1
|
Luo X, Jiang JH, Liu SL, Gao JY, Zhou LW. Metabolomics analysis of rice fermented by medicinal fungi providing insights into the preparation of functional food. Food Chem 2024; 459:140372. [PMID: 38986207 DOI: 10.1016/j.foodchem.2024.140372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Rice, a primary staple food, may be improved in value via fermentation. Here, ten medicinal basidiomycetous fungi were separately applied for rice fermentation. After preliminary screening, Ganoderma boninense, Phylloporia pulla, Sanghuangporus sanghuang and Sanghuangporus weigelae were selected for further LC-MS based determination of the changes in metabolic profile after their fermentation with rice, and a total of 261, 296, 312, and 355 differential compounds were identified, respectively. Most of these compounds were up-regulated and involved in the metabolic pathways of amino acid metabolism, lipid metabolism, carbohydrate metabolism and the biosynthesis of other secondary metabolites. Sanghuangporus weigelae endowed the rice with the highest nutritional and bioactive values. The metabolic network of the identified differential compounds in rice fermented by S. weigelae illustrated their close relationships. In summary, this study provides insights into the preparation and application of potential functional food via the fermentation of rice with medicinal fungi.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Yun Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Ye X, Yu Y, Liu J, Zhu Y, Yu Z, Liu P, Wang Y, Wang K. Seasonal environmental factors drive microbial community succession and flavor quality during acetic acid fermentation of Zhenjiang aromatic vinegar. Front Microbiol 2024; 15:1442604. [PMID: 39171262 PMCID: PMC11335490 DOI: 10.3389/fmicb.2024.1442604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigated the impact of seasonal environmental factors on microorganisms and flavor compounds during acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar (ZAV). Environmental factors were monitored throughout the fermentation process, which spanned multiple seasons. Methods such as headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), high performance liquid chromatography (HPLC), and high-throughput sequencing were employed to examine how these environmental factors influenced the flavor profile and microbial community of ZAV. The findings suggested that ZAV brewed in autumn had the strongest flavor and sweetness. The key microorganisms responsible for the flavor of ZAV included Lactobacillus acetotolerans, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, Acetobacter pasteurianus. Moreover, correlation analysis showed that room temperature had a significant impact on the composition of the microbial community, along with other key seasonal environmental factors like total acid, pH, reducing sugar, and humidity. These results provide a theoretical foundation for regulating core microorganisms and environmental factors during fermentation, enhancing ZAV quality.
Collapse
Affiliation(s)
- Xiaoting Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Jiaxin Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| |
Collapse
|
3
|
Yi X, Han J, Xu X, Wang Y, Zhang M, Zhu J, He Y. Taurine-mediated gene transcription and cell membrane permeability reinforced co-production of bioethanol and Monascus azaphilone pigments for a newly isolated Monascus purpureus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:59. [PMID: 38702823 PMCID: PMC11069175 DOI: 10.1186/s13068-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Taurine, a semi-essential micronutrient, could be utilized as a sulfur source for some bacteria; however, little is known about its effect on the accumulation of fermentation products. Here, it investigated the effect of taurine on co-production of bioethanol and Monascus azaphilone pigments (MonAzPs) for a fungus. RESULTS A newly isolated fungus of 98.92% identity with Monascus purpureus co-produced 23.43 g/L bioethanol and 66.12, 78.01 and 62.37 U/mL red, yellow and orange MonAzPs for 3 d in synthetic medium (SM). Taurine enhanced bioethanol titer, ethanol productivity and ethanol yield at the maximum by 1.56, 1.58 and 1.60 times than those of the control in corn stover hydrolysates (CSH), and red, yellow and orange MonAzPs were raised by 1.24, 1.26 and 1.29 times, respectively. Taurine was consumed extremely small quantities for M. purpureus and its promotional effect was not universal for the other two biorefinery fermenting strains. Taurine intensified the gene transcription of glycolysis (glucokinase, phosphoglycerate mutase, enolase and alcohol dehydrogenase) and MonAzPs biosynthesis (serine hydrolases, C-11-ketoreductase, FAD-dependent monooxygenase, 4-O-acyltransferase, deacetylase, NAD(P)H-dependent oxidoredutase, FAD-dependent oxidoredutase, enoyl reductase and fatty acid synthase) through de novo RNA-Seq assays. Furthermore, taurine improved cell membrane permeability through changing cell membrane structure by microscopic imaging assays. CONCLUSIONS Taurine reinforced co-production of bioethanol and MonAzPs by increasing gene transcription level and cell membrane permeability for M. purpureus. This work would offer an innovative, efficient and taurine-based co-production system for mass accumulation of the value-added biofuels and biochemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xia Yi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Jianqi Han
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xiaoyan Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yilong Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Meng Zhang
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Yucai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
4
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Yang Y, Li S, Xia Y, Wang G, Ni L, Zhang H, Ai L. Effects of different lactic acid bacteria on the characteristic flavor profiles of Chinese rice wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:421-430. [PMID: 37607217 DOI: 10.1002/jsfa.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND It has been well accepted that lactic acid bacteria (LAB) are the main bacterial genera present during the brewing of Chinese rice wine (CRW). LAB plays a decisive role in the flavor quality of CRW; however, its application in CRW has previously been overlooked. Therefore, effects of different LAB as co-fermenter on the flavor characteristics of CRW were investigated. RESULTS Co-fermentation of LAB increased the utilization rate of reducing sugar, concentration of lactic acid, amino acid nitrogen and total acidity, as well as the content of volatile flavor compounds. Different LAB doses had little effect on the flavor profiles of CRW, but the species of LAB greatly affected the flavor characteristic. The flavor of CRW co-fermented with Lactococcus lactis was characterized by long-chain fatty acid ethyl esters, while co-fermentation with Weissella confusa highlighted the ethyl esters of low molecular weight and short carbon chains in the resultant CRW. Alcohol compounds were dominant in the CRW co-fermented using Pediococcus pentosaceus. CONCLUSION The co-fermentation of LAB increased the number of volatile flavor compounds, especially esters. LAB exhibited great potential in the application of CRW industry to enrich the flavor characteristics and enhance the flavor diversity of the final product. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Shen Li
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou, People's Republic of China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co. Ltd, Shanghai, People's Republic of China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Qian M, Ruan F, Zhao W, Dong H, Bai W, Li X, Huang X, Li Y. The dynamics of physicochemical properties, microbial community, and flavor metabolites during the fermentation of semi-dry Hakka rice wine and traditional sweet rice wine. Food Chem 2023; 416:135844. [PMID: 36893639 DOI: 10.1016/j.foodchem.2023.135844] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
The dynamics of physicochemical properties, microbial community and flavor metabolites during fermentation of two typical Hakka rice wine were investigated. Results showed that total sugar content was 136.83 g/L in sweet rice wine, which almost 8 times higher than that in semi-dry rice wine. Its amino acid contents especially bitterness amino acids were also higher than those in semi-dry rice wine. Most organic acids in Hakka rice wine had the tendency of increase in initial stage of fermentation, following a decrease and finally being almost stable. A total of 131 volatiles including esters, alcohols, aldehydes, acids, ketones were detected. Pediococcus, Bacillus, Acinetobacter, Pantoea, Enterobacter and Lactobacillus were the dominant bacterial genera and Monascus, Saccharomyces, Rhizopus were the dominant fungal genera, which are strongly associated with the significant changes in flavor metabolites during Hakka rice wine fermentation. The obtained findings provided reference data for the optimization of Hakka rice wine fermentation.
Collapse
Affiliation(s)
- Min Qian
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Fengxi Ruan
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Hao Dong
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Xiangluan Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaoyuan Huang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yanxin Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
7
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Huang Y, Yang C, Molnár I, Chen S. Comparative Transcriptomic Analysis of Key Genes Involved in Citrinin Biosynthesis in Monascus purpureus. J Fungi (Basel) 2023; 9:200. [PMID: 36836314 PMCID: PMC9965497 DOI: 10.3390/jof9020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Monascus pigments (MPs) display many beneficial biological activities and have been widely utilized as natural food-grade colorants in the food processing industry. The presence of the mycotoxin citrinin (CIT) seriously restricts the application of MPs, but the gene regulation mechanisms governing CIT biosynthesis remain unclear. We performed a RNA-Seq-based comparative transcriptomic analysis of representative high MPs-producing Monascus purpureus strains with extremely high vs. low CIT yields. In addition, we performed qRT-PCR to detect the expression of genes related to CIT biosynthesis, confirming the reliability of the RNA-Seq data. The results revealed that there were 2518 differentially expressed genes (DEGs; 1141 downregulated and 1377 upregulated in the low CIT producer strain). Many upregulated DEGs were associated with energy metabolism and carbohydrate metabolism, with these changes potentially making more biosynthetic precursors available for MPs biosynthesis. Several potentially interesting genes that encode transcription factors were also identified amongst the DEGs. The transcriptomic results also showed that citB, citD, citE, citC and perhaps MpigI were key candidate genes to limit CIT biosynthesis. Our studies provide useful information on metabolic adaptations to MPs and CIT biosynthesis in M. purpureus, and provide targets for the fermentation industry towards the engineering of safer MPs production.
Collapse
Affiliation(s)
- Yingying Huang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou 350003, China
| | - Chenglong Yang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou 350003, China
| | - István Molnár
- VTT Technical Research Centre of Finland, 02100 Espoo, Finland
| | - Shen Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
9
|
Chen L, Xiang W, Liang X, Liu J, Zhu H, Cai T, Zhang Q, Tang J. Fungal Biomarkers in Traditional Starter Determine the Chemical Characteristics of Turbid Rice Wine from the Rim of the Sichuan Basin, China. Foods 2023; 12:foods12030585. [PMID: 36766114 PMCID: PMC9914865 DOI: 10.3390/foods12030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The fungal community in Qu plays a key role in the formation of turbid rice wine (TRW) style. The Sichuan Basin and its surrounding areas have become one of the main TRW production regions in China; however, the fungal community in Qu and how they affect the characteristics of TRW remain unknown. Therefore, this study provided insight into the fungal biomarkers in Qu from Guang'an (GQ), Dazhou (DQ), Aba (AQ), and Liangshan (LQ), as well as their relationships with compounds in TRW. The main biomarkers in GQ were Rhizopus arrhizus, Candida glabrata, Rhizomucor pusillus, Thermomyces lanuginosus and Wallemia sebi. However, they changed to Saccharomycopsis fibuligera and Mucor indicus in DQ, Lichtheimia ramose in AQ, and Rhizopus microsporus and Saccharomyces cerevisiae in LQ. As a response to fungal biomarkers, the reducing sugar, ethanol, organic acids, and volatile compounds were also changed markedly in TRWs. Among important volatile compounds (VIP > 1.00), phenethyl alcohol (14.1-29.4%) was dominant in TRWs. Meanwhile, 3-methyl-1-butanol (20.6-56.5%) was dominant in all TRWs except that fermented by GQ (GW). Acetic acid (29.4%) and ethyl palmitate (10.1%) were dominant in GW and LW, respectively. Moreover, GQ biomarkers were positively correlated with acetic acid and all unique important volatile compounds in GW. DQ biomarkers had positive correlations with unique compounds of acetoin and ethyl 5-chloro-1,3,4-thiadiazole-2-carboxylate in DW. Meanwhile, the AQ biomarkers were positively correlated with all AW unique, important, and volatile compounds. Although there were not any unique volatile compounds in LW, 16 important volatile compounds in LW were positively related to LQ biomarkers. Obviously, biomarkers in different geographic Qu played vital roles in the formation of important volatile compounds, which could contribute specific flavor to TRWs. This study provided a scientific understanding for future efforts to promote the excellent characteristics of TRW by regulating beneficial fungal communities.
Collapse
Affiliation(s)
- Lanchai Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
- Correspondence: ; Tel.: +86-28-8772-0552
| | - Xuemei Liang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Sichuan Vocational School of Commerce, Chengdu 611731, China
| | - Junyu Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Haoyu Zhu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ting Cai
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| |
Collapse
|
10
|
Xiao R, Chen S, Wang X, Chen K, Hu J, Wei K, Ning Y, Xiong T, Lu F. Microbial community starters affect the profiles of volatile compounds in traditional Chinese Xiaoqu rice wine: Assement via high-throughput sequencing and gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
The effects of an innovative pulping technique of synchronously pulping and gelatinizing treatment on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of glutinous rice wine. Food Sci Biotechnol 2022; 31:1343-1353. [PMID: 35992314 PMCID: PMC9385904 DOI: 10.1007/s10068-022-01119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 02/02/2023] Open
Abstract
Liquid-state fermentation has been increasingly applied in the industrial glutinous rice wine (GRW) production. However, products brewed by this emerging technique possess some deficiencies in flavor quality. Therefore, this study firstly developed and optimized an innovative pulping technique by the synchronously pulping and gelatinizing treatment (Process I) to improve GRW flavor quality, and then revealed the influences of Process I on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of GRW. Results show that Process I significantly (p < 0.05) enriched the soluble solid and crude protein content of glutinous rice milk by improving gelatinization degree and pulping efficiency, which consequently enhanced the microbial growth, glycolysis, and protein decomposition during the GRW fermentation process. GC-MS analysis shows that Process I sequentially significantly (p < 0.05) enhanced the esterification and Ehrlich or Harrison pathway during the fermentation process. This contributed to a higher content of key ester and alcohol compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01119-7.
Collapse
|
12
|
Kang J, Jia L, Zhang Z, Zhang M, Huang X, Chen X, Han BZ. Comparison of physicochemical characteristics and microbiome profiles of low-temperature Daqu with and without adding tartary buckwheat. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Qin F, Wu Z, Zhang W. Evaluation of six commercial koji on the formation of biogenic amines and higher alcohols in rice wine. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengyang Qin
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Zhengyun Wu
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Wenxue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
14
|
Liu A, Yang X, Guo Q, Li B, Zheng Y, Shi Y, Zhu L. Microbial Communities and Flavor Compounds during the Fermentation of Traditional Hong Qu Glutinous Rice Wine. Foods 2022; 11:foods11081097. [PMID: 35454684 PMCID: PMC9032908 DOI: 10.3390/foods11081097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
As a traditional Chinese rice wine, Hong Qu glutinous rice wine (HQW) is popular among consumers due to its unique flavor. However, its quality changes during fermentation, and the potential relationships between flavor and microbes have not been systematically researched. In this work, physicochemical properties (pH, total sugar, alcohol, amino acid nitrogen), flavor compounds (organic acids, free amino acids, and volatile compounds), and microbial communities were investigated. The results revealed that Pantoea, Lactiplantibacillus, Lactobacillus, Leuconostoc, and Weissella predominated the bacterial genera, and Monascus was the predominant fungal genus. Organic acids, free amino acids, and key volatile compounds (esters and alcohols) significantly increased during fermentation. The correlations analysis showed that Lactiplantibacillus was closely associated with flavor compounds formation. This study deepens our understanding of the roles of microorganisms in flavor formation on traditional HQW fermentation.
Collapse
Affiliation(s)
- Anqi Liu
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Xu Yang
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
| | - Quanyou Guo
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
- Correspondence: ; Tel.: +86-021-6567-8984
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yao Zheng
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
| | - Yuzhuo Shi
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Lin Zhu
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| |
Collapse
|
15
|
Zhao W, Qian M, Dong H, Liu X, Bai W, Liu G, Lv XC. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Lin X, Ren X, Huang Y, Liang Z, Li W, Su H, He Z. Regional characteristics and discrimination of the fermentation starter Hong Qu in traditional rice wine brewing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaozi Lin
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Xiangyun Ren
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Yingying Huang
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Zhangcheng Liang
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Weixin Li
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Hao Su
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Zhigang He
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| |
Collapse
|