1
|
Zhang M, Tian Y, Zhou H, Huang C, Ou J, Ou S, Liu P, Zheng J. Simultaneous elimination mechanism of formaldehyde and acrolein by resveratrol in food and the cytotoxicity of the products. Food Chem 2025; 468:142371. [PMID: 39671913 DOI: 10.1016/j.foodchem.2024.142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Polyphenols have been intensively investigated for scavenging single harmful aldehydes, such as formaldehyde (FA) and acrolein (ACR). However, there is a lack of studies on the effect and mechanism of eliminating co-existing harmful aldehydes by polyphenols. In this study, resveratrol (RV) was found to simultaneously scavenge FA and ACR by forming various adducts, with the RV-ACR adduct (RA, molecular formula: C17H16O4) and RV-ACR-FA adduct (RAF, molecular formula: C18H18O5) being the dominant ones. The elimination of co-existing FA and ACR by RV were further confirmed in real food systems. RA (IC50, 67.22 and 147.70 μM in GES-1 and Caco-2 cells, respectively) and RAF (127.50 and over 250 μM, respectively) showed significantly lower cytotoxicity than the co-existing FA and ACR (18.27 and 5.26 μM, respectively) in the gastrointestinal cell lines. This study provided data support for food safety control by employing RV as a dietary supplement to scavenge harmful aldehydes in foods.
Collapse
Affiliation(s)
- Mianzhang Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yuan Tian
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform of Baked Food Safety, Guangzhou 510632, China.
| |
Collapse
|
2
|
Lin L, Qian X, He J, Shao Y, Zeng Y, Tang M, Fang Y, Jiang X, Ding J. Improving physicochemical properties and gel formation mechanism of nutty plant-based yogurt with Tremella fuciformis polysaccharides. Food Chem 2025; 466:142255. [PMID: 39615362 DOI: 10.1016/j.foodchem.2024.142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Developing nutty plant-based yogurt (NPBY) with desired texture and sensory properties has been challenging. This study sought to investigate the effects of Tremella fuciformis polysaccharides (TFPS) on the physicochemical, textural, rheological, and microstructural properties of NPBY. The introduction of TFPS enhanced the accumulation of organic acids, water holding capacity, and antioxidant activity. The firmness of NPBY with 0.85 % TFPS increased from 187.77 × 10-3 N to 259.90 × 10-3 N, with significant enhancements in elastic modulus (G', G'') and apparent viscosity. Furthermore, the introduction of 0.85 % TFPS significantly improved liking scores in sensory evaluations. Microstructural analysis revealed that TFPS promoted the formation of proteins and oil body clusters, resulting in a more compact gel network. The synergetic effects of electrostatic and hydrophobic interactions were identified as primary driving forces for NPBY gel formation. This study provides valuable insights into the role of natural polysaccharides in strengthening plant-based yogurt gel.
Collapse
Affiliation(s)
- Ling Lin
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiaoqing Qian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Junyu He
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yuting Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yao Zeng
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mengxin Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China..
| |
Collapse
|
3
|
Yang Y, Shi X, Zhang J, Xiao H, Li C. Molecular mechanisms underlying the beneficial effects of fermented yoghurt prepared by nano-exopolysaccharide-producing Lactiplantibacillus plantarum LCC-605 based on untargeted metabolomic analysis. Food Chem 2025; 465:142068. [PMID: 39577262 DOI: 10.1016/j.foodchem.2024.142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Following our previous discovery that Lactiplantibacillus plantarum LCC-605 secreted spherical exopolysaccharide nanoparticles (EPS-605 NPs), which may contribute to the quality, function, and stability of the fermented yoghurt. We thus prepared the fermented skim milk with strain LCC-605 (Y-605) and investigated the functions and metabolic changes of Y-605. Y-605 showed excellent antioxidant activities with DPPH, ABTS+, and hydroxyl scavenging ability of 90.6 ± 0.1 %, 96.1 ± 0.2 %, and 99.3 ± 0.4 %, respectively, and cholesterol-lowering ability up to 39.9 %. After storage for 7 days, the bacterial count reached 10.9 log CFU/mL. EPS production significantly improved the water holding capacity (71.7 ± 0.5 %), and the texture of the yoghurt. Untargeted metabolomic analysis further revealed significant metabolomic differences between skim milk and Y-605, validating the beneficial mechanism of Y-605. This study develops a novel probiotic for producing functional yoghurts and provides the basis for understanding the beneficial mechanism of Y-605.
Collapse
Affiliation(s)
- Ying Yang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junze Zhang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co. Ltd., Kunming 650106, China.
| |
Collapse
|
4
|
Li H, Zhu F, Li G. Beverages developed from pseudocereals (quinoa, buckwheat, and amaranth): Nutritional and functional properties. Compr Rev Food Sci Food Saf 2025; 24:e70081. [PMID: 39731715 DOI: 10.1111/1541-4337.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
The rising global demand for nutritious, sustainable, and plant-based beverages has catalyzed interest in pseudocereal-based products, offering an innovative alternative to traditional cereals. Pseudocereals such as quinoa, buckwheat, and amaranth are valued for their exceptional nutritional profiles, including high-quality proteins, dietary fibers, and bioactive compounds. This review explores the development of pseudocereal-based beverages, emphasizing their potential as milk alternatives, fermented drinks, and beer products. The fermentation process enhances their nutritional value, bioavailability, and sensory attributes, while also reducing antinutritional factors like phytates and saponins. Moreover, these beverages exhibit promising health benefits, including antioxidant, hypoglycemic, antidiabetic, and antihypertensive effects. This review provides a comprehensive evaluation of pseudocereal-based beverages from regulatory considerations to production processes, highlighting the potential of these ancient grains in reshaping the beverage industry while addressing modern nutritional needs. Future research directions on pseudocereal-based beverages are also suggested.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
5
|
Huang YB, Meng FB, Gong CX, Deng Y, Li YC, Jiang LS, Zhong Y. Widely targeted metabolomics and flavoromics reveal the effect of Wickerhamomyces anomalus fermentation on the volatile and nonvolatile metabolites of black garlic juice. Food Chem 2024; 460:140534. [PMID: 39053270 DOI: 10.1016/j.foodchem.2024.140534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Black garlic has a variety of biological activities, but many consumers cannot accept it because of the garlic odor and the bitter taste. In this study, fermentation with yeast Wickerhamomyces anomalus was adopted to improve the flavor of black garlic juice. Although fermentation reduced antioxidant activities, the garlicky odor and bitter taste were weakened. Metabolomic analysis revealed 141 metabolites were significantly differentially regulated. The upregulated metabolites were mainly related to nucleotides, organic acids and their derivatives, while the downregulated metabolites were mainly related to amino acids, lipids and their derivatives. Flavoromics analysis revealed that 137 metabolites were significantly differentially regulated, particularly garlicky and pungent volatiles were significantly downregulated. Correlation analysis indicated that esters are most closely related to nonvolatile metabolites, and lipids degradation was significantly correlated with volatiles. The results indicated that W. anomalus fermentation is an effective strategy to improve the flavor of black garlic juice.
Collapse
Affiliation(s)
- Yan-Bing Huang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Chuan-Xian Gong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun Deng
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Li-Shi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Yu Zhong
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| |
Collapse
|
6
|
Jiang LS, Li YC, Zheng FX, Zhang MJ, Zheng WX, Liu DY, Meng FB. Application of Lactiplantibacillus plantarum hydrogel coating in combination with ice temperature for the preservation of fresh yak meat. Food Chem X 2024; 23:101735. [PMID: 39263338 PMCID: PMC11388355 DOI: 10.1016/j.fochx.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Fresh yak meat is highly nutritious and prone to spoilage, so developing suitable preservation methods is crucial. In this study, hydrogel coatings composed of konjac glucomannan, Lactiplantibacillus plantarum and gallic acid (KGX) were applied to preserve fresh yak meat under ice temperature (-1 °C). After 16 days, KGX group showed lowest total viable count (5.3 ± 0.1 log cfu/g) and total volatile basic nitrogen (13.02 ± 1.40 mg/100 g), which did not exceed the relevant standards of fresh meat. Combined assessments of color, texture, pH, drip loss rate, and thiobarbituric acid reactive substances indicated that KGX coating effectively prolonged yak meat preservation. High-throughput sequencing revealed that KGX coating effectively reduced the abundance of Pseudomonas and Candida. The application of L. plantarum hydrogel coatings in conjunction with ice temperature increased the shelf life of fresh yak meat to 16-20 days, suggesting its potential as a viable preservation method for fresh meat.
Collapse
Affiliation(s)
- Li-Shi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fu-Xu Zheng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Meng-Jiao Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wen-Xuan Zheng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 610046, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 610046, PR China
| |
Collapse
|
7
|
Qamar H, Li Y, He R, Waqas M, Song M, Deng D, Cui Y, Yang P, Liu Z, Qammar B, Asnan M, Xie X, Yu M, Ma X. Integrated Metabolomics and Metagenomics Unveiled Biomarkers of Antioxidant Potential in Fermented Brewer's Grains. Antioxidants (Basel) 2024; 13:872. [PMID: 39061941 PMCID: PMC11274078 DOI: 10.3390/antiox13070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
About one-third of the global food supply is wasted. Brewers' spent grain (BSG), being produced in enormous amounts by the brewery industry, possesses an eminence nutritional profile, yet its recycling is often neglected for multiple reasons. We employed integrated metagenomics and metabolomics techniques to assess the effects of enzyme treatments and Lactobacillus fermentation on the antioxidant capacity of BSG. The biotreated BSG revealed improved antioxidant capability, as evidenced by significantly increased (p < 0.05) radical scavenging activity and flavonoid and polyphenol content. Untargeted metabolomics revealed that Lactobacillus fermentation led to the prominent synthesis (p < 0.05) of 15 novel antioxidant peptides, as well as significantly higher (p < 0.05) enrichment of isoflavonoid and phenylpropanoid biosynthesis pathways. The correlation analysis demonstrated that Lactiplantibacillus plantarum exhibited strong correlation (p < 0.05) with aucubin and carbohydrate-active enzymes, namely, glycoside hydrolases 25, glycosyl transferases 5, and carbohydrate esterases 9. The fermented BSG has potential applications in the food industry as a culture medium, a functional food component for human consumption, and a bioactive feed ingredient for animals.
Collapse
Affiliation(s)
- Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Yuanfei Li
- Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China;
| | - Rong He
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Muhammad Waqas
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Pan Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | | | - Muhammad Asnan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Xiangxue Xie
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai 519060, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
8
|
Xi X, Fan G, Xue H, Peng S, Huang W, Zhan J. Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion. Antioxidants (Basel) 2024; 13:829. [PMID: 39061898 PMCID: PMC11273950 DOI: 10.3390/antiox13070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Quinoa, a globally cultivated "golden grain" belonging to Chenopodium in the Amaranthaceae family, is recognized for being gluten-free, with a balanced amino acid profile and multiple bioactive components, including peptides, polysaccharides, polyphenols, and saponins. The bioactive compounds extracted from quinoa offer multifaceted health benefits, including antioxidative, anti-inflammatory, antimicrobial, cardiovascular disease (CVD) improvement, gut microbiota regulation, and anti-cancer effects. This review aims to intricately outline quinoa's nutritional value, functional components, and physiological benefits. Importantly, we comprehensively provide conclusions on the effects and mechanisms of these quinoa-derived bioactive components on multiple cancer types, revealing the potential of quinoa seeds as promising and effective anti-cancer agents. Furthermore, the health-promoting role of quinoa in modulating gut microbiota, maintaining gut homeostasis, and protecting intestinal integrity was specifically emphasized. Finally, we provided a forward-looking description of the opportunities and challenges for the future exploration of quinoa. However, in-depth studies of molecular targets and clinical trials are warranted to fully understand the bioavailability and therapeutic application of quinoa-derived compounds, especially in cancer treatment and gut microbiota regulation. This review sheds light on the prospect of developing dietary quinoa into functional foods or drugs to prevent and manage human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (G.F.); (H.X.); (S.P.); (W.H.)
| |
Collapse
|
9
|
Zhang R, Cen Q, Hu W, Chen H, Hui F, Li J, Zeng X, Qin L. Metabolite profiling, antioxidant and anti-glycemic activities of Tartary buckwheat processed by solid-state fermentation( SSF)with Ganoderma lucidum. Food Chem X 2024; 22:101376. [PMID: 38665636 PMCID: PMC11043823 DOI: 10.1016/j.fochx.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the effect of Ganoderma lucidum fermentation on antioxidant and anti-glycemic activities of Tartary buckwheat. Xylanase, total cellulase (CMCase and FPase) and β-glucosidase in fermented Tartary buckwheat (FB) increased significantly to 242.06 U/g, 17.99 U/g and 8.67 U/g, respectively. And the polysaccharides, total phenols, flavonoids and triterpenoids, which is increased by 122.19%, 113.70%, 203.74%, and 123.27%, respectively. Metabolite differences between non-fermented Tartary buckwheat (NFB) and FB pointed out that 445 metabolites were substantially different, and were involved in related biological metabolic pathways. There was a considerable rise in the concentrations of hesperidin, xanthotoxol and quercetin 3-O-malonylglucoside by 240.21, 136.94 and 100.77 times (in Fold Change), respectively. The results showed that fermentation significantly increased the antioxidant and anti-glycemic activities of buckwheat. This study demonstrates that the fermentation of Ganoderma lucidum provides a new idea to enhance the health-promoting components and bioactivities of Tartary buckwheat.
Collapse
Affiliation(s)
- Rui Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Wenkang Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Hongyan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| |
Collapse
|
10
|
Hoang BQ, Nguyen HT, Duong DNT. Developement of lactic acid fermentation of jackfruit (Artocarpus heterophyllus) seed drink and its physicochemical and sensory properties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1180-1187. [PMID: 39118873 PMCID: PMC11303355 DOI: 10.1007/s13197-024-05950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 08/10/2024]
Abstract
The objective of this study was to create a plant-based drink from jackfruit seed. Firstly, jackfruit seed powder was hydrolyzed step by step with 0.2% α-amylase for 60 min and 0.3% glucoamylase for 90 min. The sample then was fermented with Lactiplantibacillus plantarum (L. plantarum) at 37 °C for 15 h. The findings indicated that hydrolysis and lactic acid fermentation enhanced the polyphenol, flavonoid, and antioxidant activity of jackfruit seed drink. Jackfruit seed drink was a favorable matrix for L. plantarum delivery. Moreover, the product underwent fermentation and reached the viability density of L. plantarum of 8.15 Log CFU/mL. The overall sensory liking score was rated between 5 and 5.5/7 points. Throughout the 35 days of storage period at 4-6 °C, the number of L. plantarum uncharged, whereas the bioactive compound and antioxidant activity of the product diminished by nearly 20-50% compared to the sample before storage. Overall, this research highlights the potential of the the fermented jackfruit seed drink as a probiotic plant-based drink with massive biological function and sensory appeal.
Collapse
Affiliation(s)
- Binh Quang Hoang
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, 70000 Vietnam
| | - Hien Thu Nguyen
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City, 70000 Vietnam
| | - Diep Ngoc Thi Duong
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City, 70000 Vietnam
| |
Collapse
|
11
|
Li YC, Liu SY, Li HR, Meng FB, Qiu J, Qian YZ, Xu YY. Use of Transcriptomics to Reveal the Joint Immunotoxicity Mechanism Initiated by Difenoconazole and Chlorothalonil in the Human Jurkat T-Cell Line. Foods 2023; 13:34. [PMID: 38201063 PMCID: PMC10778019 DOI: 10.3390/foods13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
It is very important to evaluate the immunotoxicity and molecular mechanisms of pesticides. In this study, difenoconazole and chlorothalonil were evaluated for immunotoxicity by using the human Jurkat T-cell line, and the EC50 were 24.66 and 1.17 mg/L, respectively. The joint exposure of difenoconazole and chlorothalonil showed a synergistic effect at low concentrations (lower than 10.58 mg/L) but an antagonistic effect at high concentrations (higher than 10.58 mg/L). With joint exposure at a concentration of EC10, the proportion of late apoptotic cells was 2.26- and 2.91-fold higher than that with exposure to difenoconazole or chlorothalonil alone, respectively. A transcriptomics analysis indicated that the DEGs for single exposure are associated with immunodeficiency disease. Single exposure to chlorothalonil was mainly involved in cation transportation, extracellular matrix organization, and leukocyte cell adhesion. Single exposure to difenoconazole was mainly involved in nervous system development, muscle contraction, and immune system processes. However, when the joint exposure dose was EC10, the DEGs were mainly involved in the formation of cell structures, but the DEGs were mainly involved in cellular processes and metabolism when the joint exposure dose was EC25. The results indicated that the immunotoxicological mechanisms underlying joint exposure to difenoconazole and chlorothalonil are different under low and high doses.
Collapse
Affiliation(s)
- Yun-Cheng Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Shu-Yan Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Hou-Ru Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| | - Yan-Yang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| |
Collapse
|
12
|
Zheng Z, Wei L, Zhu M, Qian Z, Liu J, Zhang L, Xu Y. Effect of lactic acid bacteria co-fermentation on antioxidant activity and metabolomic profiles of a juice made from wolfberry and longan. Food Res Int 2023; 174:113547. [PMID: 37986427 DOI: 10.1016/j.foodres.2023.113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Lactic acid bacteria (LAB) fermentation is frequently employed to improve the nutritional, functional, and sensory characteristics of foods. Our study explored the effects of co-fermentation with Lacticaseibacillus paracasei ZH8 and Lactococcus lactis subsp. lactis YM313 on the physicochemical properties, antioxidant activity, and metabolomic profiles of wolfberry-longan juice (WLJ). Fermentation was carried out at 35 °C for 15 h. The results suggest that WLJ is a favorable substrate for LAB growth, reaching a total viable count exceeding 8 log CFU/mL after fermentation. LAB fermentation increased acidity, reduced the sugar content, and significantly impacted the juice color. The total phenolic and flavonoid contents of the WLJ and the antioxidant capacities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS radical scavenging abilities and FRAP were significantly improved by LAB fermentation. Nontargeted metabolomics analysis suggested that the contents of small molecule substances in WLJ were considerably affected by LAB fermentation. A total of 374 differential metabolites were identified in the juice before and after fermentation, with 193 significantly upregulated metabolites and 181 siginificantly downregulated metabolites. The regulation of metabolites is important for improving the flavor and functions of juices, such as L-eucylproline, Isovitexin, Netivudine, 3-Phenyllactic acid, vanillin, and ethyl maltol, ect. This study provides a theoretical foundation for developing plant-based foods fermented with LAB.
Collapse
Affiliation(s)
- Zhenjie Zheng
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Linya Wei
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Manli Zhu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhenning Qian
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Jiao Liu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Lili Zhang
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yunhe Xu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
13
|
Luo Y, Li YC, Wang M, Zhou L, Meng FB, Jiang LS. Effects of grafting methods and raw materials on the physicochemical properties and biological activities of phenolic acids grafted oat β-glucan. Food Res Int 2023; 173:113250. [PMID: 37803562 DOI: 10.1016/j.foodres.2023.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Phenolic acids are commonly used as food biological preservatives. Grafting phenolic acids onto polysaccharides could effectively enhance their biological activities and environmental stability to varying degrees. However, grafting methods and raw materials could affect the physical properties and biological activities of the phenolic acid-grafted polysaccharides. In this study, caffeic acid (CA) and gallic acid (GA) were grafted onto oat β-glucan (OG) and hydrolyzed oat β-glucan (OGH) through N,N'-carbonyldiimidazole-mediated (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling N-hydroxysuccinimide (EDC/NHS) methods. Graft modification decreased the crystallinity and thermal stability of the conjugates, but retained good bioactivities for the conjugates. The antioxidant and bacteriostatic activities of the conjugates prepared by the EDC method were better than those of the CDI method, and the OGH-conjugates showed better biological activities than OG-conjugates. EDC-GAOGH showed best DPPH (89.78%) and ABTS (92.32%) scavenging activities. The inhibitory effect of EDC-GAOGH on Escherichia coli was significantly better than that of EDC-CAOGH, but for Staphylococcus aureus, the results are opposite, which indicating that different phenolic acid grafting products have different inhibitory effects on pathogenic microbes. In general, grafting phenolic acids onto OGH using EDC method is an effective strategy for preparing food biological preservative.
Collapse
Affiliation(s)
- Yan Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Li Zhou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Li-Shi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
14
|
Ao XL, Liao YM, Kang HY, Li HL, He T, Zou LK, Liu SL, Chen SJ, Yang Y, Liu XY. Untargeted Metabolomics and Physicochemical Analysis Revealed the Quality Formation Mechanism in Fermented Milk Inoculated with Lactobacillus brevis and Kluyveromyces marxianus Isolated from Traditional Fermented Milk. Foods 2023; 12:3704. [PMID: 37835356 PMCID: PMC10572762 DOI: 10.3390/foods12193704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Traditional fermented milk from the western Sichuan plateau of China has a unique flavor and rich microbial diversity. This study explored the quality formation mechanism in fermented milk inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 (MFM), the dominant microorganisms isolated from traditional dairy products in western nan. The results indicated that MFM displayed better overall quality than the milk fermented with L. brevis NZ4 (LFM) and K. marxianus SY11 (KFM), respectively. MFM exhibited good sensory quality, more organic acid types, more free amino acids and esters, and moderate acidity and ethanol concentrations. Non-targeted metabolomics showed a total of 885 metabolites annotated in the samples, representing 204 differential metabolites between MFM and LFM and 163 between MFM and KFM. MFM displayed higher levels of N-acetyl-L-glutamic acid, cysteinyl serine, glaucarubin, and other substances. The differential metabolites were mainly enriched in pathways such as glycerophospholipid metabolism, arginine biosynthesis, and beta-alanine metabolism. This study speculated that L. brevis affected K. marxianus growth via its metabolites, while the mixed fermentation of these strains significantly changed the metabolism pathway of flavor-related substances, especially glycerophospholipid metabolism. Furthermore, mixed fermentation modified the flavor and quality of fermented milk by affecting cell growth and metabolic pathways.
Collapse
|
15
|
Cao H, Huang Q, Shi J, Guan X, Song H, Zhang Y, Xie J, Fang Y. Effect of conventional and microwave heating treatment on antioxidant activity of quinoa protein after simulated gastrointestinal digestion. Food Chem 2023; 415:135763. [PMID: 36870208 DOI: 10.1016/j.foodchem.2023.135763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Effects of microwave and traditional water bath treatment at different temperatures (70, 80, 90 ℃) on in vitro digestion rate and antioxidant activity of digestion products of quinoa protein were investigated. The results indicated microwave treatment at 70 ℃ produced the highest quinoa protein digestion rate and the strongest antioxidant activities of its digestion products (P < 0.05), which was further verified by the results of free amino, sulfhydryl group, gel electrophoresis, amino acid profiles and the molecular weight distribution of the digestion products. However, limited exposure of active groups induced by water bath treatment might decrease the susceptibility of digestive enzymes and subsequently lower the digestibility and antioxidant activities of quinoa protein. The results suggested that a moderate microwave treatment could be used as a potential way to enhance the in vitro digestion rate of quinoa protein, as well as increase the antioxidant activities of its digestion products.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Qilong Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Junru Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jian Xie
- China Grain Wuhan Scientific Research & Design Institute Co. Ltd. Wuhan, PR China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, PR China
| |
Collapse
|
16
|
Wang M, Li YC, Meng FB, Wang Q, Wang ZW, Liu DY. Effect of honeysuckle leaf extract on the physicochemical properties of carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film. Food Chem X 2023; 18:100675. [PMID: 37122553 PMCID: PMC10130771 DOI: 10.1016/j.fochx.2023.100675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Honeysuckle leaves are rich in bioactive ingredients, but often considered as agro-wastes. In this study, honeysuckle leaf extract (HLE) was added to the carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film (CMKH). Compared to films without HLE addition (CMK), the water vapor barrier properties of CMKH slightly decreased, but the transmittance of the CMKH films in UV region (200-400 nm) as low as zero. The elongation at break of CMKH film was 1.39 ∼ 1.5 fold higher than those of CMK films. The DPPH and ABTS scavenging activity of CMKH-Ⅱ was 85.75% and 90.93%, respectively, which is similar to the equivalent content of Vc. The inhibition rate of CMKH-Ⅰ and CMKH-Ⅱ against Escherichia coli and Listeria monocytogenes were close to 90%, and the inhibition rate against Staphylococcus aureus were up to 96%. The results emphasized that the composite film containing 25% (v/v) HLE has potential application value in food preservation.
Collapse
Affiliation(s)
- Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
- Corresponding author at: College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Road, Chengdu, China.
| | - Qiao Wang
- Sichuan Institute of Food Inspection, Chengdu 610097, PR China
| | - Zheng-Wu Wang
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
17
|
Guo W, Chen M, Cui S, Tang X, Zhang Q, Zhao J, Mao B, Zhang H. Dynamics changes in physicochemical properties, volatile metabolites, non-volatile metabolites, and physiological functions of barley juice during Bifidobacterium infantis fermentation. Food Chem 2023; 407:135201. [PMID: 36525807 DOI: 10.1016/j.foodchem.2022.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The purpose of this research was to explore the potential of Bifidobacterium infantis fermentation to modify the composition and physiological properties of barley juices. B. infantis JFM12 showed a potent capability to decrease the total sugar contents from 0.39 ± 0.01 mg/mL to 0.35 ± 0.01 mg/mL within 24 h of fermentation. The volatile metabolite profiles were enriched after B. infantis JFM12 fermentation, leading to the changes of 13 aldehydes, 11 ketones, 10 acids, 7 alcohols, and 6 esters. A total of 98 key non-volatile metabolites were identified in the barley juice between before and after B. infantis JFM12 fermentation, including 80 non-volatile metabolites that were remarkably increased and 18 non-volatile metabolites that were remarkably reduced. Furthermore, the antioxidant activities and lipase inhibitory activities of fermented barley juice were higher than those of unfermented barley juice. Overall, B. infantis JFM12 was beneficial in increasing the quality of barley juice.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Minxuan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Liu W, Luo X, Qiu S, Huang W, Su Y, Li L. Determining the changes in metabolites of Dendrobium officinale juice fermented with starter cultures containing Saccharomycopsis fibuligera FBKL2.8DCJS1 and Lactobacillus paracasei FBKL1.3028 through untargeted metabolomics. BMC Microbiol 2023; 23:67. [PMID: 36918762 PMCID: PMC10012521 DOI: 10.1186/s12866-023-02807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the changes in volatile components and metabolites of Dendrobium officinale (D. officinale) juice fermented with starter cultures containing Saccharomycopsis fibuligera and Lactobacillus paracasei at 28 ℃ for 15 days and post-ripened at 4 ℃ for 30 days using untargeted metabolomics of liquid chromatography-mass spectrometry (LC-MS) and headspace solid-phase microextraction-gas chromatography (HS-SPME-GC-MS) before and after fermentation. RESULTS The results showed that the alcohol contents in the S. fibuligera group before fermentation and after fermentation were 444.806 ± 10.310 μg/mL and 510.999 ± 38.431 μg/mL, respectively. Furthermore, the alcohol content in the fermentation broth group inoculated with the co-culture of L. paracasei + S. fibuligera was 504.758 ± 77.914 μg/mL, containing a significant amount of 3-Methyl-1-butanol, Linalool, Phenylethyl alcohol, and 2-Methyl-1-propanol. Moreover, the Ethyl L (-)-lactate content was higher in the co-culture of L. paracasei + S. fibuligera group (7.718 ± 6.668 μg/mL) than in the L. paracasei (2.798 ± 0.443 μg/mL) and S. fibuligera monoculture groups (0 μg/mL). The co-culture of L. paracasei + S. fibuligera significantly promoted the metabolic production of ethyl L (-)-lactate in D. officinale juice. The differential metabolites screened after fermentation mainly included alcohols, organic acids, amino acids, nucleic acids, and their derivatives. Twenty-three metabolites, including 11 types of acids, were significantly up-regulated in the ten key metabolic pathways of the co-culture group. Furthermore, the metabolic pathways, such as pentose and glucuronate interconversions, the biosynthesis of alkaloids derived from terpenoid and polyketide, and aminobenzoate degradation were significantly up-regulated in the co-culture group. These three metabolic pathways facilitate the synthesis of bioactive substances, such as terpenoids, polyketides, and phenols, and enrich the flavor composition of D. officinale juice. CONCLUSIONS These results demonstrate that the co-culture of L. paracasei + S. fibuligera can promote the flavor harmonization of fermented products. Therefore, this study provides a theoretical basis for analyzing the flavor of D. officinale juice and the functional investigation of fermentation metabolites.
Collapse
Affiliation(s)
- Wanlin Liu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang, 550025, China
| | - Xiaoye Luo
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang, 550025, China.
- College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| | - Shuyi Qiu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang, 550025, China
| | - Wu Huang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang, 550025, China
| | - Yanan Su
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang, 550025, China
| | - Linling Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
19
|
Tang Z, Wang Q, Zhao Z, Shen N, Qin Y, Lin W, Xiao Y, Yuan M, Chen H, Chen H, Bu T, Li Q, Huang L. Evaluation of fermentation properties, antioxidant capacity in vitro and in vivo, and metabolic profile of a fermented beverage made from apple and cantaloupe. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
20
|
Hu Y, Li K, Bai Y, Li H, Chen J. Effect of combined ultrasonic and enzymatic assisted treatment on the fermentation process of whole Lycium barbarum (goji berry) fruit. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
21
|
Liu C, Ma R, Tian Y. An overview of the nutritional profile, processing technologies, and health benefits of quinoa with an emphasis on impacts of processing. Crit Rev Food Sci Nutr 2022; 64:5533-5550. [PMID: 36510748 DOI: 10.1080/10408398.2022.2155796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Consumers are becoming increasingly conscious of adopting a healthy lifestyle and demanding food with high nutritional values. Quinoa (Chenopodium quinoa Willd.) has attracted considerable attention and is consumed worldwide in the form of a variety of whole and processed products owing to its excellent nutritional features, including richness in micronutrients and bioactive phytochemicals, well-balanced amino acids composition, and gluten-free properties. Recent studies have indicated that the diverse utilization and final product quality of this pseudo-grain are closely related to the processing technologies used, which can result in variations in nutritional profiles and health benefits. This review comprehensively summarizes the nutritional properties, processing technologies, and potential health benefits of quinoa, suggesting that quinoa plays a promising role in enhancing the nutrition of processed food. In particular, the effects of different processing technologies on the nutritional profile and health benefits of quinoa are highlighted, which can provide a foundation for the updating and upgrading of the quinoa processing industry. It further discusses the present quinoa-based food products containing quinoa as partial or whole substitute for traditional grains.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Luo Y, Li YC, Meng FB, Wang ZW, Liu DY, Chen WJ, Zou LH. Simultaneously enhanced stability and biological activities of chlorogenic acid by covalent grafting with soluble oat β-glucan. Food Chem X 2022; 17:100546. [PMID: 36845469 PMCID: PMC9943848 DOI: 10.1016/j.fochx.2022.100546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Chlorogenic acid (CA) has a wide range of biological activities but the chemical structure is extremely unstable. In this study, CA was grafted onto a soluble oat β-glucan (OβGH) to improve the stability. Although the crystallinity and thermal stability of CA-OβGH conjugates reduced, the storage stability of CA significantly improved. The DPPH and ABTS scavenging ability of CA-OβGH IV (graft ratio 285.3 mg CA/g) were higher than 90 %, which is closed to activities of equivalent concentration of Vc (93.42 %) and CA (90.81 %). The antibacterial abilities of CA-OβGH conjugates are improved compared to the equivalent content of CA and potassium sorbate. Particularly, the inhibition rate of CA-OβGH for gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) are significantly higher than that of gram-negative bacteria (Escherichia coli). The results demonstrated that covalent grafted CA with soluble polysaccharide is an effective strategy to enhance its stability and biological activities.
Collapse
Affiliation(s)
- Yan Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China,Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China,Corresponding author.
| | - Zheng-Wu Wang
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Wei-Jun Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China
| | - Long-Hua Zou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
23
|
Effect of Lactobacillus plantarum and Lactobacillus acidophilus fermentation on antioxidant activity and metabolomic profiles of loquat juice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Comparative Transcriptome Analysis to Investigate the Immunotoxicity Mechanism Triggered by Dimethomorph on Human Jurkat T Cell Lines. Foods 2022; 11:foods11233848. [PMID: 36496656 PMCID: PMC9738110 DOI: 10.3390/foods11233848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Dimethomorph (DMM) is a broad-spectrum fungicide used globally in agricultural production, but little is known regarding the immunotoxicity of DMM in humans. In this study, the immunotoxicity of DMM on human Jurkat T cells was evaluated in vitro. The results indicated that the half-effective concentration (EC50) of DMM for Jurkat cells was 126.01 mg/L (0.32 mM). To further elucidate the underlying mechanism, transcriptomics based on RNA sequencing for exposure doses of EC25 (M21) and EC10 (L4) was performed. The results indicated that compared to untreated samples (Ctr), 121 genes (81 upregulated, 40 downregulated) and 30 genes (17 upregulated, 13 downregulated) were significantly differentially regulated in the L4 and M21 samples, respectively. A gene ontology analysis indicated that the significantly differentially expressed genes (DEGs) were mostly enriched in the negative regulation of cell activities, and a KEGG pathway analysis indicated that the DEGs were mainly enriched in the immune regulation and signal transduction pathways. A quantitative real-time PCR for the selected genes showed that compared to the high-dose exposure (M21), the effect of the low-dose DMM exposure (L4) on gene expression was more significant. The results indicated that DMM has potential immunotoxicity for humans, and this toxicity cannot be ignored even at low concentrations.
Collapse
|
25
|
Yang F, Guo T, Zhou Y, Han S, Sun S, Luo F. Biological functions of active ingredients in quinoa bran: Advance and prospective. Crit Rev Food Sci Nutr 2022; 64:4101-4115. [PMID: 36315046 DOI: 10.1080/10408398.2022.2139219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quinoa is known to be a rich source of nutrients and bioactive components. Quinoa bran, used mainly as animal feed in processing by-products, is also a potential source of bioactive ingredients being conducive to human health. The importance of nutrition and function of quinoa seed has been discussed in many studies, but the bioactive properties of quinoa bran often are overlooked. This review systemically summarized the progress in bioactive components, extraction, and functional investigations of quinoa bran. It suggests that chemically assisted electronic fractionation could be used to extract albumin from quinoa bran. Ultrasound-assisted extraction method is a very useful method for extracting phenolic acids, triterpene saponins, and flavonoids from quinoa bran. Based on in vitro and in vivo studies for biological activities, quinoa bran extract exhibits a wide range of beneficial properties, including anti-oxidant, anti-diabetes, anti-inflammation, anti-bacterial and anti-cancer functions. However, human experiments and action mechanisms need to investigate. Further exploring quinoa bran will promote its applications in functional foods, pharmaceuticals, and poultry feed in the future.
Collapse
Affiliation(s)
- Feiyan Yang
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Tianyi Guo
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yaping Zhou
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuai Han
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuguo Sun
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- National Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
26
|
Xie Y, Li M, Zhang S. Identification of peptides from protease‐fermented milk protein and immunomodulatory effect
in vivo
against lipopolysaccharide‐induced inflammation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yujia Xie
- School of Agriculture and Biology, Shanghai Jiao Tong University 20040 Shanghai China
| | - Mingyi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University 20040 Shanghai China
| | - Shaohui Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University 20040 Shanghai China
- Zhejiang Go Peptides Life Science and Healthcare Technology Co., Ltd., 325000 Wenzhou China
| |
Collapse
|