1
|
Wang Y, Wu G, Wang Y, Rehman A, Yu L, Zhang H, Jin Q, Suleria HAR, Wang X. Recent developments, challenges, and prospects of dietary omega-3 PUFA-fortified foods: Focusing on their effects on cardiovascular diseases. Food Chem 2024; 470:142498. [PMID: 39736180 DOI: 10.1016/j.foodchem.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Dietary omega-3 polyunsaturated fatty acids (Dω-3 PUFAs) have been extensively studied and have been proven to offer notable benefits for heart health. Scientific meta-analysis strongly endorses them as potent bioactive agents capable of preventing and managing cardiovascular diseases (CVDs). Fortification of foods with Dω-3 PUFAs is a potential strategy for enhancing Dω-3 PUFA intake in an effort to continue strengthening public health outcomes. This review analyzed recent trends in the fortification of foods with Dω-3 PUFAs in relation to technological developments, challenges linked to the method, and future scope. Additionally, recent clinical trials and research on the effect of Dω-3 PUFA-fortified food consumption on cardiovascular health are reviewed. Technological trends in fortification methods, namely microencapsulation- and nanoencapsulation, have made considerable progress to date, along with excellent stability in both processing and storage conditions and favorable bioaccessibility and sensory attributes of fortified foods. There is a tremendous deal of promise for cardiovascular health based on recent clinical trial findings that fortifying food with Dω-3 PUFAs decreased the incidence of heart disease, blood pressure, and lipid profiles. In summary, substantial progress has been made in addressing the challenges of Dω-3 PUFA fortification. However, further multidisciplinary research is needed to inculcate effectiveness toward achieving the maximum possible Dω-3 PUFAs to protect against the harmful effects of CVDs and continue global health progress.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Paul B, Xie L, Yahia ZO, Rashwan AK, Mo J, Chen W. Enhancing milk-based drinks with lyophilized guar gum-coated cyanidin-3-O-glucoside-loaded nano-nutriosomes: Physicochemical and antioxidant characterizations. Int J Biol Macromol 2024; 288:138426. [PMID: 39672394 DOI: 10.1016/j.ijbiomac.2024.138426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Cyanidin-3-O-glucoside (C3G) is a flavonoid compound recognized for its diverse biological properties. It is considered one of the most promising flavonoids due to its potential health benefits. Still, its use in functional foods, particularly beverages, is limited due to degradation and instability under various environmental conditions. Recent advancements involving novel freeze-dried guar gum-coated nano-nutriosome (FD-GG-NS) carriers have demonstrated effective strategies to address these challenges. The purpose of this work was to develop and evaluate a novel freeze-dried guar gum-coated nano-nutriosomes that would improve the physicochemical stability and antioxidant activity of C3G in milk-based beverages. The results exhibited that C3G was successfully encapsulated in freeze-dried NS and GG-C3G-NS, with good encapsulation efficacy (>91.02 %) and particle sizes varied from 175.27 to 186.60 nm within a respectable range of PDI (<0.3). Firstly, to investigate the optimum concentration 0.4 % was shown to be the best concentration due to improved stability and dietary fiber content. The FD-GG-C3G-NS in milk drinks improved the color, turbidity, ζ-potential, and sensory assessment while declining apparent viscosity and acidity with improved antioxidant activity during storage for 15th days at 4 °C. Thus, integrating C3G into functional dairy drinks using guar gum-coated nano-nutriosomes has broad prospects in the food industry.
Collapse
Affiliation(s)
- Bolai Paul
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zineb Ould Yahia
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
3
|
de Souza HF, dos Santos FR, Cunha JS, Pacheco FC, Pacheco AFC, Soutelino MEM, Martins CCN, Andressa I, Rocha RDS, da Cruz AG, Paiva PHC, Brandi IV, Kamimura ES. Microencapsulation to Harness the Antimicrobial Potential of Essential Oils and Their Applicability in Dairy Products: A Comprehensive Review of the Literature. Foods 2024; 13:2197. [PMID: 39063282 PMCID: PMC11275287 DOI: 10.3390/foods13142197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
This literature review explores cutting-edge microencapsulation techniques designed to enhance the antimicrobial efficacy of essential oils in dairy products. As consumer demand for natural preservatives rises, understanding the latest advancements in microencapsulation becomes crucial for improving the shelf life and safety of these products. The bibliometric analysis utilized in this review highlighted a large number of documents published on this topic in relation to the following keywords: essential oils, AND antimicrobials, AND dairy products, OR microencapsulation. The documents published in the last 11 years, between 2013 and 2023, showed a diversity of authors and countries researching this topic and the keywords commonly used. However, in the literature consulted, no study was identified that was based on bibliometric analysis and that critically evaluated the microencapsulation of essential oils and their antimicrobial potential in dairy products. This review synthesizes findings from diverse studies, shedding light on the various encapsulation methods employed and their impact on preserving the quality of dairy goods. Additionally, it discusses the potential applications and challenges associated with implementation in the dairy industry. This comprehensive analysis aims to provide valuable insights for researchers, food scientists, and industry professionals seeking to optimize the use of essential oils with antimicrobial properties in dairy formulations.
Collapse
Affiliation(s)
- Handray Fernandes de Souza
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| | - Fabio Ribeiro dos Santos
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Jeferson Silva Cunha
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Flaviana Coelho Pacheco
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Ana Flávia Coelho Pacheco
- Instituto de Laticínios Cândido Tostes, Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lieutenant Luiz de Freitas, 116, Juiz de Fora 36045-560, MG, Brazil; (A.F.C.P.); (P.H.C.P.)
| | | | - Caio Cesar Nemer Martins
- Forest Engineering Department, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil;
| | - Irene Andressa
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Ramon da Silva Rocha
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro 20270-021, RJ, Brazil;
| | - Paulo Henrique Costa Paiva
- Instituto de Laticínios Cândido Tostes, Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lieutenant Luiz de Freitas, 116, Juiz de Fora 36045-560, MG, Brazil; (A.F.C.P.); (P.H.C.P.)
| | - Igor Viana Brandi
- Institute of Agricultural Sciences, Federal University of Minas Gerais, Av. Universitária, 1000, Montes Claros 39404-547, MG, Brazil;
| | - Eliana Setsuko Kamimura
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| |
Collapse
|
4
|
Hashimoto S, Matsuo K. Dynamic Observation of the Membrane Interaction Processes of β-Lactoglobulin by Time-Resolved Vacuum-Ultraviolet Circular Dichroism. Anal Chem 2024; 96:10524-10533. [PMID: 38907695 DOI: 10.1021/acs.analchem.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The elucidation of protein-membrane interactions is pivotal for comprehending the mechanisms underlying diverse biological phenomena and membrane-related diseases. In this investigation, vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy, utilizing synchrotron radiation (SR), was employed to dynamically observe membrane interaction processes involving water-soluble proteins at the secondary-structure level. The study utilized a time-resolved (TR) T-shaped microfluidic cell, facilitating the rapid and efficient mixing of protein and membrane solutions. This system was instrumental in acquiring measurements of the time-resolved circular dichroism (TRCD) spectra of β-lactoglobulin (bLG) during its interaction with lysoDMPG micelles. The results indicate that bLG undergoes a β-α conformation change, leading to the formation of the membrane-interacting state (M-state), with structural alterations occurring in more than two steps. Global fitting analysis, employing biexponential functions with all of the TRCD spectral data sets, yielded two distinct rate constants (0.18 ± 0.01 and 0.06 ± 0.003/s) and revealed a unique spectrum corresponding to an intermediate state (I-state). Secondary-structure analysis of bLG in its native (N-, I-, and M-states) highlighted that structural changes from the N- to I-states predominantly occurred in the N- and C-terminal regions, which were prominently exposed to the membrane. Meanwhile, transitions from the I- to M-states extended into the inner barrel regions of bLG. Further examination of the physical properties of α-helical segments, such as effective charge and hydrophobicity, revealed that the N- to I- and I- to M-state transitions, which are ascribed to first- and second-rate constants, respectively, are primarily driven by electrostatic and hydrophobic interactions, respectively. These findings underscore the capability of the TR-VUVCD system as a robust tool for characterizing protein-membrane interactions at the molecular level.
Collapse
Affiliation(s)
- Satoshi Hashimoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Koichi Matsuo
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Research Institute for Synchrotron Radiation Science, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
5
|
Bhatnagar P, Gururani P, Parveen A, Gautam P, Chandra Joshi N, Tomar MS, Nanda M, Vlaskin MS, Kumar V. Algae: A promising and sustainable protein-rich food ingredient for bakery and dairy products. Food Chem 2024; 441:138322. [PMID: 38190793 DOI: 10.1016/j.foodchem.2023.138322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The consumer demand for protein rich foods urges the exploration for novel products of natural origin. Algae can be considered as a gold mine of different bioactive compounds, among which protein is distributed in significant amounts i.e., around 30% and can even reach to 55-60% in some cyanobacteria. Bakery and dairy products are extensively consumed worldwide due to product diversification and innovation. However, incorporation of algae biomass can lead to the development of green colour and fishy flavour that usually is not accepted in such products. Therefore, isolation and application of algae-derived proteins opens a new door for food industry. The present review provides a comprehensive understanding of incorporation of algae as a protein-rich ingredient in bakery and dairy products. The paper provides a deep insight for all the possible recent trends related to production and extraction of algae proteins accompanied by their incorporation in bakery and dairy foods.
Collapse
Affiliation(s)
- Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| | - Afreen Parveen
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Pankaj Gautam
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research & Innovation, Uttaranchal University Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
6
|
Psakis G, Lia F, Valdramidis VP, Gatt R. Exploring hydrodynamic cavitation for citrus waste valorisation in Malta: from beverage enhancement to potato sprouting suppression and water remediation. Front Chem 2024; 12:1411727. [PMID: 38860238 PMCID: PMC11163080 DOI: 10.3389/fchem.2024.1411727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction: The endorsement of circular economy, zero-waste, and sustainable development by the EU and UN has promoted non-thermal technologies in agro-food and health industries. While northern European countries rapidly integrate these technologies, their implementation in Mediterranean food-supply chains remains uncertain. Aims: We evaluated the usefulness of hydrodynamic cavitation (HC) for valorizing orange peel waste in the fresh orange juice supply chain of the Maltese Islands. Method: We assessed: a) the effectiveness of HC in extracting bioactive compounds from orange peels (Citrus sinensis) in water (35°C) and 70% (v/v) ethanol (-10°C) over time, compared to conventional maceration, and b) the potato sprouting-suppression and biosorbent potential of the processed peel for copper, nitrate, and nitrite binding. Results: Prolonged HC-assisted extractions in water (high cavitation numbers), damaged and/or oxidized bioactive compounds, with flavonoids and ascorbic acid being more sensitive, whereas cold ethanolic extractions preserved the compounds involved in radical scavenging. HC-processing adequately modified the peel, enabling its use as a potato suppressant and biosorbent for copper, nitrate, and nitrite. Conclusion: Coupling HC-assisted bioactive compound extractions with using leftover peel for potato-sprouting prevention and as biosorbent for water pollutant removal offers a straightforward approach to promoting circular economic practices and sustainable agriculture in Malta.
Collapse
Affiliation(s)
- Georgios Psakis
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), Paola, Malta
- Metamaterials Unit, Faculty of Science, University of Malta (UM), Msida, Malta
| | - Frederick Lia
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), Paola, Malta
- Metamaterials Unit, Faculty of Science, University of Malta (UM), Msida, Malta
| | - Vasilis P. Valdramidis
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Ruben Gatt
- Metamaterials Unit, Faculty of Science, University of Malta (UM), Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta (UM), Msida, Malta
| |
Collapse
|
7
|
Gheorghita RE, Lupaescu AV, Gâtlan AM, Dabija D, Lobiuc A, Iatcu OC, Buculei A, Andriesi A, Dabija A. Biopolymers-Based Macrogels with Applications in the Food Industry: Capsules with Berry Juice for Functional Food Products. Gels 2024; 10:71. [PMID: 38247793 PMCID: PMC10815192 DOI: 10.3390/gels10010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The present study focused on the development of gel-based capsules from sodium alginate and the fresh juice from different berries: chokeberry, sea buckthorn, and blueberry. Obtained through the extrusion method, the macrocapsules were added into yogurt, a well-known and consumed dairy product. In order to establish the changes that can occur for the food product, the samples were tested over 7 and 15 days of storage in refrigeration conditions. According to the results, the antioxidant activity increased during storage and gels can represent a good option for bioactive substances' encapsulation. Sensorial analysis performed indicated that consumers are open to consuming yogurt berry capsules and, according to the results observed in the scientific literature, they no longer rejected the product due to the bitterness and sourness of sea buckthorn or aronia. Sea buckthorn capsules were brighter (L*) than chokeberry and blueberry capsules due to carotene content and dark colors. Minimal diameter variations and small standard deviations (SD = 0.25/0.33) suggest that extrusion methods and the Caviar box are good for gel capsule development. Yogurt luminosity varied with capsules; control had the highest, followed by sea buckthorn yogurt. Samples with chokeberry and blueberry (dark) capsules had lower luminosity. Over 8 and 15 days, luminosity slightly decreased, while a* and b* (hue and saturation) increased. Post-storage, the sample with chokeberry capsules showed a light purple color, indicating color transfer from capsules, with increased antioxidant activity. Differences between the samples and control were less pronounced in the sample with sea buckthorn capsules. Values for color differences between yogurt samples during the storage period revealed the most significant difference during the first storage period (day 1-8), with blueberries showing the lowest difference, indicating the stability of the blueberry capsules' wall during storage.
Collapse
Affiliation(s)
- Roxana Elena Gheorghita
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Ancuta Veronica Lupaescu
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, Airport Street 1, 720134 Suceava, Romania
| | - Anca Mihaela Gâtlan
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
- SC Natur Logistics SRL, 720043 Suceava, Romania
| | - Dadiana Dabija
- Faculty of Economics, Administration and Business, Stefan cel Mare University of Suceava, Univeristy Street 13, 720229 Suceava, Romania;
| | - Andrei Lobiuc
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Oana Camelia Iatcu
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Amelia Buculei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
| | | | - Adriana Dabija
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
| |
Collapse
|
8
|
Turek K, Khachatryan G, Khachatryan K, Krystyjan M. An Innovative Method for the Production of Yoghurt Fortified with Walnut Oil Nanocapsules and Characteristics of Functional Properties in Relation to Conventional Yoghurts. Foods 2023; 12:3842. [PMID: 37893734 PMCID: PMC10606234 DOI: 10.3390/foods12203842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are crucial nutrients involved in a plethora of metabolic and physiological processes. PUFAs have been extensively researched for their effects on human nutrition and health. The high demand for these fatty acids offers the possibility of adding vegetable oils to dairy products such as yoghurt. The aim of this study was to produce nano/microcapsules comprising walnut oil through exclusively natural ingredients utilised in yoghurt manufacturing. Additionally, the study tested yoghurt supplemented with PUFAs using the acquired nano/microcapsules. Chemical and physiochemical properties, microbiological analysis, rheological measurements, texture analysis, scanning electron microscope (SEM) analysis, ATR-FTIR spectroscopy, and sensory and fatty acids profile analysis were performed. A physico-chemical analysis highlighted the impact of oil addition on fat and dry matter concentration, revealing an increased quantity of said components in yoghurt after oil addition. Based on the identified parameters for potential and active acidity in the yoghurts, normal lactic fermentation was observed. Furthermore, the addition of oil was found to have an impact on the pH of the yoghurt. Microbiological analysis indicated that the incorporation of nano-encapsulated walnut oil did not have any notable effect on the abundance of determined microorganisms in the yoghurt. However, it was observed that the number of Lactobacillus delbrueckii ssp. bulgaricus increased as a result of storage. The incorporation of enclosed oil in yoghurt resulted in negligible alterations in rheological and sensory characteristics when compared with the plain variant. The addition of oil had an effect on most of the analysed fatty acids. Fortified yoghurt shows a more favourable proportion of the fatty acid groups tested (SFA, MUFA, and PUFA) and lower values of fat quality factors (AI and TI).
Collapse
Affiliation(s)
- Katarzyna Turek
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland;
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Magdalena Krystyjan
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland
| |
Collapse
|
9
|
Wu Z, Tang X, Liu S, Li S, Zhao X, Wang Y, Wang X, Li H. Mechanism underlying joint loading and controlled release of β-carotene and curcumin by octenylsuccinated Gastrodia elata starch aggregates. Food Res Int 2023; 172:113136. [PMID: 37689900 DOI: 10.1016/j.foodres.2023.113136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/20/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
This study aimed to fabricate a novel codelivery system to simultaneously load β-carotene and curcumin in a controlled and synergistic manner. We hypothesized that the aggregates of octenylsuccinated Gastrodia elata starch (OSGES) could efficiently load and control the release of β-carotene and curcumin in combination. Mechanisms underlying the self-assembly of OSGES, coloading, and corelease of β-carotene and curcumin by relevant aggregates were studied. The OSGES could form aggregates with a size of 120.2 nm containing hydrophobic domains surrounded by hydrophilic domains. For coloading, the increased solubilities were attributed to favorable interactions between β-carotene and curcumin as well as interactions with octenyl and starch moieties via hydrophobic and hydrogen-bond interactions, respectively. The β-carotene and curcumin molecules occupied the interior and periphery of hydrophobic domains of OSGES aggregates, respectively, and they did not exist in isolation but interacted with each other. The β-carotene and curcumin combination-loaded OSGES aggregates with a size of 310.5 nm presented a more compact structure than β-carotene-only and curcumin-only loaded OSGES aggregates with sizes of 463.5 and 202.9 nm respectively, suggesting that a transition from a loose cluster to a compact cluster was accompanied by coloading. During in vitro digestion, the joint effect of β-carotene and curcumin prolonged their release and increased their bioaccessibility due to competition between favorable hydrophobic and hydrogen-bond interactions and the unfavorable structure erosion and relaxation of the loaded aggregates. Therefore, OSGES aggregates were designed for the codelivery of β-carotene and curcumin, indicating their potential to be applied in functional foods and dietary supplements.
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Xiaowan Zhao
- College of Light Industry and Materials, Chengdu Textile College, Chengdu 611731, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Xiaogang Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Hong Li
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| |
Collapse
|
10
|
Al-Quwaie DA, Allohibi A, Aljadani M, Alghamdi AM, Alharbi AA, Baty RS, Qahl SH, Saleh O, Shakak AO, Alqahtani FS, Khalil OSF, El-Saadony MT, Saad AM. Characterization of Portulaca oleracea Whole Plant: Evaluating Antioxidant, Anticancer, Antibacterial, and Antiviral Activities and Application as Quality Enhancer in Yogurt. Molecules 2023; 28:5859. [PMID: 37570829 PMCID: PMC10421184 DOI: 10.3390/molecules28155859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Purslane (Portulaca oleracea L.) is rich in phenolic compounds, protein, and iron. This study aims to produce functional yogurt with enhanced antioxidant, anticancer, antiviral, and antimicrobial properties by including safe purslane extract in yogurt formulation; the yogurt was preserved for 30 days at 4 °C, and then biochemical fluctuations were monitored. The purslane extract (PuE) had high phenolic compounds and flavonoids of 250 and 56 mg/mL, respectively. Therefore, PuE had considerable antioxidant activity, which scavenged 93% of DPPH˙, inhibited the viability of MCF-7, HCT, and HeLa cell lines by 84, 82, and 80%, respectively, and inhibited 82% of the interaction between the binding between Spike and ACE2 compared to a SARS-CoV-2 inhibitor test kit. PuE (20-40 µg/mL) inhibited the growth of tested pathogenic bacteria and Candida strains, these strains isolated from spoild yogurt and identified at gene level by PCR. Caffeic acid glucoside and catechin were the main phenolic compounds in the HPLC profile, while the main flavor compound was carvone and limonene, representing 71% of total volatile compounds (VOCs). PuE was added to rats' diets at three levels (50, 150, and 250 µg/g) compared to butylated hydroxyanisole (BHA). The body weight of the rats fed the PuE diet (250 µg/g) increased 13% more than the control. Dietary PuE in rats' diets lowered the levels of low-density lipoprotein (LDL) levels by 72% and increased the levels of high-density lipoprotein (HDL) by 36%. Additionally, liver parameters in rats fed PuE (150 µg/g) decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels by 50, 43, and 25%, respectively, while TP, TA, and GSH were increased by 20, 50, and 40%, respectively, compared to BHA. Additionally, PuE acts as a kidney protector by lowering creatinine and urea. PuE was added to yogurt at three concentrations (50, 150, and 250 µg/g) and preserved for 30 days compared to the control. The yogurt's pH reduced during storage while acidity, TSS, and fat content increased. Adding PuE increased the yogurt's water-holding capacity, so syneresis decreased and viscosity increased, which was attributed to enhancing the texture properties (firmness, consistency, and adhesiveness). MDA decreased in PuE yogurt because of the antioxidant properties gained by PuE. Additionally, color parameters L and b were enhanced by PuE additions and sensorial traits, i.e., color, flavor, sugary taste, and texture were enhanced by purslane extract compared to the control yogurt. Concerning the microbial content in the yogurt, the lactic acid bacteria (LAB) count was maintained as a control. Adding PuE at concentrations of 50, 150, and 250 µg/g to the yogurt formulation can enhance the quality of yogurt.
Collapse
Affiliation(s)
- Diana A. Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
| | - Aminah Allohibi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Asmaa Ali Alharbi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Ohud Saleh
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Amani Osman Shakak
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
- Faculty of Medical Laboratory Sciences, University of Shendi, Shendi P.O. Box 142, Sudan
| | - Fatimah S. Alqahtani
- Department of Biology, Faculty of Sciences, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| | - Osama S. F. Khalil
- Dairy Science and Technology Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt;
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
11
|
de Barros HEA, Soares LS, Natarelli CVL, de Oliveira ALM, de Sousa Campos SA, Santos IA, de Carvalho EEN, de Barros Vilas Boas EV, Franco M. Development of the dairy products incorporated with co-product bioactive compounds-rich as an alternative ingredient in the food industry. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1981-1991. [PMID: 37206424 PMCID: PMC10188766 DOI: 10.1007/s13197-023-05732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 05/21/2023]
Abstract
The objective was to optimize the phenolic compounds extraction from cocoa shells using the simplex-centroid design with a mixture of solvents (water, methanol, and acetone) as its components, to prove the presence of these compounds and antioxidant activity. Also, the development of dairy products, such as milk beverages and dairy desserts, with bioactive compounds, through the replacement of cocoa powder by cocoa shell was studied and evaluated sensorially. The extraction optimization indicated that a solvent with 56.44% water, 23.77% methanol, and 19.80% acetone are ideal for maximizing the phenolic compounds. In addition, the cocoa shell showed a high antioxidant activity by the methods β-carotene/linoleic acid, FRAP, and phosphomolybdenum complex. The Check-All-That-Apply, Cochran's Q test, contingency analysis, and hierarchical cluster analysis allowed description characteristics of the dairy products and showed sensory differences between formulations with 100% cocoa shell and others. Both dairy products had good sensory acceptance in all attributes evaluated (appearance, flavor, texture, and overall impression), and their scores did not differ statistically by Tukey's test (p > 0.05). Thus, the cocoa shell is shown as an alternative substitute ingredient to be used in the dairy industry. Graphical abstract
Collapse
Affiliation(s)
- Hanna Elisia Araújo de Barros
- Departament of Exact Sciences and Natural, State University of Southweast Bahia, Itapetinga, Bahia 45700-000 Brazil
- Food Science Department, Federal University of Lavras, Lavras, MG 37200-000 Brazil
| | | | - Caio Vinicius Lima Natarelli
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, São Paulo, 13565-905 Brazil
| | | | | | - Ingrid Alves Santos
- Departament of Exact Sciences and Natural, State University of Southweast Bahia, Itapetinga, Bahia 45700-000 Brazil
| | | | | | - Marcelo Franco
- Departament of Exact Sciences, State University of Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| |
Collapse
|
12
|
Botella-Martínez C, Pérez-Álvarez JÁ, Sayas-Barberá E, Navarro Rodríguez de Vera C, Fernández-López J, Viuda-Martos M. Healthier Oils: A New Scope in the Development of Functional Meat and Dairy Products: A Review. Biomolecules 2023; 13:biom13050778. [PMID: 37238648 DOI: 10.3390/biom13050778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present day, it has been widely established that a high intake of animal fat that contains a high content of saturated fatty acids may cause several life-threatening diseases, including obesity, diabetes-type 2, cardiovascular diseases, as well as several types of cancer. In this context, a great number of health organizations and government agencies have launched campaigns to reduce the saturated fat content in foods, which has prompted the food industry, which is no stranger to this problem, to start working to develop foods with a lower fat content or with a different fatty acid profile. Nevertheless, this is not an easy task due to the fact that saturated fat plays a very important role in food processing and in the sensorial perception of foods. Actually, the best way to replace saturated fat is with the use of structured vegetable or marine oils. The main strategies for structuring oils include pre-emulsification, microencapsulation, the development of gelled emulsions, and the development of oleogels. This review will examine the current literature on the different (i) healthier oils and (ii) strategies that will be potentially used by the food industry to reduce or replace the fat content in several food products.
Collapse
Affiliation(s)
- Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Casilda Navarro Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
13
|
Chemek M, Kadi A, Merenkova S, Potoroko I, Messaoudi I. Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19. BIOLOGY 2023; 12:biology12040514. [PMID: 37106716 PMCID: PMC10136047 DOI: 10.3390/biology12040514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Zinc is a powerful immunomodulatory trace element, and its deficiency in the body is closely associated with changes in immune functions and viral infections, including SARS-CoV-2, the virus responsible for COVID-19. The creation of new forms of zinc delivery to target cells can make it possible to obtain smart chains of food ingredients. Recent evidence supports the idea that the optimal intake of zinc or bioactive compounds in appropriate supplements should be considered as part of a strategy to generate an immune response in the human body. Therefore, controlling the amount of this element in the diet is especially important for populations at risk of zinc deficiency, who are more susceptible to the severe progression of viral infection and disease, such as COVID-19. Convergent approaches such as micro- and nano-encapsulation develop new ways to treat zinc deficiency and make zinc more bioavailable.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Svetlana Merenkova
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Universitéde Monastir, Monastir 5000, Tunisia
| |
Collapse
|
14
|
AlYammahi J, Rambabu K, Thanigaivelan A, Hasan SW, Taher H, Show PL, Banat F. Production and characterization of camel milk powder enriched with date extract. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
15
|
Rocha RS, Mahieu B, Tavares Filho ER, Zacarchenco PB, Freitas MQ, Mársico ET, Pimentel TC, Esmerino EA, Cruz AG. Free comment as a valuable approach to characterize and identify the drivers of liking of high-protein flavored milk drink submitted to ohmic heating. Food Res Int 2023; 165:112517. [PMID: 36869518 DOI: 10.1016/j.foodres.2023.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Flavored milk drink is a popular dairy product traditionally processed by pasteurization, which is a safe and robust process. Still, it can imply a greater energy expenditure and a more significant sensorial alteration. Ohmic heating (OH) has been proposed as an alternative to dairy processing, including flavored milk drink. However, its impact on sensory characteristics needs to be evidenced. This study used Free Comment, an underexplored methodology in sensory studies, to characterize five samples of high-protein vanilla-flavored milk drink: PAST (conventional pasteurization 72 °C/15 s); OH6 (ohmic heating at 5.22 V/cm); OH8 (ohmic heating at 6.96 V/cm); OH10 (ohmic heating at 8.70 V/cm), and OH12 (ohmic heating at 10.43 V/cm). Free Comment raised similar descriptors to those found in studies that used more consolidated descriptive methods. The employed statistical approach allowed observation that pasteurization and OH treatment have different effects on the sensory profile of products, and the electrical field strength of OH also has a significant impact. PAST was slightly to moderately negatively associated with "acid taste," "fresh milk taste," "smoothness," "sweet taste," "vanilla flavor," "vanilla aroma," "viscous," and "white color." On the other hand, OH processing with more intense electric fields (OH10 and OH12) produced flavored milk drinks strongly associated with the "in natura" milk descriptors ("fresh milk aroma" and "fresh milk taste"). Furthermore, the products were characterized by the descriptors "homogeneous," "sweet aroma," "sweet taste," "vanilla aroma," "white color," "vanilla taste," and "smoothness." In parallel, less intense electric fields (OH6 and OH8) produced samples more associated with a bitter taste, viscosity, and lumps presence. Sweet taste and fresh milk taste were the drivers of liking. In conclusion, OH with more intense electric fields (OH10 and OH12) was promising in flavored milk drink processing. Furthermore, the free comment was a valuable approach to characterize and identify the drivers of liking of high-protein flavored milk drink submitted to OH.
Collapse
Affiliation(s)
- Ramon S Rocha
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil; Universidade Federal Fluminense (UFF), Faculdade de Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil
| | | | - Elson R Tavares Filho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - Patrícia B Zacarchenco
- Instituto de Tecnologia de Alimentos (ITAL), Centro de Tecnologia de Laticínios, 13070-178, Campinas, São Paulo, Brazil
| | - Mônica Q Freitas
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Eliane T Mársico
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Tatiana C Pimentel
- Instituto Federal de Educação, Ciência e Tecnologia do Paraná (IFPR), Paranavaí, Paraná 87703-536, Brazil
| | - Erick A Esmerino
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Adriano G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Ding Y, Han F, Xie Z, Li G, Zhuang Y, Yin J, Fu M, You J, Wang Z. Dairy fortification as a good option for dietary nutrition status improvement of 676 preschool children in China: A simulation study based on a cross-sectional diet survey (2018-2019). Front Nutr 2022; 9:1081495. [PMID: 36570132 PMCID: PMC9773072 DOI: 10.3389/fnut.2022.1081495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Chinese children are deficient in several essential nutrients due to poor dietary choices. Dairy products are a source of many under-consumed nutrients, but preschool children in China consume dairy products significantly less than the recommended level. Methods From the cross-sectional dietary intake survey of infants and young children aged 0-6 years in China (2018-2019), preschool children (age: 3-6 years) (n = 676) were selected. The four-day dietary data (including 2 working days and 2 weekends) collected through an online diary with reference to the food atlas were used for analysis and simulation. In scenario 1, individual intake of liquid milk equivalents was substituted at a corresponding volume by soymilk, cow's milk, or formulated milk powder for preschool children (FMP-PSC). In scenario 2, the amount of cow's milk or FMP-PSC increased to ensure each child's dairy intake reached the recommended amount (350 g/day). In both scenarios, the simulated nutrient intakes and nutritional inadequacy or surplus were compared to the survey's actual baseline data. Results It was suggested suggested that replacing dairy foods with FMP-PSC at matching volume is better than replacing them with soymilk or cow's milk to increase the intake of DHA, calcium, iron, zinc, iodine, vitamin A, vitamin B1, vitamin B3, vitamin B12, vitamin C and vitamin D. Moreover, our results suggested that adding FMP-PSC to bring each child's dairy intake to the recommended amount can bring the intakes of dietary fiber, DHA, calcium, iron, zinc, iodine, vitamin A, vitamin B1, vitamin B3, vitamin B9, vitamin B12, vitamin C and vitamin D more in line with the recommendations when compared with cow's milk. Conclusion Accurate nutrition information should be provided to the parents of preschool children so as to guide their scientific consumption of dairy products and the usage and addition of fortified dairy products can be encouraged as needed.
Collapse
Affiliation(s)
- Ye Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fei Han
- Danone Open Science Research Center for Life-Transforming Nutrition, Shanghai, China
| | - Zhencheng Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Genyuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yiding Zhuang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jia Yin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingxian Fu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialu You
- Danone Open Science Research Center for Life-Transforming Nutrition, Shanghai, China
| | - Zhixu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China,*Correspondence: Zhixu Wang,
| |
Collapse
|
17
|
Sayas-Barberá E, Pérez-Álvarez JA, Navarro-Rodríguez de Vera C, Fernández-López M, Viuda-Martos M, Fernández-López J. Sustainability and Gender Perspective in Food Innovation: Foods and Food Processing Coproducts as Source of Macro- and Micro-Nutrients for Woman-Fortified Foods. Foods 2022; 11:foods11223661. [PMID: 36429253 PMCID: PMC9689430 DOI: 10.3390/foods11223661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Micro- and macro-nutrient deficiencies among women are considered a global issue that the food industry has not adequately considered until recently. The industry must provide and guarantee a diversity of food products worldwide that allow women to get a correct and balanced diet according their life stage. The food industry must focus on this challenge within a framework of sustainable production, minimizing the use of natural resources and avoiding the emission of waste and pollutants throughout the life cycle of food. Food coproducts are presented as potential bioactive functional compounds which can be useful for technological purposes, due to the fact that they can serve as non-chemical, natural and health-improving food ingredients. In this review, we focus on the potential use of food processing coproducts which must be part of a strategy to promote and improve women's health and well-being. This knowledge will make it possible to select potential ingredients from coproducts to be used in the fortification of foods intended for consumption by females and to introduce sustainability and gender perspectives into food innovation. The attainment of fortifications for foods for women has to be linked to the use of sustainable sources from food coproducts in order to be economically viable and competitive.
Collapse
Affiliation(s)
- Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Jose Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Manuela Fernández-López
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena s/n, 30120 El Palmar, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966749784
| |
Collapse
|
18
|
Marques Paes da Cunha T, Cristina da Silva Haas I, Araujo João Lopes da Costa M, Luna AS, Santos de Gois J, Dias de Mello Castanho Amboni R, Schwinden Prudencio E. Dairy powder enriched with a soy extract (Glycine max): physicochemical and polyphenolic characteristics, physical and rehydration properties and multielement composition. Food Res Int 2022; 162:112144. [DOI: 10.1016/j.foodres.2022.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
19
|
Evaluation of Guava Pulp Microencapsulated in Mucilage of Aloe Vera and Opuntia ficus-indica as a Natural Dye for Yogurt: Functional Characterization and Color Stability. Foods 2022; 11:foods11152380. [PMID: 35954146 PMCID: PMC9367863 DOI: 10.3390/foods11152380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
The substitution of artificial colorants for pigments extracted from fruits is a highly desirable strategy in the food industry for the manufacture of natural, functional, and safe products. In this work, a 100% natural spray-dried (SD) microencapsulated colorant of pink guava pulp, using aloe vera (AV) or Opuntia ficus-indica (OFI) mucilage as functional encapsulating material, was prepared and evaluated as an additive into a yogurt (Y) matrix. The characterization of yogurt samples supplemented with OFI (Y-SD-OFI) and AV (Y-SD-AV) mucilage-covered guava pulp microcapsules was carried out through carotenoid quantification using UV–vis and HPLC–MS techniques, dietary fiber content, antioxidant capacity, colorimetry, and textural analysis, as well as by an evaluation of color stability after 25 days of storage at 4 °C in the dark. These physicochemical characteristics and color stability on the Y-SD-OFI and Y-SD-AV samples were compared with those of a commercial yogurt (control sample, Y-C) containing sunset yellow FCF synthetic colorant (E110). Y-SD-OFI and Y-SD-AV samples exhibited a high content of lycopene, dietary fiber, and antioxidant activity, which were absent in the control sample. Microencapsulated lycopene imparted a highly stable color to yogurt, contrary to the effect provided by the E110 dye in the control sample. The texture profile analysis revealed an increase in firmness, consistency, and cohesion in the Y-SD-OFI sample, contrary to the Y-SD-AV and Y-C samples, which was attributed to the variation in fiber concentration in the microcapsules. The incorporation of OFI and AV mucilage microparticles containing pink guava pulp into yogurt demonstrated its potential application as a functional natural colorant for dairy products.
Collapse
|
20
|
Hassoun A, Harastani R, Jagtap S, Trollman H, Garcia-Garcia G, Awad NMH, Zannou O, Galanakis CM, Goksen G, Nayik GA, Riaz A, Maqsood S. Truths and myths about superfoods in the era of the COVID-19 pandemic. Crit Rev Food Sci Nutr 2022; 64:585-602. [PMID: 35930325 DOI: 10.1080/10408398.2022.2106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtch Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Rania Harastani
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
| | - Hana Trollman
- Department of Work, Employment, Management and Organisations, School of Business, University of Leicester, Leicester, UK
| | - Guillermo Garcia-Garcia
- Department of Agrifood System Economics, Centre 'Camino de Purchil', Institute of Agricultural and Fisheries Research and Training (IFAPA), Granada, Spain
| | - Nour M H Awad
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, Jammu & Kashmir, India
| | - Asad Riaz
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|