1
|
Zhao Y, Sun S, Liu J, Zheng M, Liu M, Liu J, Liu H. Investigation of the protective mechanism of paeoniflorin against hyperlipidemia by an integrated metabolomics and gut microbiota strategy. J Nutr Biochem 2025; 137:109831. [PMID: 39653155 DOI: 10.1016/j.jnutbio.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of hyperlipidemia is gradually increasing globally, posing a serious threat to public health. Previous studies have shown that paeoniflorin (PF) effectively improved abnormal lipid metabolism in atherosclerotic mice. However, the anti-hyperlipidemia effect and potential mechanism of paeoniflorin remain unclear. The gut microbiota (GM) is closely related to hyperlipidemia. This study was aimed to investigate effects of PF on improving the health of high-fat diet (HFD)-induced hyperlipidemic mice by modulating GM. A hyperlipidemic mouse model was established using an HFD, and the hypolipidemic effect of PF was detected in vivo. Besides16S ribosomal RNA sequencing and SCFAs metabolic analysis were performed to explore the lipid-lowering mechanism of PF. Importantly, fecal microbiota transplantation (FMT) experiments were conducted to verify the lipid-lowering mechanism of PF. The results showed that PF significantly inhibited the development of hyperlipidemia, reduced serum lipid and inflammatory cytokine levels, and improved liver steatosis. In addition, 16S rRNA sequencing revealed that PF treatment significantly increased the relative abundance of Lactobacillus, Coprococcus, Blautia, Roseburia, and Bacteroides while reducing the relative abundance of Prevotella. Meanwhile, the results of targeted metabolomics indicate that PF therapy can effectively restore butyric acid and propionic acid levels in the intestine. The FMT experiments further demonstrated that PF improved hyperlipidemia by regulating GM and its metabolites. The above results provide a valuable theoretical basis for the development and application of PF as a functional food for hyperlipidemia.
Collapse
Affiliation(s)
- Youwei Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shijie Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jiawen Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
2
|
Zhao L, Peng Y, Huang J, Liu N, Zou X, Li J, Fan Y, Li P, Tang L, Wang J, Zeng Y, Wu Y, Zhu G. Structural characterization of polysaccharides from Polygonatum Sibiricum and effect on alleviating hyperlipidemia in egg yolk emulsion-induced mice. Int J Biol Macromol 2025; 296:139808. [PMID: 39805457 DOI: 10.1016/j.ijbiomac.2025.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Polysaccharides are the major bioactive composition of Polygonatum sibiricum (P. sibiricum). However, the structural and functional identifications of these polysaccharides were still limited. Herein, we isolated a novel P. sibiricum polysaccharides (PSPF) and explored its potential function and mechanism in alleviating hyperlipidemia. PSPF were purified by diethylaminoethyl-sepharose fast flow (DEAE-Sepharose FF) and cross-linked dextran gel LH-20 (Sephadex LH-20) column chromatography, and identified by gel-permeation chromatography, methylation analysis, fourier transform infrared spectrometer (FT-IR), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). Their molecular weight (Mw), polysaccharide composition, and chemical structure were characterized. Furthermore, egg yolk emulsion-induced acute hyperlipidemia mouse model was constructed to evaluate the lipid-lowering efficacy and the underlying mechanism of PSPF. It was found that PSPF, with the Mw of 3592 Da, were prepared and mainly consisted of fructan with →1)-β-D-Fruf-(2 → main chain and →6)-β-D-Fruf-(2 → side chains. In addition, PSPF supplements efficiently reduced liver lipid accumulation, alleviated hepatocyte steatosis, and upregulated the AMP-activated protein kinase (AMPK) pathway, thereby enhancing fatty acid oxidation and decomposition. These results indicate that PSPF may serve as the potential dietary supplements for lipid reduction.
Collapse
Affiliation(s)
- Lulu Zhao
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yongbo Peng
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Huang
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Nishang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xinrong Zou
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Junnan Li
- Department of Hematology, Department of Anesthesiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yunpeng Fan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ping Li
- Department of Hematology, Department of Anesthesiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Liling Tang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang 621000, China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang 621000, China
| | - Yajun Zeng
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaohui Zhu
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
3
|
Huang Y, Xu B. Critical review on the intervention effects of flavonoids from cereal grains and food legumes on lipid metabolism. Food Chem 2025; 464:141790. [PMID: 39509881 DOI: 10.1016/j.foodchem.2024.141790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Obesity, often caused by disorders of lipid metabolism, is a global health concern. Flavonoids from staple grains and legumes are expected as a safer and more cost-effective alternative for the future development of dietary flavonoid-based anti-obesity dietary supplements or drugs. This review systematically summarized their content variation, metabolism in the human body, effects and molecular mechanisms on lipid metabolism. These flavonoids intervene in lipid metabolism by inhibiting lipogenesis, promoting lipolysis, enhancing energy metabolism, reducing appetite, suppressing inflammation, enhancing insulin sensitivity, and improving the composition of the gut microbial. Fermentation and sprouting techniques enhance flavonoid content and these beneficial effects. The multidirectional intervention of lipid metabolism is mainly through regulating AMPK signaling pathway. This study provides potential improvement for challenges of application, including addressing high extraction costs and improving bioavailability, ensuring safety, filling clinical study gaps, and investigating potential synergistic effects between flavonoids in grains and legumes, and other components.
Collapse
Affiliation(s)
- Yin Huang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
4
|
Cai Y, Chen Q. Resveratrol: A Narrative Review Regarding Its Mechanisms in Mitigating Obesity-Associated Metabolic Disorders. Phytother Res 2025; 39:999-1019. [PMID: 39715730 DOI: 10.1002/ptr.8416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
Resveratrol (RSV) is a naturally occurring astragalus-like polyphenolic compound with remarkable weight loss properties. However, the mechanism of RSV in treating obesity is unclear. In this narrative review, we explored electronic databases (PubMed) for research articles from 2021 to the present using the keywords "resveratrol" and "obesity". This article explores the mechanisms involved in the alleviation of obesity-related metabolic disorders by RSV. RSV affects obesity by modulating mitochondrial function, insulin signaling, and gut microbiota, regulating lipid metabolism, inhibiting oxidative stress, and regulating epigenetic regulation. Administering RSV to pregnant animals exhibits maternal and first-generation offspring benefits, and RSV administration to lactating animals has long-term benefits, which involve the epigenetic modulations by RSV. A comprehensive understanding of the epigenetic mechanisms of RSV regulation could help in developing drugs suitable for pregnancy preparation groups, pregnant women, and nursing infants.
Collapse
Affiliation(s)
- Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Vila-Real C, Costa C, Pimenta-Martins A, Mbugua S, Hagrétou SL, Katina K, Maina NH, Pinto E, Gomes AMP. Novel Fermented Plant-Based Functional Beverage: Biological Potential and Impact on the Human Gut Microbiota. Foods 2025; 14:433. [PMID: 39942028 PMCID: PMC11817141 DOI: 10.3390/foods14030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/28/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Controlled fermentation carried out by selected starters might enhance the safety, nutritional, and biological profiles of non-dairy fermented products. This research aims to study the biological potential and impact on the human gut microbiota of a novel fermented finger millet-based product. Finger millet (Eleusine coracana), suspended in an aqueous sucrose-based solution, was fermented by Weissella confusa 2LABPT05 and Lactiplantibacillus plantarum 299v (1%, 1:1 ratio (v/v)), at 30 °C/200 rpm in an orbital incubator until pH ≈ 4.5-5.0. Microbial growth, phenolic compounds, antioxidant, and antidiabetic activities were evaluated. In vitro digestion followed by in vitro faecal fermentation were used to study the impact of the fermented plant-based functional beverage (PBFB) on the human gut microbiota. Antidiabetic activity (21% vs. 14%) and total phenolics (244 vs. 181 mg of gallic acid equivalents/kg PBFB) increased with fermentation. The digested fermented PBFB contributed to the increase, over the first 6 h, of the Bifidobacterium's 16S rRNA gene copy numbers, concomitant with significant release of the acetic, propionic, and butyric short chain fatty acids, and also lactic acid. The novel PBFB has been shown to have antidiabetic potential and bifidogenic effects, and consequently its consumption might positively impact blood glucose levels and the human gut microbiota.
Collapse
Affiliation(s)
- Catarina Vila-Real
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
| | - Célia Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
| | - Ana Pimenta-Martins
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
| | - Samuel Mbugua
- Department of Food Science, Nutrition and Technology, University of Nairobi, P.O. Box 29053, Nairobi 00625, Kenya;
| | - Sawadogo-Lingani Hagrétou
- Département Technologie Alimentaire (DTA), Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), Centre National de la Recherche Scientifique et Technologique (CNRST), Ouagadougou 03 BP 7047, Burkina Faso;
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (K.K.); (N.H.M.)
| | - Ndegwa H. Maina
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (K.K.); (N.H.M.)
| | - Elisabete Pinto
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Ana M. P. Gomes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.V.-R.); (C.C.); (A.P.-M.); (E.P.)
| |
Collapse
|
6
|
Qin D, Fu W, Sun Y, Zhao L, Liu H, Fan D, Tan D, Ji X, Wang S. Protective Effects of Cereal-Based Fermented Beverages Against 5-Fluorouracil-Induced Intestinal Damage in Mice. Nutrients 2024; 16:4332. [PMID: 39770954 PMCID: PMC11679319 DOI: 10.3390/nu16244332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is a common chemotherapeutic medication used to treat cancer. However, the intestinal tract may sustain oxidative damage as a result. OBJECTIVES The purpose of this study was to clarify the underlying molecular mechanisms and examine the preventive benefits of cereal-based fermented drinks (CFBs) against intestinal injury in mice caused by 5-FU. METHODS The mice were injected intraperitoneally with 5-FU to induce intestinal mucosal and treated with CFB. The factors for intestinal barrier integrity, oxidative stress and inflammation were measured. RESULTS The findings demonstrated that CFBs had high levels of polyphenol, flavonoids, and peptides and had in vitro high free radical scavenging capacity. Furthermore, CFBs effectively ameliorated 5-FU-induced intestinal epithelium damage, characterized by increasing intestinal tight junctions and reducing apoptosis in intestinal cells. These protective effects may attribute to the increased activity of antioxidant-related enzymes (SOD, CAT, and GSH) as well as decreased amounts of inflammatory and oxidative damage markers (IL-1β, TNF-α, and MDA) in the intestinal tract. CONCLUSIONS Overall, these results show that CFBs can mitigate intestinal damage caused by 5-FU by reducing oxidative stress, suggesting the potential utility of CFBs for therapeutic treatment against intestinal mucositis.
Collapse
Affiliation(s)
- Dongze Qin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Wenhui Fu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Lingda Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Haiwei Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Dongfei Tan
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences (TAAS), Tianjin 300192, China;
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| |
Collapse
|
7
|
Chen W, Zhou Z, Qi R, Zhou J, Liang H, Huang P, Zou Z, Dong L, Li H, Du B, Li P. Ameliorative effects of Trichosanthes kirilowii Maxim. seed oil on hyperlipidemia rats associated with the regulation of gut microbiology and metabolomics. Food Res Int 2024; 197:115141. [PMID: 39593355 DOI: 10.1016/j.foodres.2024.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The mechanisms underlying the ameliorative effects of polyunsaturated fatty acids (PUFAs) on metabolic disorders induced by a high-fat diet (HFD) remain poorly unclear. In this study, we investigated the anti-hyperlipidemic effects of Trichosanthes kirilowii Maxim. (T. kirilowii) seed oil rich in conjugated linolenic acid in HFD-induced hyperlipidemic rats, by the gut microbiome, cecum bile acids (BAs), and serum metabolomics. The results showed that T. kirilowii seed oil improved dyslipidemia, hepatic steatosis, oxidative stress, and inflammatory responses in HFD-induced rats. Meanwhile, T. kirilowii seed oil inhibited sterol regulatory element-binding protein 1c (SREBP-1c) mediated fatty acid synthesis and upregulated cholesterol 7-alpha hydroxylase (CYP7A1) mediated hepatic cholesterol metabolism to exert hypolipidemic effects. The administration of high dose T. kirilowii seed oil (THD) improved gut microbiota dysbiosis, increased the relative abundance of beneficial bacteria Romboutsia and unidentified_Oscillospiraceae, and decreased the relative abundance of Christensenellaceae_R-7 group, Phascolarctobacterium, and Bacteroides in HFD-induced rats. T. kirilowii seed oil reduced the accumulation of cecum primary BAs in HFD-induced rats. In addition, THD reversed the HFD-induced changes in 24 serum metabolites including leucine, isoleucine, acetylcarnitine, and glucose. Metabolic pathway enrichment analysis of the differential metabolites revealed that valine, leucine and isoleucine metabolism, butanoate metabolism, citrate cycle, and glycolysis were potential metabolic pathways involved in the anti-hyperlipidemic effects of T. kirilowii seed oil. In conclusion, this study found that dietary T. kirilowii seed oil alleviated gut microbiota dysbiosis and improved metabolic disorders in hyperlipidemic rats. This provides new insights into the anti-hyperlipidemic mechanism by which other families of PUFAs are derived from different plants.
Collapse
Affiliation(s)
- Weili Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhangbao Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruida Qi
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jun Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huiying Liang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pinxi Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ling Dong
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Hua Li
- Anhui Youyu Kuayue Food Development Co., Ltd, Anqing, Anhui 246300, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
8
|
Qayyum N, Ismael M, Haoyue H, Guo H, Lü X. Dietary supplementation of probiotic Lactobacillus modulates metabolic dysfunction-associated steatotic liver disease and intestinal barrier integrity in obesity-induced mice. J Food Sci 2024; 89:10113-10133. [PMID: 39455245 DOI: 10.1111/1750-3841.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
The impact of Lacticaseibacillus paracasei NWAFU334 and Limosilactobacillus fermentum NWAFU0035 on the amelioration of liver function, oxidative stress reduction, and lipid metabolism modulation in mice subjected to an obesity-inducing high-fat diet (HFD) model was investigated. L. paracasei NWAFU334 and L. fermentum NWAFU0035 supplementations over 12 weeks have been shown to have numerous beneficial effects in mice with induced obesity. These effects comprise the restoration of liver function and the reduction of oxidative stress within the liver. Furthermore, the supplementation led to a decreased content of fat accumulation in the liver, mitigation of the expression of inflammatory cytokines in the liver and colon, and a decrease in the expression levels of tight-junction proteins, for example, claudin-1, PPARγ, occludin, and ZO-1. Additionally, a notable improvement in the colonic expression proteins, including IL-6, TNF-α, IL-1β, Muc-2, Muc-3, Zo-1, claudin-1, and occludin. These proposed strains considerably decreased proinflammatory cytokines and influenced the regulation of lipid metabolism in the liver. These findings indicate that the potential mechanisms, primarily the impact of L. paracasei NWAFU334 and L. fermentum NWAFU0035 on obesity-induced liver function in mice, involve two regulated pathways: downregulation of lipogenesis and upregulation of gene expression related to fatty acid oxidation and lipolysis. In other words, these probiotic bacterial strains might be beneficial in reducing fat production and increasing fat breakdown in the liver. They may serve as effective therapeutic supplements for alleviating abnormalities induced by an HFD.
Collapse
Affiliation(s)
- Nageena Qayyum
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | | | - Han Haoyue
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
| | - Honghui Guo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
| |
Collapse
|
9
|
Li S, Liu W, Li Y, Che X, Xiao P, Liu S, Ma Y, Ren D, Wu L, Wang Q, He Y. Extraction, purification, structural characterization and anti-hyperlipidemia activity of fucoidan from Laminaria digitata. Int J Biol Macromol 2024; 279:135223. [PMID: 39241999 DOI: 10.1016/j.ijbiomac.2024.135223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Laminaria digitata is a high-quality seaweed resource that is widely cultured and has good application prospects. In this study, Laminaria digitata fucoidan (LF) was extracted from Laminaria digitata, and purified using DEAE-Sepharose Fast Flow gel column to obtain four different grades. Among those, LF4 (Mw:165 kDa), mainly composed of fucose(56.80 %), had the highest total sugar (66.91 %) and sulfate (17.07 %) content. FT-RT and NMR results showed that LF4 was mainly composed of galactosylated galactofucose, and has a sulfate group attached to fucose C4. With the animal experimentation, it was revealed that hyperlipidaemic mice had significantly higher levels of TC (5.52 mmol/L), TG (2.28 mmol/L) and LDL-C (5.12 mmol/L) and significantly lower levels of HDL-C (2 mmol/L). However, LF had the efficacy in modulating the lipid metabolism disturbances induced by hyperlipidemia, as well as the ability to regulate cholesterol transport in serum. Moreover, it regulated AMPK/ACC, PPAR-α/LAXRa, Nrf2/Nqo1, TLR4/NF-κB signaling pathway genes and proteins expression in the liver. In addition, it promoted the production of beneficial short-chain fatty acids (SCFAs) while improving the composition and structure of gut microbiota, including balancing the abundance of Bacteroidota, Firmicutes, Muribaculaceae, Alloprevotella, Escherichia-Shigella, Prevotella and NK4A136. The results clearly indicated that LF4 could significantly ameliorate hyperlipidemia, suggesting its prospective application as a functional food.
Collapse
Affiliation(s)
- Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Wen Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Xinyi Che
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Peng Xiao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
10
|
Chen M, Wu Y, Yang H, Liu T, Han T, Dai W, Cen J, Ouyang F, Chen J, Liu J, Zhou L, Hu X. Effects of fermented Arctium lappa L. root by Lactobacillus casei on hyperlipidemic mice. Front Pharmacol 2024; 15:1447077. [PMID: 39529876 PMCID: PMC11551023 DOI: 10.3389/fphar.2024.1447077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction This study aimed to establish a fermentation system based on Lactobacillus casei (LC) and Arctium lappa L. root (AR) to investigate its effects. The objectives included comparing metabolite profiles pre- and post-fermentation using untargeted metabolomics and evaluating the impact of LC-AR in high-fat diet-induced hyperlipidemic mice. Methods Untargeted metabolomics was used to analyze differences in metabolites before and after fermentation. In vitro antioxidant activity, liver injury, lipid levels, pro-inflammatory cytokine levels, and cholesterol-related mRNA expression were assessed. 16S rRNA sequencing was conducted to evaluate changes in gut microbiota composition. Results LC-AR exhibited stronger antioxidant activity and higher metabolite levels than AR. It also improved liver injury as well as better regulation of lipid levels, pro-inflammatory cytokine levels, and cholesterol-related mRNA. 16S rRNA analysis revealed that LC-AR decreased the Firmicutes/Bacteroidetes ratio, which correlated negatively with triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. Discussion These findings suggest that LC-AR may serve as a promising functional food and drug raw material for improving hyperlipidemia, particularly through its beneficial effects on gut microbiota and lipid regulation.
Collapse
Affiliation(s)
- MingJu Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuxiao Wu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Hongxuan Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianfeng Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tongkun Han
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, Guangdong, China
| | - Wangqiang Dai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Junyue Cen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Fan Ouyang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jingjing Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jianxin Liu
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xuguang Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Zhang Y, Dong W, Zhao M, Zhang J, Li L, Ma Y, Meng X, Wang Y. Identification and Analysis of Phenolic Compounds in Vaccinium uliginosum L. and Its Lipid-Lowering Activity In Vitro. Foods 2024; 13:3438. [PMID: 39517222 PMCID: PMC11545093 DOI: 10.3390/foods13213438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccinium uliginosum L. (VU), rich in polyphenols, is an important wild berry resource primarily distributed in extremely cold regions. However, the detailed composition of Vaccinium uliginosum L. polyphenols (VUPs) has not been reported, which limits the development and utilization of VU. In this study, VU-free polyphenols (VUFPs) and VU-bound polyphenols (VUBPs) were, respectively, extracted using an ultrasonic, complex enzyme and alkali extraction method; the compositions were identified using ultra-performance liquid chromatography-electrospray ionization mass spectrometry, and lipid-lowering activity in vitro was evaluated. The results showed that 885 polyphenols and 47 anthocyanins were detected in the VUFPs and VUBPs, and 30 anthocyanin monomers were firstly detected in VU. Compared with the model group, the accumulation of lipid droplets and the total cholesterol and triglyceride contents in the high-concentration VUP group reduced by 36.95%, 65.82%, and 62.43%, respectively, and liver damage was also alleviated. It was also found that VUP can regulate the level of Asialoglycoprotein receptor 1, a new target for lipid lowering. In summary, this study provides a detailed report on VUP for the first time, confirming that VUP has lipid-lowering potential in vitro. These findings suggest new strategies and theoretical support for the development and utilization of VU, especially in the field of functional foods.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Manjun Zhao
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Jiyue Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yan Ma
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| |
Collapse
|
12
|
Dai Z, Lin Y, Chen G, Yu P, Wu H, Ning M, Blanchard C, Zhou Z. Novel approach for ameliorating high-fat diet-induced syndromes via probiotic-fermented oyster mushroom: from metabolites and microbiota to regulation mechanisms. Food Funct 2024; 15:10472-10489. [PMID: 39344433 DOI: 10.1039/d4fo02142h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The potential effects of probiotics on lowering lipid accumulation and alleviating gut microbiota perturbation have been extensively substantiated, but whether Lactobacillus rhamnoses-fermented oyster mushroom (FOM) could more pronouncedly attenuate obesity remains unclear. In this study, the anti-obesity effect of FOM was estimated based on the gut microbiota profile and analysis of hepatic lipid metabolic characteristics. The results revealed that FOM intervention dramatically improved hepatic lipid accumulation, characterized by reduction in fat-related factor metabolism levels and liver lesion enzymatic activities and down-regulation of the expression of genes associated with glycolipid metabolism (Foxo1, Gck, G6pd, Il6r and IL-β). Metabolomics analysis indicated HFD-induced dysglycaemia and disturbed amino acid metabolism, characterized by significant enrichment of pathways (butanoate metabolism, arginine biosynthesis, etc.) and elevated levels of D-mannose, succinate and β-D-fructose, followed by a decreased galactitol content. Furthermore, FOM intervention showed significant enrichment of specific pathways, particularly transcriptional misregulation in cancer and FoxO signaling pathways, while the MAPK signaling pathway demonstrated consistent enrichment across all experimental groups. FOM intervention reshaped the gut microbiota structure by facilitating the proliferation of SCFA producers (Romboutsia, Ruminococcaceae and Allobaculum), together with the depletion of Lachnospiraceae population. The current study strengthened our understanding of FOM prebiotic activities and obesity alleviation mechanisms.
Collapse
Affiliation(s)
- Zhen Dai
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanhong Lin
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China.
| | - Guandi Chen
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China.
| | - Peng Yu
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China.
| | - Haotian Wu
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China.
| | - Ming Ning
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China.
| | - Chris Blanchard
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Zhongkai Zhou
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China.
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
13
|
Dong L, Li Y, Chen Q, Liu Y, Wu Z, Pan D, Yan N, Liu L. Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes. Crit Rev Food Sci Nutr 2024; 64:9495-9513. [PMID: 37222572 DOI: 10.1080/10408398.2023.2213768] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advanced glycation end products (AGEs), the products of non-enzymatic browning reactions between the active carbonyl groups of reducing sugars and the free amines of amino acids, are largely considered oxidative derivatives resulting from diabetic hyperglycemia, which are further recognized as a potential risk for insulin resistance (IR) and type 2 diabetes (T2D). The accumulation of AGEs can trigger numerous negative effects such as oxidative stress, carbonyl stress, inflammation, autophagy dysfunction and imbalance of gut microbiota. Recently, studies have shown that cereal polyphenols have the ability to inhibit the formation of AGEs, thereby preventing and alleviating T2D. In the meanwhile, phenolics compounds could produce different biological effects due to the quantitative structure activity-relationship. This review highlights the effects of cereal polyphenols as a nonpharmacologic intervention in anti-AGEs and alleviating T2D based on the effects of oxidative stress, carbonyl stress, inflammation, autophagy, and gut microbiota, which also provides a new perspective on the etiology and treatment of diabetes.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
14
|
Bhat S, Majeed Y, Yatoo GN, Hassan S, Khan T, Sofi PA, Ganai BA, Fazili KM, Zargar SM. Unravelling effects of phytochemicals from buckwheat on cholesterol metabolism and lipid accumulation in HepG2 cells and its validation through gene expression analysis. Mol Biol Rep 2024; 51:759. [PMID: 38874818 DOI: 10.1007/s11033-024-09695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The objective of this research was to elucidate the hypocholesterolemic effects of a bioactive compound extracted from buckwheat, and to delineate its influence on the regulatory mechanisms of cholesterol metabolism. The compound under investigation was identified as quercetin. MATERIAL AND RESULTS In vitro experiments conducted on HepG2 cells treated with quercetin revealed a significant reduction in intracellular cholesterol accumulation. This phenomenon was rigorously quantified by assessing the transcriptional activity of key genes involved in the biosynthesis and metabolism of cholesterol. A statistically significant reduction in the expression of HMG-CoA reductase (HMGCR) was observed, indicating a decrease in endogenous cholesterol synthesis. Conversely, an upregulation in the expression of cholesterol 7 alpha-hydroxylase (CYP7A1) was also observed, suggesting an enhanced catabolism of cholesterol to bile acids. Furthermore, the study explored the combinatory effects of quercetin and simvastatin, a clinically utilized statin, revealing a synergistic action in modulating cholesterol levels at various dosages. CONCLUSIONS The findings from this research provide a comprehensive insight into the mechanistic pathways through which quercetin, a phytochemical derived from buckwheat, exerts its hypocholesterolemic effects. Additionally, the observed synergistic interaction between quercetin and simvastatin opens up new avenues for the development of combined therapeutic strategies to manage hyperlipidemia.
Collapse
Affiliation(s)
- Sabreena Bhat
- CORD, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu & Kashmir, India
| | - Younis Majeed
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India
| | - Gulam Nabi Yatoo
- Department of Chemistry, National Institute of Technology Srinagar, Srinagar, 190006, Jammu & Kashmir, India
| | - Shahnawaz Hassan
- CORD, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India
| | - Tamana Khan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu & Kashmir, India
| | - Parvaze A Sofi
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu & Kashmir, India
| | - Bashir Ahmed Ganai
- CORD, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India.
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu & Kashmir, India.
| |
Collapse
|
15
|
Duan Y, Guo F, Li C, Xiang D, Gong M, Yi H, Chen L, Yan L, Zhang D, Dai L, Liu X, Wang Z. Aqueous extract of fermented Eucommia ulmoides leaves alleviates hyperlipidemia by maintaining gut homeostasis and modulating metabolism in high-fat diet fed rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155291. [PMID: 38518640 DOI: 10.1016/j.phymed.2023.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND As a traditional Chinese medicinal herb, the lipid-lowing biological potential of Eucommia ulmoides leaves (EL) has been demonstrated. After fermentation, the EL have been made into various products with lipid-lowering effects and antioxidant activity. However, the anti-hyperlipidemic mechanism of fermented Eucommia ulmoides leaves (FEL) is unclear now. PURPOSE To evaluate the effects of FEL on hyperlipidemia and investigate the mechanism based on regulating gut homeostasis and host metabolism. METHODS Hyperlipidemia animal model in Wistar rats was established after 8 weeks high-fat diet (HFD) fed. The administered doses of aqueous extract of FEL (FELE) were 128, 256 and 512 mg/kg/d, respectively. Serum biochemical parameters detection, histopathological sections analysis, 16S rDNA sequencing of gut microbiota and untargeted fecal metabolomics analysis, were performed to determine the therapeutic effects and predict related pathways of FELE on hyperlipidemia. The changes of proteins and genes elated to lipid were detected by Immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS 56 Components in FELE were identified by UPLC-MS, with organic acids, flavonoids and phenolic acids accounting for the majority. The intervention of FELE significantly reduced the body weight, lipid accumulation and the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein-cholesterol (LDL-C) in hyperlipidemia rats, while increased the level of High-density lipoprotein-cholesterol (HDL-C). Meanwhile, FELE improved the inflammatory makers and oxidative stress factors, which is tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT). These results demonstrated that FETE can effectively reduce blood lipids and alleviate inflammation and oxidative damage caused by hyperlipidemia. Mechanistically, FELE restore the homeostasis of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of probiotics, especially Lactobacillus, Rombousia, Bacteroides, Roseburia, Clostridia_UCG-014_Unclassified, while modulated metabolism through amino acid, bile acid and lipid-related metabolism pathways. In addition, the Pearson correlation analysis found that the upregulated bilirubin, threonine, dopamine and downregulated lipocholic acid, d-sphingosine were key metabolites after FELE intervention. IF and qRT-PCR analysis showed that FELE upregulated the expression of fatty acid oxidation proteins and genes (PPARα, CPT1A), bile acid synthesis and excretion proteins and genes (LXRα, CYP7A1, FXR), and downregulated the expression of adipogenic gene (SREBP-1c) by regulating gut microbiota to improve metabolism and exert a lipid-lowering effect. CONCLUSION This work filled the lipid-lowering mechanism gap of FEL. FELE can improve HFD-induced hyperlipidemia by regulating the gut microbiota homeostasis and metabolism. Thus, FEL has the potential to develop into the novel raw material of lipid-lowering drugs.
Collapse
Affiliation(s)
- Yu Duan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dinghua Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Man Gong
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangmian Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lihua Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Dai
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
16
|
Ren C, Hong B, Zhang S, Yuan D, Feng J, Shan S, Zhang J, Guan L, Zhu L, Lu S. Autoclaving-treated germinated brown rice relieves hyperlipidemia by modulating gut microbiota in humans. Front Nutr 2024; 11:1403200. [PMID: 38826585 PMCID: PMC11140153 DOI: 10.3389/fnut.2024.1403200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Germinated brown rice is a functional food with a promising potential for alleviating metabolic diseases. This study aimed to explore the hypolipidemic effects of autoclaving-treated germinated brown rice (AGBR) and the underlying mechanisms involving gut microbiota. Methods Dietary intervention with AGBR or polished rice (PR) was implemented in patients with hyperlipidemia for 3 months, and blood lipids were analyzed. Nutritional characteristics of AGBR and PR were measured and compared. Additionally, 16S rDNA sequencing was performed to reveal the differences in gut microbiota between the AGBR and PR groups. Results AGBR relieves hyperlipidemia in patients, as evidenced by reduced levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein-B, and elevated levels of high-density lipoprotein cholesterol and apolipoprotein-A1. In terms of nutrition, AGBR had significantly higher concentrations of free amino acids (10/16 species), γ-aminobutyric acid, resistant starch, soluble dietary fiber, and flavonoids (11/13 species) than PR. In addition, higher microbial abundance, diversity, and uniformity were observed in the AGBR group than in the PR group. At the phylum level, AGBR reduced Firmicutes, Proteobacteria, Desulfobacterota, and Synergistota, and elevated Bacteroidota and Verrucomicrobiota. At the genus level, AGBR elevated Bacteroides, Faecalibacterium, Dialister, Prevotella, and Bifidobacterium, and reduced Escherichia-Shigella, Blautia, Romboutsia, and Turicibacter. Discussion AGBR contributes to the remission of hyperlipidemia by modulating the gut microbiota.
Collapse
Affiliation(s)
- Chuanying Ren
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin, China
| | - Bin Hong
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shan Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Di Yuan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Junran Feng
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shan Shan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jingyi Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lijun Guan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ling Zhu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
17
|
Scuto M, Rampulla F, Reali GM, Spanò SM, Trovato Salinaro A, Calabrese V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants (Basel) 2024; 13:484. [PMID: 38671931 PMCID: PMC11047582 DOI: 10.3390/antiox13040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress resilience and overall human health have received much attention. Recently, the gut-brain axis has attracted prominent interest for preventing and therapeutically impacting neuropathologies and gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with probiotics have shown to improve gut bioavailability and blood-brain barrier (BBB) permeability, thus inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with hormesis, polyphenols display biphasic dose-response effects by activating at a low dose the Nrf2 pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1 upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modulation of the composition and function of the gut microbiota through polyphenols and/or probiotics enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer's disease and other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive performance and brain health. In this review, we also explore interactions of the gut-brain axis based on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and personalized nutritional therapies.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | | | | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | |
Collapse
|
18
|
Wei B, Peng Z, Zheng W, Yang S, Wu M, Liu K, Xiao M, Huang T, Xie M, Xiong T. Probiotic-fermented tomato alleviates high-fat diet-induced obesity in mice: Insights from microbiome and metabolomics. Food Chem 2024; 436:137719. [PMID: 37839120 DOI: 10.1016/j.foodchem.2023.137719] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Probiotic-fermented plant-based foods are associated with weight loss. Here, we hypothesized probiotic-fermented tomato (FT) as a functional food with potential to alleviate obesity, thus the obesity-alleviating effects and mechanisms of FT on high-fat diet-induced obese mice were explored via biochemical, gut microbiome, and serum metabolomics analysis. The results showed that FT performed better than unfermented tomato in reducing body weight gain and fat accumulation, improving dyslipidemia and glucose homeostasis, and relieving inflammation and adipocytokine dysregulation. Particularly, live probiotic-fermented tomato (LFT) was associated with improved diversity, composition, and structure of gut microbiota, suppressed obesity-related genera growth (e.g., Clostridium, Olsenella, and Mucispirillum), and promoted beneficial genera growth (e.g., Roseburia, Coprococcus, and Oscillospira), which were associated negatively with body weight, TC, TG, and TNF-α levels. Additionally, LFT was associated with positive changes in glycerophospholipids, sphingolipids, unsaturated fatty acids, and amino acids levels. Collectively, as a functional food, LFT possessed potential for obesity alleviation.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Shiyu Yang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Min Wu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Kui Liu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
19
|
Wang X, Ren Y, Li S, Guo C, Gao Z. Development of a polyphenol-enriched whole kiwifruit dietary supplement and its potential in ameliorating hyperlipidemia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2142-2155. [PMID: 37926484 DOI: 10.1002/jsfa.13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Kiwifruit pomace, which contains abundant phenolic compounds, is typically discarded during the juicing process, leading to wastage of valuable resources. To address this issue, various indicators (including total acidity, sugar/acid ratio, vitamin C, total polyphenols, polyphenol monomers, and soluble solids content) of 15 kiwifruit cultivars were evaluated and juiced. Then, a polyphenol-concentrated solution from kiwifruit pomace was backfilled into kiwi juice to prepare whole nutritious compound kiwi juice, and its anti-hyperlipidemic activity on obese model mice was then investigated. RESULTS Through grey relational analysis and the technique for order preference by similarity to an ideal solution (TOPSIS), Kuimi and Huayou were identified as the predominant varieties for juicing, with weighted relevance scores of 0.695 and 0.871 respectively and TOPSIS scores of 0.6509 and 0.8220 respectively. The polyphenol content of Cuixiang pomace was 43.97 mg g-1 , making it the most suitable choice for polyphenol extraction. By backfilling a polyphenol-concentrated solution derived from Cuixiang pomace into compound kiwi juice of Huayou and Kuimi, the whole nutritious compound kiwi juice with polyphenols was produced and exhibited superior bioactivities, including enhanced hepatic oxidative stress defense, and alleviated serum lipid abnormalities. Furthermore, whole nutritious compound kiwi juice with polyphenols ameliorated host intestinal microbiota dysbiosis by increasing the relative abundance of the phyla Bacteroidota and Verrucomicrobiota. CONCLUSION A hypolipidemic dietary supplement based on kiwifruit pomace polyphenols has been successfully developed, providing an effective solution for hyperlipidemia intervention. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Yaopeng Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
20
|
Bahitham W, Alghamdi S, Omer I, Alsudais A, Hakeem I, Alghamdi A, Abualnaja R, Sanai FM, Rosado AS, Sergi CM. Double Trouble: How Microbiome Dysbiosis and Mitochondrial Dysfunction Drive Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Biomedicines 2024; 12:550. [PMID: 38540163 PMCID: PMC10967987 DOI: 10.3390/biomedicines12030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are closely related liver conditions that have become more prevalent globally. This review examines the intricate interplay between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH. The combination of these two factors creates a synergistic situation referred to as "double trouble", which promotes the accumulation of lipids in the liver and the subsequent progression from simple steatosis (NAFLD) to inflammation (NASH). Microbiome dysbiosis, characterized by changes in the composition of gut microbes and increased intestinal permeability, contributes to the movement of bacterial products into the liver. It triggers metabolic disturbances and has anti-inflammatory effects. Understanding the complex relationship between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH is crucial for advancing innovative therapeutic approaches that target these underlying mechanisms.
Collapse
Affiliation(s)
- Wesam Bahitham
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Siraj Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ibrahim Omer
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ali Alsudais
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ilana Hakeem
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Arwa Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Reema Abualnaja
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Faisal M Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia
| | - Alexandre S Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Consolato M Sergi
- Anatomic Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
21
|
Tamés H, Sabater C, Royo F, Margolles A, Falcón JM, Ruas-Madiedo P, Ruiz L. Mouse intestinal microbiome modulation by oral administration of a GABA-producing Bifidobacterium adolescentis strain. Microbiol Spectr 2024; 12:e0258023. [PMID: 37991375 PMCID: PMC10783132 DOI: 10.1128/spectrum.02580-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/15/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The gut microbiome-brain communication signaling has emerged in recent years as a novel target for intervention with the potential to ameliorate some conditions associated with the central nervous system. Hence, probiotics with capacity to produce neurotransmitters, for instance, have come up as appealing alternatives to treat disorders associated with disbalanced neurotransmitters. Herein, we further deep into the effects of administering a gamma-aminobutyric acid (GABA)-producing Bifidobacterium strain, previously demonstrated to contribute to reduce serum glutamate levels, in the gut microbiome composition and metabolic activity in a mouse model. Our results demonstrate that the GABA-producing strain administration results in a specific pattern of gut microbiota modulation, different from the one observed in animals receiving non-GABA-producing strains. This opens new avenues to delineate the specific mechanisms by which IPLA60004 administration contributes to reducing serum glutamate levels and to ascertain whether this effect could exert health benefits in patients of diseases associated with high-glutamate serum concentrations.
Collapse
Affiliation(s)
- Héctor Tamés
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Juan Manuel Falcón
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
22
|
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci 2023; 24:17514. [PMID: 38139341 PMCID: PMC10743953 DOI: 10.3390/ijms242417514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma (HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD is inextricably linked to the development of extrahepatic diseases. However, there is currently no effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders. Recent studies have reported that the development of MAFLD is inextricably associated with mitochondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial stress caused by structural and functional disorders stimulates the occurrence and accumulation of fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dysfunction and the liver-gut axis has also become a new point during the development of MAFLD. In this review, we summarize the effects of several potential treatment strategies for MAFLD, including antioxidants, reagents, and intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanni Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Yang X, Zhu A, Li X, He S, Zhu Y, Anyan W, Qin L, Zeng H. Effects of extracted oil of fermented Tartary buckwheat on lipid-lowering, inflammation modulation, and gut microbial regulation in mice. Food Funct 2023; 14:10814-10828. [PMID: 37982812 DOI: 10.1039/d3fo04117d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
This study investigated the composition of Tartary buckwheat oil fermented by Monascus purpureus and extracted under supercritical CO2 conditions (FTBO) and evaluated its effects on lipid-lowering, inflammation modulation, and gut microbial regulation in mice that were fed a high-fat diet (MOD). Compared with the raw oil (TBO), the γ-oryzanol content reached 27.09 mg g-1; the monounsaturated fatty acid (MUFA) content (such as oleic acid and palmitic acid) was elevated; and the antioxidant capacities of DPPH, ABTS, and hydroxyl were improved in FTBO (p < 0.0001). Then, supplementation with FTBO had a remarkable effect on reducing the body weight and visceral obesity as well as alleviating hyperglycemia, dyslipidemia, inflammatory reactions, and liver damage. The TC, TG, and LDL-C levels in the liver and plasma were reduced, and the HDL-C levels in the liver were increased (p < 0.05). In particular, the high-dose group (FTBOH) exhibited the most significant effect on reducing the pro-inflammatory cytokines ET, TNF-α, IL-1β, and IL-6 in the liver, which were 18.85, 570.12, 50.47, and 26.22 pg mL-1, respectively (p < 0.05). Moreover, FTBO reversed intestinal disorders and increased the intestinal microbial diversity and richness. The relative abundance of beneficial bacteria, such as Bifidobacterium, Lactobacillus, Limosilactobacillus, and Lachnospiraceae_UCG-006, were increased, and the relative abundance of the harmful bacteria Staphylococcus and Lachnoclostridium were reduced. In summary, FTBO has potential applications as a dietary supplement or dietary modifier in lowering blood lipids, modulating immune activity, and reversing intestinal disorders. This study provides reference guidance for the subsequent industrialization and development of Tartary buckwheat, the extension of the industrial chain, the development of new products, and the extraction of functional components.
Collapse
Affiliation(s)
- Xin Yang
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Anran Zhu
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
- Guizhou Xi Jiu Co., Ltd, Zunyi, 564622, China
| | - Xuanchen Li
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Shengling He
- Guizhou Province Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yi Zhu
- Plant Protection and Plant Quarantine Station of Guizhou Province, Guiyang, 550025, China
| | - Wen Anyan
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Likang Qin
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Haiying Zeng
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
24
|
Zeng W, Chen Y, Zhang H, Peng L, Li Y, Liu B, Liang H, Du B, Li P. Probiotic-fermented Qushi decoction alleviates reserpine-induced spleen deficiency syndrome by regulating spleen function and gut microbiota dysbiosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7702-7711. [PMID: 37439120 DOI: 10.1002/jsfa.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Spleen deficiency syndrome (SDS) is associated with elevated inflammatory factors and dysregulation of gastrointestinal motility hormones and intestinal microbiota. Qushi decoction (QD), a traditional formula, has not been reported using modern scientific research methods for changes in its probiotic fermented QD (FQD) composition and its potential mechanisms to alleviate SDS. Therefore, the aim of this study was to investigate the splenic protection of FQD in SDS rats by modulating gastrointestinal motility hormones and intestinal microbiota. RESULTS The results showed that FQD increased total polysaccharides, total protein, total flavonoids and the other active ingredients compared to QD, effectively improved splenic inflammation and apoptosis in SDS rats, and modulated gastrointestinal motility hormones to alleviate diarrhea and other symptoms. In addition, the dysregulation of the gut microbiota was reversed by increasing the levels of Bifidobacterium and decreasing the levels of Escherichia-Shigella and Proteobacteria, which may be related to the regulation of bacterial metabolites to alleviate SDS. CONCLUSION These results suggest that FQD is an effective formula for improving SDS. Our findings show that FQD beneficial to the implications for the treatment of SDS. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenshen Zeng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yang Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Huan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Luwei Peng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yaqi Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hongbo Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Wei B, Peng Z, Xiao M, Huang T, Yang S, Liu K, Wu M, Zheng W, Xie M, Xiong T. Modulation of the Microbiome-Fat-Liver Axis by Lactic Acid Bacteria: A Potential Alleviated Role in High-Fat-Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390401 DOI: 10.1021/acs.jafc.3c03149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The major characteristics of obesity are abnormal lipid metabolism, chronic inflammation, and imbalanced gut microbiota. It has been reported that lactic acid bacteria (LAB) possess potential for alleviating obesity, considering which the strain-specific functions and diverse mechanisms and the roles and mechanisms of various LAB are worthy of investigation. This study aimed to validate and investigate the alleviating effects and underlying mechanisms of three LAB strains, Lactiplantibacillus plantarum NCUH001046 (LP), Limosilactobacillus reuteri NCUH064003, and Limosilactobacillus fermentum NCUH003068 (LF), in high-fat-diet-induced obese mice. The findings demonstrated that the three strains, particularly LP, suppressed body weight gain and fat deposition; ameliorated lipid disorders, liver and adipocyte morphology, and chronic low-grade inflammation; and reduced lipid synthesis via activating the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway. In addition, LP and LF decreased the enrichment of bacteria positively correlated with obesity, like Mucispirillum, Olsenella, and Streptococcus, but facilitated the growth of beneficial bacteria negatively correlated with obesity, like Roseburia, Coprococcus, and Bacteroides, along with increasing the short-chain fatty acid levels. It is deduced that the underlying alleviating mechanism of LP was to modulate the hepatic AMPK signaling pathway and gut microbiota by the microbiome-fat-liver axis to alleviate obesity development. In conclusion, as a diet supplement, LP has promising potential in obesity prevention and treatment.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Zhen Peng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Shiyu Yang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Kui Liu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Min Wu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| |
Collapse
|
26
|
Wang H, Ma C, Li Y, Zhang L, A L, Yang C, Zhao F, Han H, Shang D, Yang F, Zhang Y, Zhang H, Sun Z, Guo R. Probio-X Relieves Symptoms of Hyperlipidemia by Regulating Patients' Gut Microbiome, Blood Lipid Metabolism, and Lifestyle Habits. Microbiol Spectr 2023; 11:e0444022. [PMID: 37022264 PMCID: PMC10269629 DOI: 10.1128/spectrum.04440-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Hyperlipidemia is a key risk factor for cardiovascular disease, and it is associated with lipid metabolic disorders and gut microbiota dysbiosis. Here, we aimed to investigate the beneficial effects of 3-month intake of a mixed probiotic formulation in hyperlipidemic patients (n = 27 and 29 in placebo and probiotic groups, respectively). The blood lipid indexes, lipid metabolome, and fecal microbiome before and after the intervention were monitored. Our results showed that probiotic intervention could significantly decrease the serum levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol (P < 0.05), while increasing the levels of high-density lipoprotein cholesterol (P < 0.05) in patients with hyperlipidemia. Probiotic recipients showing improved blood lipid profile also exhibited significant differences in their lifestyle habits after the 3-month intervention, with an increase in daily intake of vegetable and dairy products, as well as weekly exercise time (P < 0.05). Moreover, two blood lipid metabolites (namely, acetyl-carnitine and free carnitine) significantly increased after probiotic supplementation cholesterol (P < 0.05). In addition, probiotic-driven mitigation of hyperlipidemic symptoms were accompanied by increases in beneficial bacteria like Bifidobacterium animalis subsp. lactis and Lactiplantibacillus plantarum in patients' fecal microbiota. These results supported that mixed probiotic application could regulate host gut microbiota balance, lipid metabolism, and lifestyle habits, through which hyperlipidemic symptoms could be alleviated. The findings of this study urge further research and development of probiotics into nutraceuticals for managing hyperlipidemia. IMPORTANCE The human gut microbiota have a potential effect on the lipid metabolism and are closely related to the disease hyperlipidemia. Our trial has demonstrated that 3-month intake of a mixed probiotic formulation alleviates hyperlipidemic symptoms, possibly by modulation of gut microbes and host lipid metabolism. The findings of the present study provide new insights into the treatment of hyperlipidemia, mechanisms of novel therapeutic strategies, and application of probiotics-based therapy.
Collapse
Affiliation(s)
- Huan Wang
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Cuicui Ma
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yan Li
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Lei Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - lima A
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Chengcong Yang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Haifeng Han
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Dongyang Shang
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Fan Yang
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yuying Zhang
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ruifang Guo
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Nutrition and Health, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
27
|
Wang Y, Xing X, Ma Y, Fan Y, Zhang Y, Nan B, Li X, Wang Y, Liu J. Prevention of High-Fat-Diet-Induced Dyslipidemia by Lactobacillus plantarum LP104 through Mediating Bile Acid Enterohepatic Axis Circulation and Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7334-7347. [PMID: 37097222 DOI: 10.1021/acs.jafc.2c09151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This work aimed to investigate the alleviative mechanism of Lactobacillus plantarum LP104 (LP104) isolated from kimchi on high-fat-diet-induced dyslipidemia by targeting the intestinal flora and bile acid (BA) metabolism. Oral administration of LP104 over 8 weeks reduced body weight gain and body fat, as well as ameliorating serum and hepatic dyslipidemia in HFD-fed C57BL/6N mice significantly. LP104 intervention also increased the ileal tauro-α/β-muricholic acid sodium salt (T-α-MCA or T-β-MCA) and tauroursodeoxycholic acid (TUDCA) concentrations to suppress the enterohepatic farnesoid X receptor/fibroblast growth factor 15-fibroblast growth factor receptor 4 (FXR/FGF15-FGFR4) signaling pathway, which stimulated the hepatic cholic acid (CA) and chenodeoxycholic acid (CDCA) de novo synthesis through using cholesterol. Then, LP104 treatment accelerated BA excretion with the feces and cholesterol efflux to improve HFD-caused hyperlipidemia effectively. The 16S rRNA gene high-throughput sequencing revealed that LP104 promoted intestinal flora rebalance by increasing the abundances of Bacteroides, Akkermansia, Lactobacillus, and Clostridium and decreasing the abundance of Oscillospira and Coprococcus. Meanwhile, Spearman correlation analysis demonstrated that the differential flora were closely related to BA signaling molecules including CA, CDCA, T-α-MCA, T-β-MCA, and TUDCA after LP104 intervention. These findings provided new evidence that LP104 had the potential to be used as a naturally functional food for the prevention of dyslipidemia.
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130033, China
| | - Xinyue Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130033, China
| | - Yuxuan Ma
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130033, China
| | - Yuling Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130033, China
| | - Yue Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130033, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130033, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130033, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130033, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130033, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
28
|
Zhao W, Zhang Y, Li W, Hu Q, Huang H, Xu X, Du B, Li P. Probiotic-fermented Portulaca oleracea L. alleviated DNFB-induced atopic dermatitis by inhibiting the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116613. [PMID: 37156447 DOI: 10.1016/j.jep.2023.116613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Probiotic fermentation is a mild and safe biological method to boost the performance of herbs. Portulaca oleracea L. (PO), with folklore records of purgative, anti-dermatological and anti-epidemic effects, has been demonstrated to possess anti-inflammatory, immunomodulatory, and antioxidant properties. However, the potential of PO for the treatment of atopic dermatitis (AD) has not been sufficiently explored. AIM OF STUDY This study aimed to evaluate the therapeutic benefits of PO and fermented Portulaca oleracea L. (FPO) and explore their intrinsic mechanisms. METHODS By utilizing 2,4-dinitrofluorobenzene-induced AD mice as a model, the histopathology of the lesions was observed using H&E and toluidine blue staining methods; the levels of immunoglobulin E (Ig E), histamine (HIS), and thymic stromal lymphopoietin (TSLP) in serum were measured using ELISA, whereas, the expression of inflammatory cytokines in skin lesion was measured using ELISA and immunohistochemistry experiments. The expression of tumor necrosis factor-α (TNF-α), IKKα, NF-κB mRNA was measured using qPCR; and the expression of TNF-α、p-IKKα, p-IκBα, p-NF-κB was measured using western blotting. RESULTS Both 20 mg/mL PO and FPO alleviated mast cell infiltration and lesion pathology, reduced serum levels of Ig E, HIS and TSLP, down-regulated the expression of AD-related inflammatory cytokines, such as, TNF-α, interferon-γ, and interleukin-4, and increased filaggrin expression. Furthermore, they inhibited the expression of TNF-α, IKKα, and NF-κB genes and TNF-α, p-IKKα, p-NF-κB and p-IκBα proteins associated with the NF-κB signaling pathway. CONCLUSIONS PO and FPO has a positive therapeutic potential on AD, indicating that it may be employed as alternative therapies for AD.
Collapse
Affiliation(s)
- Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Zhang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Weijie Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Quanzhi Hu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haozhang Huang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Xu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Lu X, Xu H, Fang F, Liu J, Wu K, Zhang Y, Wu J, Gao J. In vitro effects of two polysaccharide fractions from Laminaria japonica on gut microbiota and metabolome. Food Funct 2023; 14:3379-3390. [PMID: 36943742 DOI: 10.1039/d2fo04085a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
To investigate the prebiotic potential of two Laminaria japonica polysaccharide (LJP) fractions with different molecular weights and structures, we conducted in vitro simulated digestion and fermentation with hyperlipidemia-associated human gut microbiota. The results indicated that the LJP fraction with higher molecular weight (HLJP) appeared to have a more complex monosaccharide composition and microstructure than did the LJP fraction with lower molecular weight (LLJP), and both fractions could not be digested by in vitro simulated digestion. After in vitro fermentation, HLJP generated more short-chain fatty acids (SCFAs) and showed stronger ability to regulate core metabolites. Intriguingly, LLJP is better at promoting the proliferation of Akkermansiaceae, while HLJP is more effective in reducing the Firmicutes/Bacteroidetes ratio and increasing the content of Bacteroidaceae and Tannerellaceae. The present study indicates that LLJP and HLJP may have probiotic effects through different approaches and these differences may be related to the molecular weight and structure of the polysaccharides.
Collapse
Affiliation(s)
- Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Hongtao Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Fang Fang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Juncheng Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Kaizhang Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yuwei Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China.
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
30
|
Wang Z, Liu H, Song G, Gao J, Xia X, Qin N. Cherry juice alleviates high-fat diet-induced obesity in C57BL/6J mice by resolving gut microbiota dysbiosis and regulating microRNA. Food Funct 2023; 14:2768-2780. [PMID: 36857703 DOI: 10.1039/d2fo03023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Cherry is a nutrient-rich food that is good for health. This study demonstrated the inhibitory action of dietary cherry juice on high-fat diet (HFD)-induced obesity in mice. Cherry juice intervention significantly decreased body weight, fat contents, and blood lipid levels in obese mice. The overproduction of proinflammatory cytokines was suppressed by dietary cherry juice, which was accompanied by the elevation of tight junction proteins to maintain intestinal barrier. Moreover, dietary cherry juice restored the decreased production of short-chain fatty acids (SCFAs) by regulating the composition and abundance of gut microbiota. In addition, dietary cherry juice also suppressed the expression of some microRNAs associated with obesity such as miR-200c-3p, miR-125a-5p, miR-132-3p, and miR-223-3p and target proteins related with microRNAs in the inguinal or epididymal white tissue in the obese mice. These results offer a fresh perspective on cherry juice's role in the prevention of obesity caused by the HFD.
Collapse
Affiliation(s)
- Zhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Hongxu Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Guoku Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Jingzhu Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Xiaodong Xia
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Ningbo Qin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| |
Collapse
|
31
|
Chen L, Jiang Q, Jiang C, Lu H, Hu W, Yu S, Li M, Tan CP, Feng Y, Xiang X, Shen G. Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota. Food Funct 2023; 14:2870-2880. [PMID: 36883533 DOI: 10.1039/d2fo02524h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Obesity has been reported to be associated with dysbiosis of gut microbiota. Sciadonic acid (SC) is one of the main functional components of Torreya grandis "Merrillii" seed oil. However, the effect of SC on high-fat diet (HFD)-induced obesity has not been elucidated. In this study, we evaluated the effects of SC on lipid metabolism and the gut flora in mice fed with a high-fat diet. The results revealed that SC activates the PPARα/SREBP-1C/FAS signaling pathway and reduces the levels of total cholesterol (TC), triacylglycerols (TG), and low-density lipoprotein cholesterol (LDL-C), but increases the level of high-density lipoprotein cholesterol (HDL-C) and inhibits weight gain. Among them, high-dose SC was the most effective; the TC, TG and LDL-C levels were reduced by 20.03%, 28.40% and 22.07%, respectively; the HDL-C level was increased by 8.55%. In addition, SC significantly increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels by 98.21% and 35.17%, respectively, decreased oxidative stress, and ameliorated the pathological damage to the liver caused by a high-fat diet. Furthermore, SC treatment altered the composition of the intestinal flora, promoting the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while simultaneously decreasing the relative abundance of potentially harmful bacteria such as Faecalibaculum, norank_f_Desulfovibrionaceae, and Romboutsia. Spearman's correlation analysis indicated that the gut microbiota was associated with SCFAs and biochemical indicators. In summary, our results suggested that SC can improve lipid metabolism disorders and regulate the gut microbial structure.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Hongling Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Wenjun Hu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Malaysia
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guoxin Shen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
32
|
Wang Y, Qu S, Chen M, Cui Y, Shi C, Pu X, Gao W, Li Q, Han J, Zhang A. Effects of buckwheat milk Co-fermented with two probiotics and two commercial yoghurt strains on gut microbiota and production of short-chain Fatty Acids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
33
|
Metabolomics Reveal the Regulatory Effect of Polysaccharides from Fermented Barley Bran Extract on Lipid Accumulation in HepG2 Cells. Metabolites 2023; 13:metabo13020223. [PMID: 36837842 PMCID: PMC9962758 DOI: 10.3390/metabo13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Barley bran has potential bioactivities due to its high content of polyphenols and dietary fiber, etc. Fermentation has been considered as an effective way to promote the functional activity of food raw materials. In this study, polysaccharides from barley bran extract fermented by Lactiplantibacillus plantarum dy-1 (FBBE-PS) were analyzed, and its effects on lipid accumulation and oxidative stress in high-fat HepG2 cells induced by sodium oleate were evaluated. The results showed that the molecular weight decreased and monosaccharide composition of polysaccharides changed significantly after fermentation. In addition, 50 μg/mL FBBE-PS could reduce the triglyceride (TG) content and reaction oxygen species (ROS) level in high-fat HepG2 cells by 21.62% and 30.01%, respectively, while increasing the activities of superoxide dismutase (SOD) and catalase (CAT) represented by 64.87% and 22.93%, respectively. RT-qPCR analysis revealed that FBBE-PS could up-regulate the lipid metabolism-related genes such as ppar-α, acox-1 and cpt-1α, and oxidation-related genes such as nrf2, ho-1, nqo-1, sod1, cat, etc. The metabolomics analysis indicated that FBBE-PS could alleviate lipid deposition by inhibiting the biosynthesis of unsaturated fatty acids, which is consistent with the downregulation of scd-1 expression. It is demonstrated that fermentation can alter the properties and physiological activities of polysaccharides in barley bran, and FBBE-PS exhibited an alleviating effect on lipid deposition and oxidative stress in high-fat cells.
Collapse
|
34
|
Mo R, Zhang M, Wang H, Liu T, Zhang G, Wu Y. Short-term changes in dietary fat levels and starch sources affect weight management, glucose and lipid metabolism, and gut microbiota in adult cats. J Anim Sci 2023; 101:skad276. [PMID: 37602405 PMCID: PMC10465269 DOI: 10.1093/jas/skad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
A 2 × 2 factorial randomized design was utilized to investigate the effects of fat level (8% or 16% fat on a fed basis) and starch source (pea starch or corn starch) on body weight, glycolipid metabolism, hematology, and fecal microbiota in cats. The study lasted for 28 d and included a low fat and pea starch diet (LFPS), a high fat and pea starch diet, a low fat and corn starch diet, and a high fat and corn starch diet. In this study, hematological analysis showed that all cats were healthy. The apparent total tract digestibility of gross energy, crude protein, and crude fat was above 85% in the four diets. After 28 d, cats fed the high fat diets (HF) gained an average of 50 g more than those fed the low fat diets (LF). The hematological results showed that the HF diets increased the body inflammation in cats, while the LFPS group improved the glucolipid metabolism. The levels of glucose and insulin were lower in cats fed the LF diets than those in cats fed the HF diets (P < 0.05). Meanwhile, compared with the LF, the concentrations of total cholesterol, triglyceride, and high-density lipoprotein cholesterol in serum were greater in the cats fed the HF diets (P < 0.05). Additionally, both fat level and starch source influenced the fecal microbiota, with the relative abundance of beneficial bacteria, such as Blautia being significantly greater in the LFPS group than in the other three groups (P < 0.05). Reducing energy density and using pea starch in foods are both valuable design additions to aid in the management of weight control and improve gut health in cats. This study highlights the importance of fat level and starch in weight management in cats.
Collapse
Affiliation(s)
- Ruixia Mo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
35
|
The Sustainability of Sweet Potato Residues from Starch Processing By-Products: Preparation with Lacticaseibacillus rhamnosus and Pediococcus pentosaceus, Characterization, and Application. Foods 2022; 12:foods12010128. [PMID: 36613345 PMCID: PMC9818312 DOI: 10.3390/foods12010128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The effects of Lacticaseibacillus rhamnosus and Pediococcus pentosaceus on the nutritional-functional composition, structure, in vitro saliva-gastrointestinal digestion, and colonic fermentation behaviors of fermented sweet potato residues (FSPR) were investigated. The FSPR was obtained under the condition of a solid-to-liquid ratio of 1/10, inoculation quantity of 1.5%, mixed bacteria ratio 1:1, fermentation time of 48 h, and fermentation temperature of 37 °C. The FSPR showed higher contents of soluble dietary fiber (15.02 g/100 g), total polyphenols content (95.74 mg/100 g), lactic acid (58.01 mg/g), acetic acid (1.66 mg/g), volatile acids (34.26%), and antioxidant activities. As exhibited by FTIR and SEM, the higher peak intensity at 1741 cm-1 and looser structure were observed in FSPR. Further, the FSPR group at colonic fermentation time of 48 h showed higher content of acetic acid (1366.88 µg/mL), propionic acid (40.98 µg/mL), and butyric acid (22.71 µg/mL), which were the metabolites produced by gut microbiota using dietary fiber. Meanwhile, the abundance of Bifidobacterium and Lacticaseibacillus in the FSPR group was also improved. These results indicated that FSPR potentially developed functional foods that contributed to colonic health.
Collapse
|
36
|
Chen J, Chi B, Ma J, Zhang J, Gu Q, Xie H, Kong Y, Yao S, Liu J, Sun J, Chen S. Gut microbiota signature as predictors of adverse outcomes after acute ischemic stroke in patients with hyperlipidemia. Front Cell Infect Microbiol 2022; 12:1073113. [PMID: 36506018 PMCID: PMC9729740 DOI: 10.3389/fcimb.2022.1073113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction The alterations of gut microbiota have been associated with multiple diseases. However, the relationship between gut microbiota and adverse outcomes of hyperlipidemic stroke patients remains unclear. Here we determined the gut microbial signature to predict the poor outcome of acute ischemic stroke (AIS) with hyperlipidemia (POAH). Methods Fecal samples from hyperlipidemic stroke patients were collected, which further analyzed by 16s rRNA gene sequencing. The diversity, community composition and differential gut microbiota were evaluated. The adverse outcomes were determined by modified Rankin Scale (mRS) scores at 3 months after admission. The diagnostic performance of microbial characteristics in predicting adverse outcomes was assessed by receiver operating characteristic (ROC) curves. Results Our results showed that the composition and structure of gut microbiota between POAH patients and good outcome of AIS with hyperlipidemia (GOAH) patients were different. The characteristic gut microbiota of POAH patients was that the relative abundance of Enterococcaceae and Enterococcus were increased, while the relative abundance of Lachnospiraceae, Faecalibacterium, Rothia and Butyricicoccus were decreased. Moreover, the characteristic gut microbiota were correlated with many clinical parameters, such as National Institutes of Health Stroke Scale (NIHSS) score, mean arterial pressure, and history of cerebrovascular disease. Moreover, the ROC models based on the characteristic microbiota or the combination of characteristic microbiota with independent risk factors could distinguish POAH patients and GOAH patients (area under curve is 0.694 and 0.971 respectively). Conclusions These findings revealed the microbial characteristics of POAH, which highlighted the predictive capability of characteristic microbiota in POAH patients.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Chi
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Ma
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junmei Zhang
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qilu Gu
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Yao
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Jiaming Liu, ; Jing Sun, ; Songfang Chen,
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Jiaming Liu, ; Jing Sun, ; Songfang Chen,
| | - Songfang Chen
- Department of Neurology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Jiaming Liu, ; Jing Sun, ; Songfang Chen,
| |
Collapse
|
37
|
Li Q, Li N, Cai W, Xiao M, Liu B, Zeng F. Fermented natural product targeting gut microbiota regulate immunity and anti-inflammatory activity: A possible way to prevent COVID-19 in daily diet. J Funct Foods 2022; 97:105229. [PMID: 36034155 PMCID: PMC9393180 DOI: 10.1016/j.jff.2022.105229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Low immune function makes the body vulnerable to being invaded by external bacteria or viruses, causing influenza and inflammation of various organs, and this trend is shifting to the young and middle-aged group. It has been pointed out that natural products fermented by probiotic have benign changes about their active ingredients in some studies, and it have shown strong nutritional value in anti-oxidation, anti-aging, regulating lipid metabolism, anti-inflammatory and improving immunity. In recent years, the gut microbiota plays a key role and has been extensively studied in improving immunity and anti-inflammation activity. By linking the relationship between natural products fermented by probiotic, gut microbiota, immunity, and inflammation, this review presents the modulating effects of probiotics and their fermented natural products on the body, including immunity-enhancing and anti-inflammatory activities by modulating gut microbiota, and it is discussed that the current understanding of its molecular mechanisms. It may become a possible way to prevent COVID-19 through consuming natural products fermented by probiotic in our daily diet.
Collapse
Affiliation(s)
- Quancen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenwen Cai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meifang Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
38
|
Li A, Wang J, Wang Y, Zhang B, Chen Z, Zhu J, Wang X, Wang S. Tartary Buckwheat (Fagopyrum tataricum) Ameliorates Lipid Metabolism Disorders and Gut Microbiota Dysbiosis in High-Fat Diet-Fed Mice. Foods 2022; 11:foods11193028. [PMID: 36230104 PMCID: PMC9563051 DOI: 10.3390/foods11193028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Jinqiao II, a newly cultivated variety of tartary buckwheat (Fagopyrum tataricum), has been reported to exhibit a higher yield and elevated levels of functional compounds compared to traditional native breeds. We aimed to investigate the potential of Jinqiao II tartary buckwheat to alleviate lipid metabolism disorders by detecting serum biochemistry, pathological symptoms, gene expression profiling, and gut microbial diversity. C57BL/6J mice were provided with either a normal diet; a high-fat diet (HFD); or HFD containing 5%, 10%, and 20% buckwheat for 8 weeks. Our results indicate that Jinqiao II tartary buckwheat attenuated HFD-induced hyperlipidemia, fat accumulation, hepatic damage, endotoxemia, inflammation, abnormal hormonal profiles, and differential lipid-metabolism-related gene expression at mRNA and protein levels in response to the dosages, and high-dose tartary buckwheat exerted optimal outcomes. Gut microbiota sequencing also revealed that the Jinqiao II tartary buckwheat elevated the level of microbial diversity and the abundance of advantageous microbes (Alistipes and Alloprevotella), lowered the abundance of opportunistic pathogens (Ruminococcaceae, Blautia, Ruminiclostridium, Bilophila, and Oscillibacter), and altered the intestinal microbiota structure in mice fed with HFD. These findings suggest that Jinqiao II tartary buckwheat might serve as a competitive candidate in the development of functional food to prevent lipid metabolic abnormalities.
Collapse
Affiliation(s)
- Ang Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Junling Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Institute of Medicinal Plant, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shuo Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
- Correspondence: ; Tel.: +86-22-8535-8445
| |
Collapse
|
39
|
Zhang Q, Xing W, Wang Q, Tang Z, Wang Y, Gao W. Gut microbiota-mitochondrial inter-talk in non-alcoholic fatty liver disease. Front Nutr 2022; 9:934113. [PMID: 36204383 PMCID: PMC9530335 DOI: 10.3389/fnut.2022.934113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD), which is a progressive disease, has exerted huge a healthcare burden worldwide. New investigations have suggested that the gut microbiota closely participates in the progression of NAFLD through the gut-liver axis or gut-brain-liver axis. The composition of the microbiota can be altered by multiple factors, primarily dietary style, nutritional supplements, or exercise. Recent evidence has revealed that gut microbiota is involved in mitochondrial biogenesis and energy metabolism in the liver by regulating crucial transcription factors, enzymes, or genes. Moreover, microbiota metabolites can also affect mitochondrial oxidative stress function and swallow formation, subsequently controlling the inflammatory response and regulating the levels of inflammatory cytokines, which are the predominant regulators of NAFLD. This review focuses on the changes in the composition of the gut microbiota and metabolites as well as the cross-talk between gut microbiota and mitochondrial function. We thus aim to comprehensively explore the potential mechanisms of gut microbiota in NAFLD and potential therapeutic strategies targeting NAFLD management.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yazhen Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
40
|
Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition. Nutrients 2022; 14:nu14153202. [PMID: 35956378 PMCID: PMC9370468 DOI: 10.3390/nu14153202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperlipidemia with fat accumulation and weight gain causes metabolic diseases and endangers human body health easily which is accompanied by metabolic abnormalities and intestinal flora disorders. In this study, the kidney bean fermented broth (KBF) was used in rats that were fed a high-fat diet to induce hyperlipidemia in order to subsequently analyse the serum metabolomics and gut microbiota modulatoration. The results show that the contents of the total polyphenols and total flavonoids in the KBF were up three and one times, while energy and carbohydrates decreased. In the HFD-induced hyperlipidemic model, body weight, organ weight, and the level of blood lipids (ALT, AST, TG, TC) were lower in rats treated with KBF than in the controls. Metabonomics indicate that there were significant differences in serum metabolomics between the KBF and the HFD. KBF could significantly improve the glycerophospholipids, taurine, and hypotaurine metabolism and amino acid metabolism of hyperlipidemic rats and then improve the symptoms of hypersterol and fat accumulation in rats. The relative abundance of beneficial bacteria increased while pathogenic bacteria decreased after the intervention of KBF. KBF ameliorates dyslipidemia of HFD-induced hyperlipidemic via modulating the blood metabolism and the intestinal microbiota. Collectively, these findings suggest that KBF could be developed as a functional food for anti-hyperlipidemia.
Collapse
|
41
|
Chen D, Bai R, Yong H, Zong S, Jin C, Liu J. Improving the digestive stability and prebiotic effect of carboxymethyl chitosan by grafting with gallic acid: In vitro gastrointestinal digestion and colonic fermentation evaluation. Int J Biol Macromol 2022; 214:685-696. [PMID: 35779653 DOI: 10.1016/j.ijbiomac.2022.06.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
Carboxymethyl chitosan (CMCS) is a useful polysaccharide with potential applications in food, cosmetic and biomedical industries. Nonetheless, CMCS is unfavorable for maintaining intestinal flora balance. In this study, gallic acid (GA) was grafted with CMCS through ascorbic acid/hydrogen peroxide initiated graft copolymerization reaction, producing GA grafted CMCS (GA-g-CMCS). The digestive and fermentative behavior of CMCS and GA-g-CMCS were investigated by using in vitro simulated gastrointestinal digestion and colonic fermentation models. Results showed that the average molecular weight (Mw) of CMCS gradually decreased during saliva-gastro-intestinal digestion, changing from original sheet-like morphology to porous and rod-like fragments. However, the Mw and morphology of GA-g-CMCS were almost unchanged under saliva-gastro-intestinal digestion. Meanwhile, the grafted GA moiety was not released from GA-g-CMCS during saliva-gastro-intestinal digestion. As compared with CMCS fermentation, GA-g-CMCS fermentation significantly suppressed the relative abundance of Escherichia-Shigella, Paeniclostridium, Parabacteroides, Lachnoclostridium, Clostridium_sensu_stricto_1, UBA1819 and Butyricimonas, while facilitated the relative abundance of Enterobacter, Enterococcus, Fusobacterium and Lachnospira. In addition, GA-g-CMCS fermentation significantly enhanced the production of short-chain fatty acids. These findings suggested that the digestive stability and prebiotic effect of CMCS were improved by grafting with GA.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ruyu Bai
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|