13:5731. [PMID: 37029177 PMCID: PMC10082018 DOI: 10.1038/s41598-023-28706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/23/2023] [Indexed: 04/09/2023] Open
Abstract
Although polymerase chain reaction (PCR) amplification and sequencing of the bacterial 16S rDNA region has numerous scientific applications, it does not provide DNA methylation information. Herein, we propose a simple extension for bisulfite sequencing to investigate 5-methylcytosine residues in the bacterial 16S rDNA region from clinical isolates or flora. Multiple displacement amplification without DNA denaturation was used to preferentially pre-amplify single-stranded bacterial DNA after bisulfite conversion. Following the pre-amplification, the 16S rDNA region was analyzed using nested bisulfite PCR and sequencing, enabling the simultaneous identification of DNA methylation status and sequence data. We used this approach (termed sm16S rDNA PCR/sequencing) to identify novel methylation sites and a methyltransferase (M. MmnI) in Morganella morganii and different methylation motifs among Enterococcus faecalis strains from small volumes of clinical specimens. Further, our analysis suggested that M. MmnI may be correlated to erythromycin resistance. Thus, sm16S rDNA PCR/sequencing is a useful extension method for analyzing the DNA methylation of 16S rDNA regions in a microflora, providing additional information not provided by conventional PCR. Given the relationship between DNA methylation status and drug resistance in bacteria, we believe this technique can be effectively applied in clinical sample testing.
Collapse
Affiliation(s)
- Motoi Nishimura
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Syota Murata
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Akiko Miyabe
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Masataka Yokoyama
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Yamagata
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satomi Tojo-Nishimura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
4
|
Suo B, Dong Z, Huang Y, Guan P, Wang X, Fan H, Huang Z, Ai Z. Changes in microbial community during the factory production of sweet dumplings from glutinous rice determined by high-throughput sequencing analysis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Effect of Maltodextrin on the Physicochemical Properties and Cooking Performance of Sweet Potato Starch Noodles. Foods 2022; 11:foods11244082. [PMID: 36553824 PMCID: PMC9778636 DOI: 10.3390/foods11244082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Maltodextrin (MD), the hydrolyzed starch product, is a promising alternative ingredient to improve the quality of starch-based foods. The effects of MD on the physicochemical, microstructural, and cooking properties of sweet potato starch (SPS) noodles, as well as the mechanism of SPS-MD interactions, are discussed. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results indicated that MD at a suitable concentration can improve the ordered structure of SPS-MD gels. The cooking loss showed lower values of 1.47−2.16% at 0.5−2.0 wt% MD. For the texture properties, an increase in hardness and chewiness occurred at first with the addition of MD, followed by a decreasing trend, showing a maximum value at 2.0 wt% of MD. The pasting and thermal results verified the increased stability of the starch granules with MD < 3 wt%. Additionally, SPS formed a solid-like gel with MD, and the main interaction forces between SPS and MD were hydrogen bonding. The scanning electron microscopy results revealed that the higher concentrations of MD (>3 wt%) loosened the gel structure and markedly increased the pore size. These results help us to better understand the interaction mechanism of the SPS-MD complex and facilitate the development of SPS-based gel products.
Collapse
|
6
|
Guo Q, Li YT, Cai JH, Ren CW, Farooq MA, Xu B. The optimum cooking time: A possible key index for predicting the deterioration of fresh white-salted noodle. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Tian X, Tan B, Wang L, Zhai X, Jiang P, Qiao C, Wu N. Effect of rice bran with extrusion cooking on quality and starch retrogradation of fresh brown rice noodles during storage at different temperatures. Cereal Chem 2022. [DOI: 10.1002/cche.10592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Hong Tian
- Academy of National Food and Strategic Reserves Administration Beijing 100037 China
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration Beijing 100037 China
| | - Lei‐Xin Wang
- Academy of National Food and Strategic Reserves Administration Beijing 100037 China
| | - Xiao‐Tong Zhai
- Academy of National Food and Strategic Reserves Administration Beijing 100037 China
| | - Ping Jiang
- Academy of National Food and Strategic Reserves Administration Beijing 100037 China
| | - Cong‐Cong Qiao
- Academy of National Food and Strategic Reserves Administration Beijing 100037 China
| | - Na‐Na Wu
- Academy of National Food and Strategic Reserves Administration Beijing 100037 China
| |
Collapse
|
8
|
Understanding the Changes in Quality of Semi-Dried Rice Noodles during Storage at Room Temperature. Foods 2022; 11:foods11142130. [PMID: 35885373 PMCID: PMC9323964 DOI: 10.3390/foods11142130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
The changes in semi-dried rice noodles during storage at room temperature (25 ± 2 °C) in terms of microbial growth, cooking quality, color, textural properties, thermal properties, crystallinity, and moisture content, and moisture distribution was examined. Total plate count, cooked broken rate, cooking loss, and b* value increased, while rehydration ratio, L* value, and moisture content decreased during storage. The hardness, adhesiveness, and chewiness of semi-dried rice noodles increased significantly, according to textural properties. DSC and XRD showed that the enthalpy of thermal absorption and crystallinity of semi-dried rice noodles increased from 1.67 J/g and 3.48% to 4.21 J/g and 18.62%, respectively. LF-NMR showed that the weakly bound water content in semi-dried rice noodles decreased by 3.71%, and the bound water content and free water content increased by 3.20% and 0.51%, respectively. The results of correlation analysis showed that the changes in quality during storage of semi-dried rice noodles were influenced by the combination of microbial growth, aging of rice noodles, and moisture migration.
Collapse
|
9
|
Chen Y, Qin F, Dong M. Dynamic Changes in Microbial Communities and Physicochemical Characteristics During Fermentation of Non-post Fermented Shuidouchi. Front Nutr 2022; 9:926637. [PMID: 35769377 PMCID: PMC9235352 DOI: 10.3389/fnut.2022.926637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Non-post fermented Shuidouchi is a Chinese spontaneously fermented soybean food with multifunctionality in human health. The functionality and safety of this plant-based food will be affected by the microorganisms during fermentation. In this study, microbial diversity was investigated using culture-dependent and culture-independent methods. The functional metabolites such as polyamines and alkylpyrazines were also determined at different time points during fermentation. We found that Bacillus was the most dominant microbe throughout the fermentation process, while the temperature was the most important influencing factor. During fermentation, the microbial diversity increased at a moderate temperature and decreased at a high temperature (52°C). High temperature caused the prosperity of the spore-producing bacteria such as Bacillus (more than 90% relative abundance in bacteria) and Aneurinibacillus (2% or so relative abundance in bacteria), and the inhibition of fungi. Furthermore, it was found by correlation analysis that the relative abundances of Bacillus and Aneurinibacillus were positively correlated with the relative content of amino acid metabolism pathway and the content of most alkylpyrazines and biogenic amines. Meanwhile, the relative abundances of many non-dominant bacteria were negatively correlated with the content of biogenic amines and positively correlated with the relative content of carbohydrate metabolism pathway. These effects were helpful to control the biogenic amine contents under the safety limits, increasing the alkylpyrazine type and product functionality. A two-stage temperature control strategy—a moderate temperature (35–42°C) first, then a high temperature (52°C)—was concluded from the spontaneous fermentation of non-post fermented Shuidouchi. This strategy could improve the safety of product by inhibiting or sterilizing the thermolabile microbes. The non-post fermented Shuidouchi product is rich in functional compounds such as polyamines and alkylpyrazines.
Collapse
Affiliation(s)
- Yuyong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Feng Qin
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Mingsheng Dong,
| |
Collapse
|
10
|
Guo Q, Cai JH, Ren CW, Li YT, Farooq MA, Xu B. A new strategy for the shelf life extension of fresh noodles by accurately targeting specific microbial species. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Yang S, Jin L, Xu XH, Shan CS, Chen ZG. Long-term storage and temperature induced quality changes of industrial-scale wet starch noodles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
LI Y, WU K, LI Z, WANG X, CHEN Z. Quality characteristics of fresh noodles as affected by modified atmosphere packaging. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.58822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yana LI
- Wuhan Polytechnic University, China
| | | | | | | | | |
Collapse
|
13
|
Yang S, Dhital S, Shan CS, Zhang MN, Chen ZG. Ordered structural changes of retrograded starch gel over long-term storage in wet starch noodles. Carbohydr Polym 2021; 270:118367. [PMID: 34364612 DOI: 10.1016/j.carbpol.2021.118367] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Temperature-induced structural variations of retrograded starch gel during long-term storage were investigated in a real food system (wet starch noodles). Fresh starch noodles presented a B-type XRD pattern containing 8.82% crystallinity and 16.04% double helices. In the first 2 weeks, double helices of starch chain formed long-range ordered structure leading to increased crystallinity, and such structural transformation was positively correlated with increasing storage temperature (from 4 °C to 35 °C) and storage time. However, with the extension of storage time to 12 weeks, the disorganization of supra-molecular structure was likely to be observed by decreased crystallinity, double helix and water mobility. Besides, we propose that the area and intensity of Raman band at 2910 cm-1 can be a good indicator for evaluating perfection of crystallinity in starch noodles. These results contributed to a better understanding of mechanisms underlying molecular order changes of retrograded starch gel product during long-term storage.
Collapse
Affiliation(s)
- Sha Yang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Sushil Dhital
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Chang-Song Shan
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Meng-Na Zhang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
14
|
Yang S, Zhang MN, Shan CS, Chen ZG. Evaluation of cooking performance, structural properties, storage stability and shelf life prediction of high-moisture wet starch noodles. Food Chem 2021; 357:129744. [PMID: 33878579 DOI: 10.1016/j.foodchem.2021.129744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/16/2023]
Abstract
Cooking performance, micro- and molecular structure, storage stability and shelf-life prediction of high-moisture wet starch noodles (SN) were investigated. SEM images revealed that compared to dried SN, cooked wet SN had more evenly honeycomb-like network with smaller size of pores, indicating stronger interaction among molecules and causing favorable cooking performance. XRD and ATR-FTIR results evidenced that wet SN contained more complete crystallites and higher proportion of crystalline region. During storage, the quality decay of wet SN was mainly associated to the increment of total aerobic viable count (TAVC), titrable acidity and amylase, as well as the decreased textural hardness, overall acceptability and lightness. Based on TAVC, titrable acidity and overall acceptability, predicted shelf-life of vacuum-packed wet SN at 25 °C was 15.31, 21.54 and 16.65 weeks respectively, with relative error all within 20%, proving that the validated model could be an effective tool for monitoring the shelf-life of wet SN.
Collapse
Affiliation(s)
- Sha Yang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Meng-Na Zhang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chang-Song Shan
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|