1
|
Lin D, Ning H, Liu Y, Qin W, Liu J, Loy DA. Mechanism of promoting okara insoluble to soluble dietary fiber by high-pressure homogenization-microbial fermentation. BIORESOURCE TECHNOLOGY 2025; 416:131774. [PMID: 39521189 DOI: 10.1016/j.biortech.2024.131774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
This study investigated the conversion of okara insoluble dietary fiber (IDF) to soluble dietary fiber (SDF) using high-pressure homogenization (HPH) combined with microbial fermentation. The conversion mechanism was analyzed from four aspects: correlation, proteomics, component and structure under. Results indicated a negative correlation between pH and SDF yield (r = -0.9885, p < 0.05), while cellulase and xylanase showed a positive correlation with SDF yield (p < 0.05). Proteomic analysis identified 22 key enzymes involved in IDF degradation. According to the composition and structure, the combined treatment effectively reduced the aggregation of IDF, promoting its transformation into SDF. HPH treatment primarily acted on the hemicellulose fractions in the amorphous region, while microbial fermentation broke hydrogen bonds between hydroxyl groups in the crystalline regions of cellulose, enhancing the conversion of more exposed cellulose. This study provided theoretical support for the development and utilization of okara IDF.
Collapse
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hongjin Ning
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ya Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Douglas A Loy
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Jiang C, Wei X, Liu X, Wang J, Zheng X. Multivariate analysis of structural and functional properties of soluble dietary fiber from corn bran using different modification methods. Food Chem 2025; 462:140989. [PMID: 39226641 DOI: 10.1016/j.foodchem.2024.140989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
This study comprehensively investigated the effects of high-temperature cooking (HT), complex enzyme hydrolysis (CE), and high-temperature cooking combined enzymatic hydrolysis (HE) on the chemical composition, microstructure, and functional attributes of soluble dietary fiber (SDF) extracted from corn bran. The results demonstrated that HE-SDF yielded the highest output at 13.80 ± 0.20 g/100 g, with enhancements in thermal stability, viscosity, hydration properties, adsorption capacity, and antioxidant activity. Cluster analysis revealed three distinct categories of SDF's physicochemical properties. Principal component analysis (PCA) confirmed the superior functional properties of HE-SDF. Correlation analysis showed positive relationships between the monosaccharide composition, purity, and viscosity of SDF and most of its functional attributes, whereas particle size and zeta potential were inversely correlated. Furthermore, a highly significant positive correlation was observed between crystallinity and thermal properties. These findings suggest that the HE method constitutes a viable strategy for enhancing the quality of SDF sourced from corn bran.
Collapse
Affiliation(s)
- Caixia Jiang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xuyao Wei
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaolan Liu
- Heilongjiang Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Juntong Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiqun Zheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products and Utilization of Ministry of Education, Daqing 163319, China.
| |
Collapse
|
3
|
Huang N, Ruan L, Zhang J, Wang Y, Shen Q, Deng Y, Liu Y. Improved physicochemical and functional properties of dietary fiber from matcha fermented by Trichoderma viride. Food Chem 2024; 460:140784. [PMID: 39126952 DOI: 10.1016/j.foodchem.2024.140784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The low-grade matcha is rich in insoluble dietary fiber. Trichoderma viride was used to increase the soluble dietary fiber to improve its functional properties. The soluble dietary fiber content increased from 6.74% to 15.24%. Pectin, hemicellulose, maltose, d-xylose, and glucose contents increased by 63.35% and 11.54%, 2.18, 0.11, and 7.04 mg/g, respectively. Trichoderma viride fermentation disrupted the dense structure of insoluble dietary fiber, resulting in a honeycomb structure and improving crystallinity by 22.75%. These structural changes led to an improved cation exchange capacity from 1.69 to 4.22 mmol/g, an increase in the inhibitory effect of α-amylase from 47.38% to 72.04%, and a 2.13-fold in the ferrous ion scavenging ability, and the IC50 values of superoxide anion was reduced from 7.00 to 1.54 mg/mL, respectively. Therefore, Trichoderma viride fermentation is an excellent method for improving the quality of dietary fiber in matcha processing by-products.
Collapse
Affiliation(s)
- Nanhuan Huang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China
| | - Long Ruan
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China
| | - Jing Zhang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China
| | - Yongsheng Wang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China
| | - Qiang Shen
- Guizhou Tea Research Institute, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550006, China
| | - Yanli Deng
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China.
| | - Yong Liu
- CAS Key Laboratory for Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
4
|
Xiao Q, Yang L, Guo J, Zhang X, Huang Y, Fu Q. Preparation, Structural Characterization, and Hypoglycemic Activity of Dietary Fiber from Sea Buckthorn Pomace. Foods 2024; 13:3665. [PMID: 39594081 PMCID: PMC11593619 DOI: 10.3390/foods13223665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Sea buckthorn pomace is often discarded as a by-product during the sea buckthorn processing stage. Consequently, its richness in dietary fiber is usually overlooked. In this study, soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were extracted from sea buckthorn pomace using ultrasound combined with the enzyme method. The optimal values of the independent variable were determined by a combinatorial design and a response surface optimization test with SDF/IDF as the dependent variable, prepared as follows: 5% enzyme addition, ultrasonic power of 380 W, enzymatic time of 30 min, and alcoholic precipitation liquid ratio of 4:1. Under these conditions, the SDF/IDF ratio was 17.07%. The structural characterization and hypoglycemic activity of the two dietary fibers were then compared. The results show that two dietary fibers have respective structures and functional groups of fibers. SDF was less crystalline than IDF, and its structure was looser. Furthermore, the hypoglycemic activity of SDF was significantly better than IDF's (p < 0.05). The glucose adsorption capacity of SDF was 1.08-1.12 times higher than that of IDF. SDF inhibited α-amylase and α-glucosidase by 1.76 and 4.71 times more than IDF, respectively. These findings provide a reference for improving the utilization of sea buckthorn processing by-products.
Collapse
Affiliation(s)
- Qi Xiao
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Liting Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Jingjing Guo
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Xiyu Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Yu Huang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Qun Fu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
- Key Laboratory of Forest Food Resource Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
5
|
Liu T, Lei H, Zhen X, Liu J, Xie W, Tang Q, Gou D, Zhao J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry-A review. Food Chem 2024; 458:140154. [PMID: 38944924 DOI: 10.1016/j.foodchem.2024.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Recent research has primarily focused on strategies for modifying insoluble dietary fiber (IDF) to enhance its performance and functionality. IDF is obtained from various inexpensive sources and can be manipulated to alter its biological effects, making it possible to revolutionize food processing and nutrition. In this review, multiple IDF modification techniques are thoroughly examined and discussed, with particular emphasis on the resulting changes in the physicochemical properties, biological activities, and microstructure of the fiber. An extensive overview of the practical applications of modified IDF in food processing is provided. Our study aims to raise awareness about the vast possibilities presented by modified IDF and encourage further exploration and utilization of this field in the realm of food production.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxing Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Wenlong Xie
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Qilong Tang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
6
|
Rivas MÁ, Benito MJ, Martín A, de Guía Córdoba M, Gizaw Y, Casquete R. Development of supercritical technology to obtain improved functional dietary fiber for the valorization of broccoli by-product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39494503 DOI: 10.1002/jsfa.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND This research aimed to enhance the functional value of dietary fiber from broccoli leaves using supercritical fluid technology. By optimizing pressure, temperature, and time parameters through response surface methodology, the study sought to improve the bioactive properties of the fiber and develop a predictive model for its chemical composition and functional properties. RESULTS Structural analysis indicated that modified samples had a higher concentration of oligosaccharides than control samples did, with significant increases in galacturonic acid and neutral sugars after supercritical fluid technology treatment, highlighting enhanced pectin release due to cell wall degradation. Functional properties, such as water solubility, glucose absorption capacity, and antioxidant activity, improved significantly under optimized conditions (191 bar, 40 °C, 1 h). Multivariate analysis confirmed the effectiveness of supercritical fluid technology in enhancing the dietary fiber properties, achieving a global desirability value of 0.805. CONCLUSION These results underscore the potential of supercritical technology for valorizing broccoli leaf by-products, enhancing their health-promoting characteristics and functional applications in the food industry. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- María Ángeles Rivas
- School of Agricultural Engineering, University of Extremadura, Badajoz, Spain
- University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Badajoz, Spain
| | - María J Benito
- School of Agricultural Engineering, University of Extremadura, Badajoz, Spain
- University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Badajoz, Spain
| | - Alberto Martín
- School of Agricultural Engineering, University of Extremadura, Badajoz, Spain
- University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Badajoz, Spain
| | - María de Guía Córdoba
- School of Agricultural Engineering, University of Extremadura, Badajoz, Spain
- University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Badajoz, Spain
| | - Yesuneh Gizaw
- School of Agricultural Engineering, University of Extremadura, Badajoz, Spain
- University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Badajoz, Spain
| | - Rocío Casquete
- School of Agricultural Engineering, University of Extremadura, Badajoz, Spain
- University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Badajoz, Spain
| |
Collapse
|
7
|
Yu P, Pan X, Chen M, Ma J, Xu B, Zhao Y. Ultrasound-assisted enzymatic extraction of soluble dietary Fiber from Hericium erinaceus and its in vitro lipid-lowering effect. Food Chem X 2024; 23:101657. [PMID: 39113740 PMCID: PMC11304871 DOI: 10.1016/j.fochx.2024.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Dietary fiber (DF) is an important active polysaccharide in Hericium erinaceus. Obesity can lead to a wide range of diseases. In this work, we investigated the in vitro lipid-lowering effect of soluble dietary fiber (SDF) from H. erinaceus, aiming to provide a basis for the subsequent development of lipid-lowering products. Ultrasound-assisted enzymatic extraction (UAEE) of SDF from H. erinaceus was performed. The optimal extraction parameters determined via single-factor experiments and response surface methodology (RSM) were as follows: Lywallzyme concentration, 1.0%; complex protease concentration, 1.2%; ultrasonication time, 35 min; and ultrasonication power, 150 W. In vitro lipid-lowering experiments revealed that the adsorption amount of cholesterol micelles by H. erinaceus SDF was 11.91 mg/g. The binding amount and binding rate of sodium taurocholate were 3.73 mg/g and 42.47%, respectively, and those of sodium glycocholate were 3.43 mg/g and 39.12%, respectively. The pancreatic lipase inhibition rate reached 52.11%, and the type of inhibition was competitive. Therefore, H. erinaceus SDF has good in vitro lipid-lowering ability.
Collapse
Affiliation(s)
- Panling Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xueyu Pan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianshuai Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Baoting Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
8
|
Fang L, Li J, Chen X, Xu X. How lignocellulose degradation can promote the quality and function of dietary fiber from bamboo shoot residue by Inonotus obliquus fermentation. Food Chem 2024; 451:139479. [PMID: 38696939 DOI: 10.1016/j.foodchem.2024.139479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Lignocellulose constitutes the primary component of dietary fiber. We assessed how fermenting bamboo shoot residue with the medicinal white-rot fungus Inonotus obliquus affected the yield, composition, and functional attributes of dietary fiber by altering bamboo shoot residue lignocellulose's spatial structure and composition. I. obliquus secretes lignocellulolytic enzymes, which effectively enhance the degradation of holocellulose and lignin by 87.8% and 25.5%, respectively. Fermentation led to a more porous structure and reduced crystallinity. The yield of soluble dietary fiber increased from 5.1 g/100 g raw BSR to 7.1 g/100 g 9-day-fermented bamboo shoot residue. The total soluble sugar content of dietary fiber significantly increased from 9.2% to 13.8%, which improved the hydration, oil holding capacity, in vitro cholesterol, sodium cholate, and nitrite adsorption properties of dietary fiber from bamboo shoot residue. These findings confirm that I. obliquus biotransformation is promising for enhancing dietary fiber yield and quality.
Collapse
Affiliation(s)
- Lixiang Fang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junchen Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoxiao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangqun Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China.
| |
Collapse
|
9
|
Sun H, Ma J, Cao Q, Ren G, Li Z, Xie H, Huang M. Seaweed soluble dietary fibre replacement modulates the metabolite release of cakes after in vitro digestion. Int J Biol Macromol 2024; 274:133348. [PMID: 38925174 DOI: 10.1016/j.ijbiomac.2024.133348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Soluble dietary fibre (SDF) has gained growing interest because of its multiple functional and nutritional benefits. In the current study, the effect of SDF extracted from eucheuma seaweed on both the physicochemical properties and the released metabolites of yellow cakes was evaluated systematically. The results revealed that the addition of SDF induced increases in specific gravity, specific volume and water content of yellow cakes, and caused a decrease in weight loss and changes in texture and colour. In addition, sensory evaluation showed that up to 10 % substitution of flour with SDF was acceptable. In vitro digestion of cakes demonstrated that flour substitution with SDF at different levels (8 %-14 %) significantly reduced the release of glucose, ranging from 11.24 % to 29.12 %. In addition to the increased apparent viscosity of the cake digesta, the metabolite analysis based on nuclear magnetic resonance spectroscopy identified a total of 29 metabolites, including amino acids, fatty acids and sugars. Notably, the addition of SDF reduced the release of amino acids and fatty acids after digestion. These findings suggested that seaweed SDF was a potential substitute for some food components, which would provide functional benefits to the digestive characteristics.
Collapse
Affiliation(s)
- Hong Sun
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, Jiangsu Province, China
| | - Jingyi Ma
- Department of Food Science and Technology, National University of Singapore, 117542 Singapore, Singapore
| | - Qing Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhaofeng Li
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
10
|
Li X, Wang L, Tan B, Li R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int J Biol Macromol 2024; 269:132214. [PMID: 38729489 DOI: 10.1016/j.ijbiomac.2024.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Liping Wang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Pan J, Shi Y, Zou J, Zhang X, Xin B, Zhai B, Guo D, Sun J, Luan F. Preparation technologies, structural features, and biological activities of polysaccharides from Mesona chinensis Benth.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117979. [PMID: 38412892 DOI: 10.1016/j.jep.2024.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton) is an important medicinal and edible plant also known as the Hsian-tsao in China and Southeast Asian countries. It is cold in nature and sweet in taste, with the effects of clearing heat, relieving heatstroke and diuretic, and traditionally used to treat heatstroke, erysipelas, hypertension, joint pain and other diseases in folk medicine. It is also a popular supplement with the function of detoxifying and heat-clearing use in Asia. It is used to be processed into the popular tea, Bean jelly, and so on. Published studies have demonstrated that polysaccharides from M. chinensis (MCPs) are one of the principal bioactive ingredients with a variety of health-promoting effects in the prevention and treatment of diseases, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and other pharmacological properties. AIM OF THE REVIEW This review aims to compile the extraction and purification methods, structural characteristics, pharmacological activities including the mechanism of action of MCPs, and to further understand the applications of M. chinensis in order to lay the foundation for the development of MCPs. MATERIALS AND METHODS By inputting the search term "Mesona chinensis polysaccharides", relevant research information was obtained from databases such as PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI). RESULTS More than 40 polysaccharides have been extracted from M. chinensis, different extraction and purification methods have been described, as well as the structural features and pharmacological activities of MCPs have been systematically reviewed. Polysaccharides, as important components of M. chinensis, were mainly extracted by methods such as hot water dipping method, hot alkali extraction method, enzyme-assisted extraction method and ultrasonic-assisted extraction method, subsequently obtained by decolorization, deproteinization, removal of other small molecules and separation on various chromatographic columns. The chemical composition and structure of MCPs show diversity and have a variety of pharmacological activities, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and so on. CONCLUSIONS This article systematically reviews the research progress of MCPs in terms of extraction and purification, structural characteristics, rheological gel properties, pharmacological properties, and safety assessment. The potentials and roles of M. chinensis in the field of medicine, functional food, and materials are further highlighted to provide references and bases for the high-value processing and utilization of MCPs.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
12
|
Song Y, Sun G, Wang D, Chen J, Lv J, Jiang S, Zhang G, Yu S, Zheng H. Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel. Molecules 2024; 29:2085. [PMID: 38731576 PMCID: PMC11085559 DOI: 10.3390/molecules29092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.
Collapse
Affiliation(s)
- Ya Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Guoshun Sun
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Dian Wang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Jin Chen
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Jun Lv
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- Engineering Technology Research Center of Health Wine Brewing, Renhuai 564507, China
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- Talent Cultivation Center of Moutai Institute on Characteristic Food Resource Utilization, Renhuai 564507, China
| |
Collapse
|
13
|
Wang C, Lin M, Li Y, Zhuang W, Guo Z. Effect of steam explosion modified soluble dietary fiber from Tremella fuciformis stem on the quality and digestibility of biscuits. Int J Biol Macromol 2024; 265:130905. [PMID: 38492690 DOI: 10.1016/j.ijbiomac.2024.130905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Steam explosion (SE) technology is an effective modification method for improving resource utilization of edible fungi processing by-products. In this study, the effect of SE-modified Tremella fuciformis (T. fuciformis) stem soluble dietary fiber (SDF) on the quality and digestibility of biscuits was investigated. The results showed that the addition of SE-modified T. fuciformis stem SDF (M-SDF) changed the gluten network structure and moisture distribution in the biscuits, which improved the spread ratio of the biscuits and resulted in attractive colors. Meanwhile, as starch was embedded, the starch hydrolysis rate (from 60.9 ± 0.90 % to 43.01 ± 0.78 %) and estimated glycemic index (from 84.10 ± 4.39 to 68.45 ± 3.15) of 12 % M-SDF biscuits were reduced. Furthermore, 8 % M-SDF received the highest sensory scores. These results demonstrate the potential applicability of SE-modified edible fungi processing by-product SDF as an additive in functional foods.
Collapse
Affiliation(s)
- Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China.
| |
Collapse
|
14
|
Cheng Y, Tian S, Chen Y, Xie J, Hu X, Wang Y, Xie J, Huang H, Yang C, Si J, Yu Q. Structural characterization and in vitro fermentation properties of polysaccharides from Polygonatum cyrtonema. Int J Biol Macromol 2024; 258:128877. [PMID: 38134995 DOI: 10.1016/j.ijbiomac.2023.128877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Polysaccharides, the major active ingredient and quality control indicator of Polygomatum cyrtonema are in need of elucidation for its in vitro fermentation characteristics. This study aimed to investigate the structural characteristics of the homogeneous Polygomatum cyrtonema polysaccharide (PCP-80 %) and its effects on human intestinal bacteria and short chain fatty acids (SCFAs) production during the in vitro fermentation. The results revealed that PCP-80 % was yielded in 10.44 % and the molecular weight was identified to be 4.1 kDa. PCP-80 % exhibited a smooth, porous, irregular sheet structure and provided good thermal stability. The analysis of Gas chromatograph-mass spectrometer (GC-MS) suggested that PCP-80 % contained six glycosidic bonds, with 2,1-linked-Fruf residues accounted for a largest proportion. Nuclear magnetic resonance (NMR) provided additional evidence that the partial structure of PCP-80 % probably consists of →1)-β-D-Fruf-(2 → as the main chain, accompanied by side chains dominated by →6)-β-D-Fruf-(2→. Besides, PCP-80 % promoted the production of SCFAs and increased the relative abundance of beneficial bacteria such as Megamonas, Bifidobacterium and Phascolarctobacterium during in vitro colonic fermentation, which changed the composition of the intestinal microbiota. These findings indicated that Polygomatum cyrtonema polysaccharides were able to modulate the structure and composition of the intestinal bacteria flora and had potential probiotic properties.
Collapse
Affiliation(s)
- Yanan Cheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shenglan Tian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hairong Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jingyu Si
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
15
|
Liang Z, Li K, Huang W, Li Z, Xu X, Xu H, Li S. Production, structural and functional characteristics of soluble dietary fiber from fermented okara by Penicillium expansum. Int J Biol Macromol 2023; 253:126621. [PMID: 37657574 DOI: 10.1016/j.ijbiomac.2023.126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Soluble dietary fiber (SDF), an important prebiotic, has attracted growing attention, due to its great health effects and wide application. This study focused on the preparation of SDF from fermented okara. The yield of SDF obtained through Penicillium expansum fermentation (FSDF) reached 45.63 % (w/w) under the optimal conditions (pH 6.7, inoculum size 9.5 %, and time 29 h) by response surface methodology, which were 1.92 and 4.43 times higher than those of phosphate-citric acid treatment and untreated okara. Infrared spectra and X-ray diffraction indicated that three SDFs had similar spectral distribution and crystalline region. Moreover, FSDF displayed looser and more porous microstructures. Meanwhile, the composition ratio of monosaccharides has changed. FSDF exhibited higher water solubility (97.46 %), glucose adsorption capacity (203.73 mg/g), sodium cholate adsorption capacity (13.07 mg/g), cholesterol adsorption capacity (6.69- 7.62 mg/g) and radical (ABTS+, hydroxyl and DPPH) scavenging capacity. Additionally, three SDFs didn't degrade by upper gastrointestinal tract and could improve the proportion of beneficial intestinal flora in vitro, such as Lactobacillus and Bifidobacterium. Overall, the FSDF prepared in this study was a functional ingredient with great potential in foods.
Collapse
Affiliation(s)
- Zhong Liang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Kecheng Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Weiwei Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoxia Li
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
16
|
Yan K, Liu J, Yan W, Wang Q, Huo Y, Feng S, Zhang L, Hu Q, Xu J. Effects of Alkaline Hydrogen Peroxide and Cellulase Modifications on the Physicochemical and Functional Properties of Forsythia suspensa Dietary Fiber. Molecules 2023; 28:7164. [PMID: 37894643 PMCID: PMC10608965 DOI: 10.3390/molecules28207164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Besides active substances, Forsythia suspensa is rich in dietary fiber (DF), but it is often wasted or discarded and not put to good use. In order to improve the function of Forsythia DF, it was modified using alkaline hydrogen peroxide (AHP) and cellulase (EM). Compared to the control DF (ODF), the DF modified using AHP (AHDF) and EM (EMDF) had a looser microstructure, lower crystallinity, and higher oil holding capacity (OHC) and cation exchange capacity (CEC). The AHP treatment significantly increased the water holding capacity (WHC) and water swelling ability (WSA) of the DF, while the EM treatment achieved just the opposite. Moreover, the functional properties of AHDF and EMDF, including their cholesterol adsorption capacity (CAC), nitrite ion adsorption capacity (NAC), glucose adsorption capacity (GAC), glucose dialysis retardation index (GDRI), α-amylase inhibitory activity, and DPPH radical scavenging activity, were far better than those of ODF. Together, the results revealed that AHP and EM modifications could effectively improve or enhance the physicochemical and functional properties of Forsythia suspensa DF.
Collapse
Affiliation(s)
- Kejing Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Jiale Liu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Wensheng Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Qing Wang
- College of Life Science, Shanxi Normal University, Taiyuan 030031, China;
| | - Yanxiong Huo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Saisai Feng
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Liangliang Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Qingping Hu
- College of Life Science, Shanxi Normal University, Taiyuan 030031, China;
| | - Jianguo Xu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| |
Collapse
|
17
|
Zheng H, Sun Y, Zeng Y, Zheng T, Jia F, Xu P, Xu Y, Cao Y, He K, Yang Y. Effects of Four Extraction Methods on Structure and In Vitro Fermentation Characteristics of Soluble Dietary Fiber from Rape Bee Pollen. Molecules 2023; 28:4800. [PMID: 37375355 DOI: 10.3390/molecules28124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, soluble dietary fibers (SDFs) were extracted from rape bee pollen using four methods including acid extraction (AC), alkali extraction (AL), cellulase extraction (CL) and complex enzyme extraction (CE). The effects of different extraction methods on the structure of SDFs and in vitro fermentation characteristics were further investigated. The results showed that the four extraction methods significantly affected the monosaccharide composition molar ratio, molecular weight, surface microstructure and phenolic compounds content, but showed little effect on the typical functional groups and crystal structure. In addition, all SDFs decreased the Firmicutes/Bacteroidota ratio, promoted the growth of beneficial bacteria such as Bacteroides, Parabacteroides and Phascolarctobacterium, inhibited the growth of pathogenic bacteria such as Escherichia-Shigella, and increased the total short-chain fatty acids (SCFAs) concentrations by 1.63-2.45 times, suggesting that the bee pollen SDFs had a positive regulation on gut microbiota. Notably, the SDF obtained by CE exhibited the largest molecular weight, a relatively loose structure, higher extraction yield and phenolic compounds content and the highest SCFA concentration. Overall, our results indicated that CE was an appropriate extraction method of high-quality bee pollen SDF.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yan Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yiqiong Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Fan Jia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Pan Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yuxin Cao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| |
Collapse
|
18
|
Kong C, Duan C, Zhang S, Liu R, Sun Y, Zhou S. Effects of Co-Modification by Extrusion and Enzymatic Hydrolysis on Physicochemical Properties of Black Wheat Bran and Its Prebiotic Potential. Foods 2023; 12:2367. [PMID: 37372578 PMCID: PMC10297338 DOI: 10.3390/foods12122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Black wheat bran (BWB) is an important source of dietary fiber (DF) and phenolic compounds and has stronger nutritional advantages than ordinary WB. However, the low content of soluble dietary fiber (SDF) negatively influences its physicochemical properties and nutritive functions. To obtain a higher content of SDF in BWB, we evaluated the impact of co-modification by extrusion and enzymes (cellulase, xylanase, high-temperature α-amylase, and acid protease) on water extractable arabinoxylan (WEAX) in BWB. An optimized co-modification method was obtained through single-factor and orthogonal experiments. The prebiotic potential of co-modified BWB was also evaluated using pooled fecal microbiota from young, healthy volunteers. The commonly investigated inulin served as a positive control. After co-modification, WEAX content was dramatically increased from 0.31 g/100 g to 3.03 g/100 g (p < 0.05). The water holding capacity, oil holding capacity, and cholesterol adsorption capacity (pH = 2.0 and pH = 7.0) of BWB were increased by 100%, 71%, 131%, and 133%, respectively (p < 0.05). Scanning electron microscopy demonstrated a looser and more porous microstructure for co-modified BWB granules. Through in vitro anerobic fermentation, co-modified BWB achieved a higher content of Bifidobacterium and Lactobacillus than inulin fermentation. In addition, co-modified BWB induced the highest butyric acid production, indicating high potential as prebiotics. The results may contribute to improving technologies for developing high-fiber-content cereal products.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (C.K.)
| | - Caiping Duan
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (C.K.)
| | - Shunzhi Zhang
- Department of Life Sciences, Yuncheng University, Yuncheng 044000, China
| | - Rui Liu
- Department of Life Sciences, Yuncheng University, Yuncheng 044000, China
- Shanxi Technology Innovation Center of High Value-Added Echelon Utilization of Premium Agro-Products, Yuncheng University, Yuncheng 044000, China
| | - Yuanlin Sun
- Department of Life Sciences, Yuncheng University, Yuncheng 044000, China
- Shanxi Technology Innovation Center of High Value-Added Echelon Utilization of Premium Agro-Products, Yuncheng University, Yuncheng 044000, China
| | - Sumei Zhou
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (C.K.)
| |
Collapse
|
19
|
Liu Y, Li X, Qin H, Huang M, Liu S, Chang R, Xi B, Mao J, Zhang S. Obtaining non-digestible polysaccharides from distillers' grains of Chinese baijiu after extrusion with enhanced antioxidation capability. Int J Biol Macromol 2023:124799. [PMID: 37182635 DOI: 10.1016/j.ijbiomac.2023.124799] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Distillers' grains of Chinese Baijiu (DGS) presents a significant challenge to the environmentally-friendly production of the brewing industry. This study utilized screw extrusion to modify the morphological and crystalline characteristics of DGS, resulting in a 316 % increase in the yield of non-digestible polysaccharides extraction. Physiochemical characteristics of extracted polysaccharides were variated, including infrared spectrum, monosaccharide composition, and molecular weight. Polysaccharides extracted from extruded DGS exhibited enhanced inhibitory capacity on α-amylase activity and starch hydrolyzation, as compared to those extracted from unextruded DGS. Additionally, the ABTS, DPPH, and OH radical scavenging efficiencies took a maximum increase of 1.20, 1.38, and 1.02-fold, correspondingly. Extrusion is a novel approach for the recycling non-digestible polysaccharides from DGS, augmenting the bioactivity of extracts and their potential application in functional food.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China.
| |
Collapse
|
20
|
Si J, Yang C, Chen Y, Xie J, Tian S, Cheng Y, Hu X, Yu Q. Structural properties and adsorption capacities of Mesona chinensis Benth residues dietary fiber prepared by cellulase treatment assisted by Aspergillus niger or Trichoderma reesei. Food Chem 2023; 407:135149. [PMID: 36493475 DOI: 10.1016/j.foodchem.2022.135149] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The effects of enzyme hydrolysis treatment, Aspergillus niger fermentation treatment, Trichoderma reesei fermentation treatment, Aspergillus niger-enzyme hydrolysis treatment and Trichoderma reesei-enzyme hydrolysis treatment on structural properties and adsorption capacities of soluble dietary fiber from Mesona chinensis Benth residues were evaluated and compared. The Aspergillus niger-enzyme hydrolysis treatment sample possessed more diverse structure, lower crystallinity and thermal stability than other modified samples. Meanwhile, it also observed the highest soluble dietary fiber yield (20.76 ± 0.31 %), water-holding capacity and glucose adsorption capacity (38.03 ± 0.28 mg/g). The Aspergillus niger fermentation treatment sample generated a high oil-holding capacity, nitrite ion adsorption capacity (181.84 ± 6.67 ug/g), cholesterol adsorption capacity (16.40 ± 0.37 mg/g) and sodium cholate adsorption capacity (94.80 ± 1.41 mg/g). Additionally, different monosaccharide composition was exhibited due to diverse extraction methods. Our finding revealed that these two modification methods could effectively enhance the economic value of Mesona chinensis Benth residues.
Collapse
Affiliation(s)
- Jingyu Si
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Shenglan Tian
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yanan Cheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China.
| |
Collapse
|
21
|
Cheng Y, Xue P, Chen Y, Xie J, Peng G, Tian S, Chang X, Yu Q. Effect of Soluble Dietary Fiber of Navel Orange Peel Prepared by Mixed Solid-State Fermentation on the Quality of Jelly. Foods 2023; 12:foods12081724. [PMID: 37107519 PMCID: PMC10137729 DOI: 10.3390/foods12081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this work was to prepare soluble dietary fibers (SDFs) from insoluble dietary fiber of navel orange peel (NOP-IDF) by mixed solid-state fermentation (M-SDF) and to investigate the influence of fermentation modification on the structural and functional characteristics of SDF in comparison with untreated soluble dietary fiber (U-SDF) of NOP-IDF. Based on this, the contribution of two kinds of SDF to the texture and microstructure of jelly was further examined. The analysis of scanning electron microscopy indicated that M-SDF exhibited a loose structure. The analysis of scanning electron microscopy indicated that M-SDF exhibited a loose structure. In addition, M-SDF exhibited increased molecular weight and elevated thermal stability, and had significantly higher relative crystallinity than U-SDF. Fermentation modified the monosaccharide composition and ratio of SDF, as compared to U-SDF. The above results pointed out that the mixed solid-state fermentation contributed to alteration of the SDF structure. Furthermore, the water holding capacity and oil holding capacity of M-SDF were 5.68 ± 0.36 g/g and 5.04 ± 0.04 g/g, which were about six times and two times of U-SDF, respectively. Notably, the cholesterol adsorption capacity of M-SDF was highest at pH 7.0 (12.88 ± 0.15 g/g) and simultaneously exhibited better glucose adsorption capacity. In addition, jellies containing M-SDF exhibited a higher hardness of 751.15 than U-SDF, as well as better gumminess and chewiness. At the same time, the jelly added with M-SDF performed a homogeneous porous mesh structure, which contributed to keeping the texture of the jelly. In general, M-SDF displayed much excellent structural and functional properties, which could be utilized to develop functional food.
Collapse
Affiliation(s)
- Yanan Cheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Puyou Xue
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Guanyi Peng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shenglan Tian
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xinxin Chang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
22
|
Ma W, Liang Y, Lin H, Chen Y, Xie J, Ai F, Yan Z, Hu X, Yu Q. Fermentation of grapefruit peel by an efficient cellulose-degrading strain, (Penicillium YZ-1): Modification, structure and functional properties of soluble dietary fiber. Food Chem 2023; 420:136123. [PMID: 37094537 DOI: 10.1016/j.foodchem.2023.136123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
In the study, a highly efficient cellulose-degrading strain was screened, which was identified as a fungus in the genus Penicillium sp., named YZ-1. The content of soluble dietary fiber was greatly increased by the treatment of this strain. In addition, the effects of soluble dietary fiber from high-pressure cooking group (HG-SDF), strain fermentation group (FG-SDF) and control group (CK-SDF) on the physicochemical structure, and in vitro hypolipidemic activity were investigated. The results showed that the physicochemical structure of the raw materials was improved after fermentation, and FG-SDF exhibited the loosest structure, the highest viscosity and thermal stability. Furthermore, compared to CK-SDF and HG-SDF, FG-SDF showed the most significant improvement in functional properties, including cholesterol adsorption capacity (CAC), inhibition of pancreatic lipase activity (LI) and mixed bile acid adsorption capacity (BBC). Overall, these findings will provide new insights into dietary fiber modification and improve the comprehensive use value of grapefruit by-products.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Liang
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Huasi Lin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Fengling Ai
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Ziwen Yan
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
23
|
Ma Q, Yu Y, Zhou Z, Wang L, Cao R. Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
24
|
Optimization of Mixed Fermentation Conditions of Dietary Fiber from Soybean Residue and the Effect on Structure, Properties and Potential Biological Activity of Dietary Fiber from Soybean Residue. Molecules 2023; 28:molecules28031322. [PMID: 36770993 PMCID: PMC9920189 DOI: 10.3390/molecules28031322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Soybean residue is a by-product of soybean product production that is wasted unreasonably at present. Accomplishing the efficient utilization of soybean residue can save resources. A composite microbial system was constructed using lactic acid bacteria (LAB) and Saccharomyces cerevisiae (SC), and modified soybean residue was prepared by solid fermentation. In order to explore the value of modified soybean residue as a food raw material, its physical and chemical properties, adsorption properties, and antioxidant properties were studied. The results showed that the soluble dietary fiber (SDF) yield of mixed fermentation (MF) increased significantly. Both groups of soybean residues had representative polysaccharide infrared absorption peaks, and MF showed a looser structure and lower crystallinity. In terms of the adsorption capacity index, MF also has a higher adsorption capacity for water molecules, oil molecules, and cholesterol molecules. In addition, the in vitro antioxidant capacity of MF was also significantly higher than that of unfermented soybean residue (UF). In conclusion, our study shows that mixed fermentation could increase SDF content and improve the functional properties of soybean residue. Modified soybean residue prepared by mixed fermentation is the ideal food raw material.
Collapse
|
25
|
Xie J, Peng G, Hu X, Xie J, Chen Y, Dong R, Si J, Yang C, Yu Q. Physicochemical Characteristics of Soluble Dietary Fiber Obtained from Grapefruit Peel Insoluble Dietary Fiber and Its Effects on Blueberry Jam. Foods 2022; 11:foods11223735. [PMID: 36429327 PMCID: PMC9689297 DOI: 10.3390/foods11223735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Appropriate modification methods can increase the proportion of soluble dietary fiber (SDF). In this study, grapefruit peel insoluble dietary fiber (GP-IDF) was modified with the combined microwave and enzymatic method to obtain SDF. With regard to structural characterization, SDF from grapefruit peel IDF (GP-IDF-SDF) presented as a flat sheet with cracks, composed of a typical cellulose type I crystal, and had good stability below 200 °C. Galacturonic acid, arabinose and glucuronic acid were the main monosaccharide compositions, indicating that pectin might have been the principal component. Moreover, GP-IDF-SDF was excellent in water retention capacity (13.43 ± 1.19 g/g), oil retention capacity (22.10 ± 0.85 g/g) and glucose adsorption capacity (14.49 ± 0.068 mg/g). Thereafter, the effects of GP-IDF-SDF and commercial pectin addition on the color, rheology, texture and sensory properties of blueberry jam were compared. The results showed that the color of jam with GP-IDF-SDF was lighter. The addition of GP-IDF-SDF had less effects on the viscosity and gel strength of jam, but it enhanced the stability of jam. According to sensory data, the color, texture and spreadability of jam with GP-IDF-SDF or pectin were improved and more acceptable. Overall, GP-IDF-SDF had functional characteristics and played a positive role in jam, and it is expected to be a candidate for the development of functional food ingredients.
Collapse
|