1
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
2
|
Li H, Guan K, Liu M, Jiang W, Yan F, Zhu A, Zhou S. Identification and anti-oxidative potential of milk fat globule membrane (MFGM)-derived bioactive peptides released through in vitro gastrointestinal digestion. Bioorg Chem 2024; 145:107232. [PMID: 38437762 DOI: 10.1016/j.bioorg.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
This study investigated the stability of milk fat globule membrane (MFGM) protein under simulated gastrointestinal conditions using an in vitro enzymatic digestion method. The optimal hydrolysis conditions were determined by monitoring the changes in particle size and zeta-potential of MFGM protein hydrolysates over time. Furthermore, the distribution of small molecular weight peptides with antioxidant activity was explored through DEAE-52 combined with in vitro cell experiments. Two novel antioxidant peptides (TGIIT and IITQ) were identified based on molecular docking technology and evaluated their potential scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+) radicals. TGIIT and IITQ also demonstrated remarkable abilities in promoting mitochondrial biogenesis and activating Keap1/Nrf2 signaling pathway, which can effectively counteract skeletal muscle dysfunction induced by oxidative stress. Thus, MFGM-derived antioxidant peptides have the potential to be employed in food to regulate muscle protein metabolism and alleviate sarcopenia.
Collapse
Affiliation(s)
- He Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, China
| | - Wen Jiang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Fengjuan Yan
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Aihua Zhu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK.
| |
Collapse
|
3
|
Zhang Y, Zhang C, Wang J, Wen Y, Li H, Liu X, Liu X. Can proteins, protein hydrolysates and peptides cooperate with probiotics to inhibit pathogens? Crit Rev Food Sci Nutr 2023:1-14. [PMID: 38032153 DOI: 10.1080/10408398.2023.2287185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Studies have shown that probiotics can effectively inhibit pathogens in the presence of proteins, protein hydrolysates and peptides (protein derivates). However, it is still unclear the modes of probiotics to inhibit pathogens regulated by protein derivates. Therefore, we summarized the possible effects of protein derivates from different sources on probiotics and pathogens. There is abundant evidence that proteins and peptides from different sources can significantly promote the proliferation of probiotics and increase their secretion of antibacterial substances. Such proteins and peptides can also stimulate the adhesion of probiotics to intestinal epithelial cells and contribute to regulating intestinal immunity, but they seem to have the negative effects on pathogens. Moreover, a direct effect of proteins on intestinal cells is summarized. Whether or not they can cooperate with probiotics to inhibit pathogens using above possible mechanisms were discussed. Furthermore, there seems to be no consistent conclusions that protein derivates have synergistic effects with probiotics, and there is still limited evidence on the inhibiting patterns. Therefore, the existing problems and shortcomings are noted, and future research direction is proposed.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chi Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Jingyi Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yanchao Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Liu Y, Huang K, Zhang Y, Cao H, Luo DK, Yi C, Guan X. Manufacture and characterization of a novel dairy-free quinoa yogurt fermented by modified commercial starter with Weissella confusa. Food Chem X 2023; 19:100823. [PMID: 37780240 PMCID: PMC10534153 DOI: 10.1016/j.fochx.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 10/03/2023] Open
Abstract
Non-dairy yogurt is increasingly thought to be healthy food. However, no suitable starters limit its development. This study aimed to develop a novel and functional quinoa yogurt with a modified commercial starter. Compared with the other lactic acid bacteria (LAB), Weissella confusa showed a better fermentation performance of quinoa utilization. The synergistic effect of W. confusa and the commercial starter promoted the growth of LAB. It increased the fermentation rate of quinoa yogurt, further improving its texture, rheological properties, and storage stability. The modified starter significantly increased the nutritional qualities of the quinoa yogurt, including polyphenol content, antioxidant activity, digestive enzyme inhibition, and reduced postprandial blood glucose ability. Additionally, the modified starter enhanced the digestibility and bioaccessibility of polyphenols, protein, and fat in fermented quinoa yogurt. Overall, the commercial starter with W. confusa showed great potential for possible application in quinoa yogurt development.
Collapse
Affiliation(s)
- Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Da-ke Luo
- Liuyanghe Group Co., Ltd., Hunan, PR China
| | - Cuiping Yi
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Hunan, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| |
Collapse
|
5
|
Zhang Y, Liu L, Zhang M, Li S, Wu J, Sun Q, Ma S, Cai W. The Research Progress of Bioactive Peptides Derived from Traditional Natural Products in China. Molecules 2023; 28:6421. [PMID: 37687249 PMCID: PMC10489889 DOI: 10.3390/molecules28176421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Traditional natural products in China have a long history and a vast pharmacological repertoire that has garnered significant attention due to their safety and efficacy in disease prevention and treatment. Among the bioactive components of traditional natural products in China, bioactive peptides (BPs) are specific protein fragments that have beneficial effects on human health. Despite many of the traditional natural products in China ingredients being rich in protein, BPs have not received sufficient attention as a critical factor influencing overall therapeutic efficacy. Therefore, the purpose of this review is to provide a comprehensive summary of the current methodologies for the preparation, isolation, and identification of BPs from traditional natural products in China and to classify the functions of discovered BPs. Insights from this review are expected to facilitate the development of targeted drugs and functional foods derived from traditional natural products in China in the future.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Shani Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Jini Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Qiuju Sun
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Shengjun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| |
Collapse
|
6
|
Wang J, Shao B, Li J, Wang Z, Zhang M, Jia L, Yu P, Ma C. Identification and In Silico Analysis of ACE-Inhibitory Peptides Derived from Milk Fermented by Lacticaseibacillus paracasei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12462-12473. [PMID: 37578765 DOI: 10.1021/acs.jafc.2c09148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Inhibition of angiotensin I-converting enzyme (ACE) activity is an effective way to treat hypertension. In the present study, the ability to produce ACE-inhibitory peptides during fermentation of skimmed milk by the Lacticaseibacillus paracasei M3 strain was evaluated, and the inhibitory mechanism and stability were studied by bioinformatics analysis. The results showed that the ACE inhibition activity of fermented milk was 71.94 ± 1.39%. After digestion with gastric juice and pancreatic juice, the ACE inhibitory activities of the fermented milk were 78.40 ± 1.93 and 74.96 ± 1.73%, respectively. After the fermented milk was purified using ultrafiltration and gel chromatography, 11 peptides from milk proteins were identified and sequenced by Nano LC-MS/MS. Molecular docking displayed that peptide PWIQPK had a high affinity, with ACE showing a binding energy of -6.10 kcal/mol. Hydrogen bonds were formed between PWIQPK and Glu384 in the S1 active pocket of ACE and Asp358. In addition, van der Waals forces were observed. In silico proteolysis suggested that PWIQPK could resist the digestion of pepsin and trypsin, indicating that it is relatively stable in the digestive tract. All results indicate that milk fermented by L. paracasei M3 has the potential to be used as a functional food having antihypertensive effects.
Collapse
Affiliation(s)
- Jiaxu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Boyue Shao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhimin Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mixia Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Jia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Zhang Q, Zheng L, Luo D, Zhao M. In Vitro Simulated Gastrointestinal Digestion Stability of a Neuroprotective Octapeptide WCPFSRSF and Prediction of Potential Bioactive Peptides in Its Digestive Fragments by Multiple Bioinformatics Tools. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6987-6998. [PMID: 37128773 DOI: 10.1021/acs.jafc.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
WCPFSRSF, an octapeptide (Trp-Cys-Pro-Phe-Ser-Arg-Ser-Phe), has been reported to improve memory in mice, but its gastrointestinal stability is unclear. The objective of this study was to evaluate the gastrointestinal stability of peptide WCPFSRSF and explore the neuroprotective potential of its digestive fragments. Results showed that the content of WCPFSRSF after gastric and gastrointestinal digestion decreased to 71.64% and less than 1%, respectively. Furthermore, the antioxidant and neuroprotective ability of WCPFSRSF were also affected. Eleven and nine peptides were identified in its gastric and gastrointestinal digestive products, respectively. Multiple bioinformatics tools in combination with principal component analysis were employed to assess the physicochemical and structural properties of peptides. Novel peptides generated after gastrointestinal digestion could be classified into three groups: the first group had high bioactivity and bioavailability; the second group had high amphiphilicity, charge, and net hydrogen; and the third group had a long peptide chain. In addition, the representative peptides WCPF and SR showed neuroprotective ability.
Collapse
Affiliation(s)
- Qi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
8
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
9
|
Wei R, Lin L, Li T, Li C, Chen B, Shen Y. Separation, identification, and design of α-glucosidase inhibitory peptides based on the molecular mechanism from Paeonia ostii 'Feng Dan' seed protein. J Food Sci 2022; 87:4892-4904. [PMID: 36205483 DOI: 10.1111/1750-3841.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022]
Abstract
Peptides are considered promising sources of nutraceuticals. In this study, a mixture of peptides was prepared from Paeonia ostii 'Feng Dan' seed meal protein by continuous enzymolysis. Successive separation and purification procedures, including ultrafiltration and reversed-phase high-performance liquid chromatography (RP-HPLC), were performed, and six novel peptides were identified by liquid chromatography-electrospray ionization source-mass spectrometry/mass spectrometry (LC-ESI-MS/MS). In an in vitro antidiabetic activity test, Tyr-Phe-Phe-Met exhibited stronger α-glucosidase inhibitory activity (48.17 ± 3.34% at 1 mg/mL) than the other peptides. Docking studies of this peptide into the active site of α-glucosidase showed that the formation of hydrogen bonds could be critical for the enzymatic trapping of inhibitory peptides. Furthermore, two novel peptides, Phe-Phe-Phe-Met (IC50 = 245.46 ± 44.01 µM) and Tyr-Tyr-Phe-Met (IC50 = 306.71 ± 48.17 µM), with improved α-glucosidase inhibitory activity, were designed based on molecular docking. Therefore, the seed meal of Paeonia ostii could be considered a functional food ingredient for the management of hyperglycemia, and three novel peptides were identified as α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Ruiting Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022; 9:950823. [PMID: 36118740 PMCID: PMC9479208 DOI: 10.3389/fnut.2022.950823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of bioactive peptides to exert biological functions has mainly contributed to their exploitation. The exploitation and utilization of these peptides have grown tremendously over the past two decades. Food-derived peptides from sources such as plant, animal, and marine proteins and their byproducts constitute a more significant portion of the naturally-occurring peptides that have been documented. Due to their high specificity and biocompatibility, these peptides serve as a suitable alternative to pharmacological drugs for treating non-communicable diseases (such as cardiovascular diseases, obesity, and cancer). They are helpful as food preservatives, ingredients in functional foods, and dietary supplements in the food sector. Despite their unique features, the application of these peptides in the clinical and food sector is to some extent hindered by their inherent drawbacks such as toxicity, bitterness, instability, and susceptibility to enzymatic degradation in the gastrointestinal tract. Several strategies have been employed to eliminate or reduce the disadvantages of peptides, thus enhancing the peptide bioactivity and broadening the opportunities for their applications. This review article focuses on the current research status of various bioactive peptides and the strategies that have been implemented to overcome their disadvantages. It will also highlight future perspectives regarding the possible improvements to be made for the development of bioactive peptides with practical uses and their commercialization.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Ran Du
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Pei Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
11
|
Wang Q, Yang Z, Zhuang J, Zhang J, Shen F, Yu P, Zhong H, Feng F. Antiaging function of Chinese pond turtle (Chinemys reevesii) peptide through activation of the Nrf2/Keap1 signaling pathway and its structure-activity relationship. Front Nutr 2022; 9:961922. [PMID: 35938097 PMCID: PMC9355154 DOI: 10.3389/fnut.2022.961922] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Chinese pond turtle is a traditional nourishing food with high nutritional value and bioactivity and has been considered a dietary remedy for prolonging the lifespan since ancient times. However, only limited information about their effects on longevity is available. This study was performed to assess the antioxidant activities and antiaging potential of Chinese pond turtle peptide (CPTP) using Drosophila melanogaster model and uncover the possible mechanisms underlying the beneficial effects. CPTP exhibited excellent antioxidant capability in vitro with IC50 values of 3.31, 1.93, and 9.52 mg/ml for 1,1-diphenyl-2-pycryl-hydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazo-line-6-sulfonic acid) diammonium salt (ABTS), and hydroxyl radical scavenging, respectively. In vivo, 0.8% of CPTP significantly extended the mean and median lifespan of female flies by 7.66 and 7.85%, followed by enhanced resistance to oxidative and heat stress. Besides, CPTP remarkably increased the antioxidant enzyme activities and diminished the peroxide product accumulation. Furthermore, CPTP upregulated the relative mRNA expression of antioxidant-related genes, including nuclear factor-erythroid-2-like 2 (Nrf2) and its downstream target genes, while downregulated the expression of Kelch-like ECH-associated protein 1 (Keap1). Taken together, CPTP displayed promising potential in both antioxidant and antiaging effects on flies by targeting the Nrf2/Keap1 pathway. Further peptide sequence determination revealed that 89.23% of peptides from the identified sequences in CPTP could exert potential inhibitory effects on Keap1. Among these peptides, ten representative peptide sequences could actively interact with the binding sites of Keap1-Nrf2 interaction through hydrogen bonds, van der Walls, hydrophobic interactions, and electrostatic interactions. Conclusively, CPTP could be utilized as health-promoting bioactive peptide with antioxidant and antiaging capacities.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zherui Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jiachen Zhuang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Peng Yu
- Yuyao Lengjiang Turtle Industry, Ningbo, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Hao Zhong,
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Fengqin Feng,
| |
Collapse
|
12
|
Adomėnienė A, Venskutonis PR. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082530. [PMID: 35458730 PMCID: PMC9026138 DOI: 10.3390/molecules27082530] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022]
Abstract
Dioscorea, consisting of over 600 species, is the most important genus in the Dioscoreaceae family; however, the practically used plants, which are commonly called yam, are restricted to a remarkably smaller number of species. Numerous studies have reported the high nutritional value of yam, particularly as an alternative source of starch and some important micronutrients. Several Dioscorea species are widely used for various medicinal purposes as well. In many studies, the bioactivities and health benefits of Dioscorea extracts and other preparations have been related to the presence of phytochemicals, which possess antioxidant properties; they are related mainly to radical-scavenging capacity in chemical assays and positive effects on the endogenous antioxidant system in cell-based and in vivo assays. Considering the increasing number of publications on this topic and the absence of comprehensive and focused review papers on antioxidant potential, this article summarizes the results of studies on the antioxidant properties of Dioscorea spp. and their relation to phytochemicals and health benefits. A comprehensive survey of the published articles has revealed that the majority of studies have been performed with plant tubers (rhizomes, roots), while reports on leaves are rather scarce. In general, leaf extracts demonstrated stronger antioxidant potential than tuber preparations. This may be related to the differences in phytochemical composition: saponins, phenanthrenes and, for some pigment-rich species (purple yams), anthocyanins are important constituents in tubers, while phenolic acids and flavonoids are characteristic phytochemicals in the leaves. The review may assist in explaining ethnopharmacological knowledge on the health benefits of Dioscorea plants and their preparations; moreover, it may foster further studies of poorly investigated species, as well as their wider application in developing new functional foods and nutraceuticals.
Collapse
|
13
|
Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem X 2022; 13:100183. [PMID: 35499000 PMCID: PMC9039911 DOI: 10.1016/j.fochx.2021.100183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweed and edible insects are considered new sources of bioactive peptides. Conventional approaches are necessary to validate the bioactivity of peptides. Bioinformatics tools accelerate the obtaining of bioactive peptides. The integrated approach is a promising strategy to obtain bioactive peptides.
The interest for food-derived bioactive peptides, either from common or unconventional sources, has increased due to their potential therapeutic effect against a wide range of diseases. The study of such bioactive peptides using conventional methods is a long journey, expensive and time-consuming. Hence, bioinformatic approaches, which can not only help to predict the formation of bioactive peptides from any known protein source, but also to analyze the protein structure/function relationship, have gained a new meaning in this scientific field. Therefore, this review aims to provides an overview of conventional characterization methods and the most recent advances in the field of in silico approaches for predicting and screening promising food-derived bioactive peptides.
Collapse
|
14
|
de Matos FM, de Lacerda JTJG, Zanetti G, de Castro RJS. Production of black cricket protein hydrolysates with α-amylase, α-glucosidase and angiotensin I-converting enzyme inhibitory activities using a mixture of proteases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Zhang S, Luo L, Sun X, Ma A. Bioactive Peptides: A Promising Alternative to Chemical Preservatives for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12369-12384. [PMID: 34649436 DOI: 10.1021/acs.jafc.1c04020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioactive peptides used for food preservation can prolong the shelf life through bacteriostasis and antioxidation. On the one hand, bioactive peptides can inhibit lipid oxidation by scavenging free radicals, interacting with metal ions, and inhibiting lipid peroxidation. On the other hand, bioactive peptides can fundamentally inhibit the growth and reproduction of microorganisms by destroying their cell membranes or targeting intracellular components. Besides, bioactive peptides are biocompatible and biodegradable in vivo. Therefore, they are regarded as a promising alternative to chemical preservatives. However, bioactive peptides are easily affected by the external environment in practical application, which hinders their commercialization. Currently, the studies to overcome the weakness focus on encapsulation and chemical synthesis. Bioactive peptides have been applied to the preservation of various foods in experimental research, with good results. In the future, with the deepening understanding of their safety and structure-activity relationship, there may be more bioactive peptides as food preservatives.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|