1
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
2
|
Tammina SK, Priyadarshi R, Rhim JW. Carboxymethylcellulose/Agar-Based Multifunctional Films Incorporated with Zn-Doped SnO 2 Nanoparticles for Active Food Packaging Application. ACS APPLIED BIO MATERIALS 2023; 6:4728-4739. [PMID: 37946463 DOI: 10.1021/acsabm.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
SnO2 and Zn-SnO2 nanoparticles were prepared by chemical precipitation, and the rutile phase of SnO2 was confirmed through X-ray diffraction studies. X-ray photoelectron spectroscopy (XPS) confirmed the doping of SnO2 with Zn and elucidated the surface chemistry before and after doping. The average sizes of SnO2 and Zn-SnO2 nanoparticles determined using TEM were 3.96 ± 0.85 and 3.72 ± 0.9 nm, respectively. UV-visible and photoluminescence spectrophotometry were used to evaluate the optical properties of SnO2 and Zn-SnO2 nanoparticles, and their energy gaps (Eg) were 3.8 and 3.9 eV, respectively. The antibacterial activity of these nanoparticles against Salmonella enterica and Staphylococcus aureus was evaluated under dark and light conditions. Antibacterial activity was higher in light, showing the highest activity (99.5%) against S. enterica. Carboxymethylcellulose (CMC)/agar-based functional composite films were prepared by adding different amounts of SnO2 and Zn-SnO2 nanoparticles (1 and 3 wt % of polymers). The composite film showed significantly increased UV barrier properties while maintaining the mechanical properties, water vapor barrier, and transparency compared to the neat CMC/agar film. These composite films showed significant antibacterial activity; however, the Zn-SnO2-added film showed stronger antibacterial activity (99.2%) than the SnO2-added film (15%).
Collapse
Affiliation(s)
- Sai Kumar Tammina
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. Advances in Nanotechnology for Biofilm Inhibition. ACS OMEGA 2023; 8:21391-21409. [PMID: 37360468 PMCID: PMC10286099 DOI: 10.1021/acsomega.3c02239] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Biofilm-associated infections have emerged as a significant public health challenge due to their persistent nature and increased resistance to conventional treatment methods. The indiscriminate usage of antibiotics has made us susceptible to a range of multidrug-resistant pathogens. These pathogens show reduced susceptibility to antibiotics and increased intracellular survival. However, current methods for treating biofilms, such as smart materials and targeted drug delivery systems, have not been found effective in preventing biofilm formation. To address this challenge, nanotechnology has provided innovative solutions for preventing and treating biofilm formation by clinically relevant pathogens. Recent advances in nanotechnological strategies, including metallic nanoparticles, functionalized metallic nanoparticles, dendrimers, polymeric nanoparticles, cyclodextrin-based delivery, solid lipid nanoparticles, polymer drug conjugates, and liposomes, may provide valuable technological solutions against infectious diseases. Therefore, it is imperative to conduct a comprehensive review to summarize the recent advancements and limitations of advanced nanotechnologies. The present Review encompasses a summary of infectious agents, the mechanisms that lead to biofilm formation, and the impact of pathogens on human health. In a nutshell, this Review offers a comprehensive survey of the advanced nanotechnological solutions for managing infections. A detailed presentation has been made as to how these strategies may improve biofilm control and prevent infections. The key objective of this Review is to summarize the mechanisms, applications, and prospects of advanced nanotechnologies to provide a better understanding of their impact on biofilm formation by clinically relevant pathogens.
Collapse
Affiliation(s)
- Lokender Kumar
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
- Cancer
Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kusum Harjai
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shavkatjon Azizov
- Laboratory
of Biological Active Macromolecular Systems, Institute of Bioorganic
Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
- Faculty
of Life Sciences, Pharmaceutical Technical
University, Tashkent 100084, Uzbekistan
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh173229, India
| |
Collapse
|
4
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
5
|
Development of organic-inorganic hybrid antimicrobial materials by mechanical force and application for active packaging. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Characterization and antibacterial properties of fish skin gelatin/guava leaf extract bio-composited films incorporated with catechin. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Liu S, Chen Z, Zhang H, Li Y, Maierhaba T, An J, Zhou Z, Deng L. Comparison of eugenol and dihydromyricetin loaded nanofibers by electro-blowing spinning for active packaging. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Kim J, Ahn J, Ahn C. Characterization of novel bacteriocin produced by bacteriocinogenic Carnobacterium maltaromaticum isolated from raw milk. Microb Pathog 2022; 173:105872. [PMID: 36368602 DOI: 10.1016/j.micpath.2022.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
This study was designed to assess newly isolated bacteriocin-producing strain as potential food preservative. A bacteriocin producing lactic acid bacterium, named Carnobacterium maltaromatium KCA018, was screened from raw milk using deferred and spot-on-the-lawn assays. The crude cell free supernatant (CFS) was purified to obtain proteinaceous bacteriocin by ammonium sulfate precipitation (assigned as bacteriocin KCA) and tested for bacteriocin production, physical stability, antimicrobial activity, and bacteriocin-encoding gene detection. The growth curves of C. maltaromatium KCA018 reached late exponential phase after 15 h of incubation at 25 °C and 30 °C (Fig. 2). The maximum production of bacteriocin KCA was reached after 12 h of incubation at 25 °C, showing the antimicrobial activity of more than 3000 AU/ml against Listeria monocytogenes. The purified bacteriocin KCA was stable up to 67 °C for 30 min of exposure and between pH 4 and 7, showing more than 6000 AU/ml. The antibacterial activity of bacteriocin KCA was lost in the presence of pronase, proteinase K, and trypsin. Purified bacteriocin KCA showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. The CFS and purified bacteriocin KCA effectively inhibited the growth of L. monocytogenes ATCC 1911, E. faecalis ATCC 19433, and E. feacium ATCC 11576. The molecular weight of purified bacteriocin KCA was estimated at approximately 5 kDa. The positive amplification was observed for pisA and cbnBM1 with approximately between 100 and 200 bp. The newly identified bacteriocin can be a promising preservative for application in food.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Cheol Ahn
- Cell Biotech, Gimpo, Gyunggi, 10003, Republic of Korea
| |
Collapse
|
9
|
Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers (Basel) 2022; 14:polym14224968. [PMID: 36433095 PMCID: PMC9699531 DOI: 10.3390/polym14224968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Packaging plays an important role in food quality and safety, especially regarding waste and spoilage reduction. The main drawback is that the packaging industry is among the ones that is highly dependent on plastic usage. New alternatives to conventional plastic packaging such as biopolymers-based type are mandatory. Examples are cellulose films and its derivatives. These are among the most used options in the food packaging due to their unique characteristics, such as biocompatibility, environmental sustainability, low price, mechanical properties, and biodegradability. Emerging concepts such as active and intelligent packaging provides new solutions for an extending shelf-life, and it fights some limitations of cellulose films and improves the properties of the packaging. This article reviews the available cellulose polymers and derivatives that are used as sustainable alternatives for food packaging regarding their properties, characteristics, and functionalization towards active properties enhancement. In this way, several types of films that are prepared with cellulose and their derivatives, incorporating antimicrobial and antioxidant compounds, are herein described, and discussed.
Collapse
|
10
|
Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022; 11:foods11182879. [PMID: 36141005 PMCID: PMC9498516 DOI: 10.3390/foods11182879] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/22/2022] Open
Abstract
At present, the research and innovation of packaging materials are in a period of rapid development. Starch, a sustainable, low-cost, and abundant polymer, can develop environmentally friendly packaging alternatives, and it possesses outstanding degradability and reproducibility in terms of improving environmental issues and reducing oil resources. However, performance limitations, such as less mechanical strength and lower barrier properties, limit the application of starch in the packaging industry. The properties of starch-based films can be improved by modifying starch, adding reinforcing groups, or blending with other polymers. It is of significance to study starch as an active and intelligent packaging option for prolonging shelf life and monitoring the extent of food deterioration. This paper reviews the development of starch-based films, the current methods to enhance the mechanical and barrier properties of starch-based films, and the latest progress in starch-based activity, intelligent packaging, and food applications. The potential challenges and future development directions of starch-based films in the food industry are also discussed.
Collapse
|
11
|
Li X, Fan L, Li J. Extrusion-based 3D printing of high internal phase emulsions stabilized by co-assembled β-cyclodextrin and chitosan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14148329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Is there any relationship between plant nutrition and human health? The overall response to this question is very positive, and a strong relationship between the nutrition of plants and humans has been reported in the literature. The nutritional status of edible plants consumed by humans can have a negative or positive impact on human health. This review was designed to assess the importance of plant bioactive compounds for human health under the umbrella of sustainable agriculture. With respect to the first research question, it was found that plant bioactives (e.g., alkaloids, carotenoids, flavonoids, phenolics, and terpenoids) have a crucial role in human health due to their therapeutic benefits, and their potentiality depends on several factors, including botanical, environmental, and clinical attributes. Plant bioactives could be produced using plant tissue culture tools (as a kind of agro-biotechnological method), especially in cases of underexploited or endangered plants. Bioactive production of plants depends on many factors, especially climate change (heat stress, drought, UV radiation, ozone, and elevated CO2), environmental pollution, and problematic soils (degraded, saline/alkaline, waterlogged, etc.). Under the previously mentioned stresses, in reviewing the literature, a positive or negative association was found depending on the kinds of stress or bioactives and their attributes. The observed correlation between plant bioactives and stress (or growth factors) might explain the importance of these bioactives for human health. Their accumulation in stressed plants can increase their tolerance to stress and their therapeutic roles. The results of this study are in keeping with previous observational studies, which confirmed that the human nutrition might start from edible plants and their bioactive contents, which are consumed by humans. This review is the first report that analyzes this previously observed relationship using pictorial presentation.
Collapse
|