1
|
Fu M, Liu J, Li Q, Zhu S, Xue Z, Yu L, Zhou Z. Synthesis of lipophilic vitamin C and evaluation of its antioxidant performance in sunflower seed oil frying. Food Chem 2024; 460:140727. [PMID: 39111045 DOI: 10.1016/j.foodchem.2024.140727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
The present study involved the synthesis and analysis of a lipophilic form of vitamin C, namely tetrabutyryl vitamin C ester (TVCE). TVCE is synthesized by a simple one-step method, combining the advantages of VC and butyric acid. Its antioxidant efficacy on sunflower seed oil frying was evaluated by assessing lipid oxidation parameters including peroxide number (POV), carbonyl number (CV), and paraniline number (pAV). Furthermore, changes in the fatty acid composition of the oil were monitored using techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR), and gas chromatography (GC). The findings demonstrated that lipophilic vitamin C exhibited superior protection against oxidation during frying compared to vitamin E, suggesting that it may be an effective fat-soluble antioxidant. The study provides a new field for the utilization of vitamin C and a new idea for the development of efficient antioxidants.
Collapse
Affiliation(s)
- Min Fu
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430000, China
| | - Juan Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qing Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shengqin Zhu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhiyong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Lijuan Yu
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430000, China; China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhigang Zhou
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430000, China; China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Lucas-González R, Carrillo C, Purriños L, Pateiro M, Bermúdez R, Lorenzo JM. Effect of different pre-treatment on acrylamide content, nutrition value, starch digestibility and anthocyanin bioaccessibility of purple sweet potato (Ipomoea batata) deep-fried chips. Food Chem 2024; 460:140535. [PMID: 39068802 DOI: 10.1016/j.foodchem.2024.140535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Veggie chips have gained popularity in the European market. These are considered healthier than potato chips by consumers. However, few works evaluate their nutritional and digestibility. The current work aimed to evaluate the effect of four pre-frying treatments (soaking, blanching, pulsed electric field (PEF) and PEF + blanching combination (PEFB)) on the chemical composition, anthocyanins, acrylamide, and digestive behavior (starch hydrolysis and anthocyanins bioaccessibility) of purple sweet potato deep-fried chips. In total 15 independent batches were made, three for each studied treatment (also a control without pretreatment was developed). The studied pretreatments impacted on fat and starch content, especially blanching and PEFB, which caused an increase in fat absorption and break starch, generating maltodextrins. Nineteen anthocyanins were detected, mainly cyanidin and peonidin derivatives, but a drastic loss was observed in blanched, PEF-treated and PEF-B-Treated chips. Acrylamide values ranged from 504.11 to 6350.0- μg/kg, with the highest values reported by untreated chips and the lowest by PEF-B-treated chips (p < 0.05). The anthocyanin's bioaccessibility ranged between 66.57 and 92.88%, with soaked chips that showed the highest values.
Collapse
Affiliation(s)
- Raquel Lucas-González
- Institute for Agri-Food and Agri-Environmental Research and Innovation, Miguel Hernández University (CIAGRO-UMH), Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - Celia Carrillo
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Laura Purriños
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas 32900, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas 32900, Spain
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas 32900, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas 32900, Spain; Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
3
|
Zhang H, Zhao J, Li X, Kang H. Improving the physicochemical quality and oxidative stability of deep-fried pork meatballs by coating with chitosan grafted gallic acid. Meat Sci 2024; 218:109629. [PMID: 39159509 DOI: 10.1016/j.meatsci.2024.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
The objective of this research was to examine the effectiveness of chitosan (CH)-gallic acid (GA) conjugate (CH-g-GA) as an edible coating in improving the physicochemical properties and oxidative stability of deep-fat fried pork meatballs. The meatballs were coated with either CH alone, a combination of CH and GA, or CH-g-GA before being fried at 180 °C for 5 min. The viscosity of the coating solutions influenced the amount of coating picked up by the meatballs, with higher viscosity coatings showing increased pickup. The application of chitosan-based coatings in deep-fried meatballs resulted in a decrease in moisture loss and oil uptake, as well as decreased b* values and hardness, while maintaining consistent cooking yield. Furthermore, compared to the control group, the chitosan-based coatings treatment significantly increased the ratio of immobilized water and decreased the ratio of free water (P < 0.05), as well as effectively inhibited lipid oxidation in deep-fried meatballs (P < 0.05). Among the different coatings tested, CH-g-GA coating exhibited the highest effectiveness. The research findings suggest that the CH-g-GA edible coating has significant potential in enhancing the overall quality of deep-fried meatballs.
Collapse
Affiliation(s)
- Huiyun Zhang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| | - Junren Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Guangdong 525000, China
| | - Xinling Li
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huaibin Kang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
4
|
Chen J, Zhang L, Guo X, Qiang J, Cao Y, Zhang S, Yu X. Influence of triacylglycerol structure on the formation of lipid oxidation products in different vegetable oils during frying process. Food Chem 2024; 464:141783. [PMID: 39481150 DOI: 10.1016/j.foodchem.2024.141783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The deterioration of frying oil significantly affects the quality of fried foods, leading to the formation of harmful oxidation products. This study examined how triacylglycerol (TAG) degradation influences both non-volatile and volatile oxidation products in frying oils. The sn-1/3 position of unsaturated fatty acyl chains was key to TAG degradation during frying. After 32 h, soybean oil showed higher levels of polymerized TAG products, 2,4-decadienal, (E)-2-heptenal, (E,E)-conjugated dienes, 4-oxo-alkanals, and epoxides compared to other oils. Rapeseed oil, however, had higher levels of glycerol core aldehydes, (E,E)-2,4-alkadienals, and n-alkanals. Correlation analysis suggested that thermal oxidation was more pronounced in the unsaturated TAGs of soybean and rapeseed oils, likely due to their abundant free radicals and low short-chain fatty acid content. The polar compound composition of TAG heating systems further supported the above conclusions. These results provide a better understanding of oxidative degradation in frying oils, focusing on TAG profiles.
Collapse
Affiliation(s)
- Jia Chen
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China; Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Lingyan Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China; Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xingfeng Guo
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China
| | - Jie Qiang
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Yongsheng Cao
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Siyu Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
5
|
Liu S, Zhang L, Guo Y, Wang M, Cai H, Hong P, Zhong S, Lin J. Study on quality characteristics, shelf-life prediction and frying mass transfer of breaded tilapia nuggets. Heliyon 2024; 10:e36528. [PMID: 39263184 PMCID: PMC11387244 DOI: 10.1016/j.heliyon.2024.e36528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Deep-fried breaded tilapia nuggets (DFBTNs) have good market prospects as a tilapia deep-processed product. In this study, we used pre-optimized DFBTNs to simulate the mass change from storage to consumption and investigated the changes in storage shelf-life and frying mass transfer kinetics of DFBTNs. Microbial growth trend and shelf-life prediction models at different storage temperatures were developed using a modified Gompertz equation. The R2 of the fitted equations were all greater than 0.98, and the predicted shelf-life of the products was close to the actual measurement time. The ability of the electronic nose and tongue to differentiate between odor and taste can be used as a secondary indicator to determine whether a product is spoiled or not. During the reheating process of deep-frying, the batter shell moisture decreased (18.69 %→6.89 %), and the oil content increased (2.76 %→27.35 %). The mass transfer coefficient k fitted by Fick's second law for moisture evaporation was 0.0086, and the mass transfer coefficient k fitted by the first-order kinetic equation for oil absorption was 0.1137. This study is informative for storing and consuming DFBTNs, which can provide a basis for the deep processing and high-value utilization of tilapia.
Collapse
Affiliation(s)
- Shouchun Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524004, China
| | - Luyao Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524004, China
| | - Yongjia Guo
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Minjie Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Hongying Cai
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524004, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524004, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Jiayong Lin
- Gaozhou Natural Aquatic Products Co., Ltd, Maoming, 525200, China
| |
Collapse
|
6
|
Sipahi S, Barak TH, Can Ö, Temur BZ, Baş M, Sağlam D. Garlic Extract Increased Acrylamide Formation in French Fries Obtained by Different Cooking Methods. Foods 2024; 13:2769. [PMID: 39272534 PMCID: PMC11394623 DOI: 10.3390/foods13172769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Fried potato products are the largest dietary source of acrylamide, a potential carcinogen formed at high temperatures. Previous studies suggested that garlic powder could decrease the development of acrylamide; however, there has not been much focus on the effect of garlic extract. The aim of this study was to investigate the effect of garlic extract exposure on the development of acrylamide in French fries in popular home cooking techniques such as pan-frying, air-frying, and oven-frying. Initially, the antioxidative profile, total phenolic content, and chlorogenic acid content of garlic were analyzed. Subsequently, potatoes were treated with garlic extract and fried using pan-frying, air-frying, and oven-frying techniques. Acrylamide levels were then quantified through HPLC and compared to control groups. The findings showed that garlic exposure increased the acrylamide formation in French fries obtained with air-frying (311.95 ± 0.5 μg/kg) and with oven-frying (270.32 ± 23.4 μg/kg) (p < 0.005 *). This study offers new insights into varying acrylamide formation levels in domestic practices. Unlike previous studies, this study is the first to question the effect of aqueous garlic extract exposure. Further research is required to comprehend the interaction between garlic exposure and acrylamide formation in household settings.
Collapse
Affiliation(s)
- Simge Sipahi
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Özge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Betül Zehra Temur
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Duygu Sağlam
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| |
Collapse
|
7
|
Ruiz-Méndez MV, Velasco J, Lastrucci AS, Márquez-Ruiz G. Lipid Quality Changes in French Fries, Chicken Croquettes, and Chicken Nuggets Fried with High-Linoleic and High-Oleic Sunflower Oils in Domestic Deep Fryers. Foods 2024; 13:2419. [PMID: 39123609 PMCID: PMC11311935 DOI: 10.3390/foods13152419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The quality of fried products greatly depends on the changes occurring during frying. The purpose of this work was to study the lipid quality changes taking place in selected frozen foods after domestic deep-frying. Conventional, high-linoleic sunflower oil (HLSO) and high-oleic sunflower oil (HOSO) were used, and the frozen foods selected were French fries, croquettes, and nuggets. The foods were fried in domestic fryers under discontinuous conditions. Analyses included fatty acid composition, sterols, tocopherols, squalene, and lipid alteration levels. In all fried foods, the content of lipids increased after frying, which is consistent with previous findings. However, the lipid exchange between the food and the oil greatly depended on the food characteristics. Specifically, the levels of frying oil in the food lipids were about 90, 40, and 58% for French fries, croquettes, and nuggets, respectively. The main results obtained showed that lipid alteration levels considerably decreased and amounts of sterols and tocopherols significantly increased in French fries' lipids after frying. In both chicken products, croquettes and nuggets, the best quality improvement observed was a significant decrease in cholesterol in food lipids due to the lipid exchange. Overall, frying with HLSO and HOSO improved the quality and nutritional properties of all products tested.
Collapse
Affiliation(s)
- María-Victoria Ruiz-Méndez
- Instituto de la Grasa (IG), Consejo Superior de Investigaciones Científicas (CSIC), Campus Bd 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (J.V.)
| | - Joaquín Velasco
- Instituto de la Grasa (IG), Consejo Superior de Investigaciones Científicas (CSIC), Campus Bd 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (J.V.)
| | - Adriana Salud Lastrucci
- Instituto de la Grasa (IG), Consejo Superior de Investigaciones Científicas (CSIC), Campus Bd 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (J.V.)
| | - Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais, 10, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Zhang RY, Kong WQ, Qin Z, Liu HM, Wang XD. Modified Chinese quince oligomeric proanthocyanidin protects deep-frying oil quality by inhibiting oxidation. Food Chem 2024; 444:138642. [PMID: 38325088 DOI: 10.1016/j.foodchem.2024.138642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Chinese quince (Chaenomeles sinensis) fruit is an underutilized resource, rich in proanthocyanidins with antioxidant ability but poor lipid solubility. In this study, a novel modified oligomeric proanthocyanidin (MOPA) was prepared, which exhibited favorable lipid solubility (354.52 mg/100 g). It showed higher radical scavenging abilities than commercial antioxidant-BHA (butylated hydroxyanisole), both at 0.4-0.5 mg/mL. The addition of MOPA (0.04 %wt.) significantly increased the oxidative stability index of the soybean oil from 5.52 to 8.03 h, which was slightly lower than that of BHA (8.35 h). Analysis of the physicochemical properties and composition of oil during deep-frying showed that MOPA demonstrated significant antioxidant effects and effectively restricted the oil oxidation. This inhibition also delays the formation of heterocyclic amines (HAs) in fried food, thereby reducing the migration of HAs from food to deep-frying oil. Therefore, MOPA is a promising novel liposoluble antioxidant for protecting the quality of deep-frying oil.
Collapse
Affiliation(s)
- Run-Yang Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wan-Qing Kong
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Zhang J, Tao L, Tang J, Xiong B, Zhao Y, Ma T, Yu L. Effects of starch hydration properties on the batter properties and oil absorption of fried crust and battered ham sausages. Int J Biol Macromol 2024; 258:128915. [PMID: 38141702 DOI: 10.1016/j.ijbiomac.2023.128915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Water plays an important role in deep-frying. To assess the effects of water on oil absorption by fried crust and battered ham sausages (FCBHSs), we selected four starch types with different hydration properties: tapioca starch (TS), freeze-thawed tapioca starch (FTS), carboxymethyl tapioca starch (CMTS), and carboxymethyl freeze-thawed tapioca starch (CM-FTS). CMTS had the best hydration properties, followed by CM-FTS, FTS, and TS, respectively. CM-FTS with its medium hydration properties strengthened batter properties which reduced FCBHSs oil absorption. Low-field nuclear magnetic resonance analysis revealed that CM-FTS increased the percentages of bound and semi-bound water in the batter, thereby enhancing water retention and delaying water loss during deep-frying. Analyses of protein particle size distribution, zeta potential, disulfide bonding and microstructure revealed that CM-FTS promotes protein aggregation and the formation of a protein network structure, leading to a denser internal structure, which inhibits oil absorption. Additionally, differential scanning calorimetry analysis indicated that CM-FTS enhances the batter's thermal stability of batter, thereby rendering it more resistant to frying. However, the use of CMTS, with its strong hydration properties increased FCBHSs oil absorption. In conclusion, we propose that suitable modification of starch's hydration properties can aid in preparing deep-fried battered food characterized by low oil absorption.
Collapse
Affiliation(s)
- Jingwei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiawei Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Boyu Xiong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yilin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Ma
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
10
|
Wang CY, Ndraha N, Wu RS, Liu HY, Lin SW, Yang KM, Lin HY. An Overview of the Potential of Food-Based Carbon Dots for Biomedical Applications. Int J Mol Sci 2023; 24:16579. [PMID: 38068902 PMCID: PMC10706188 DOI: 10.3390/ijms242316579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Food-based carbon dots (CDs) hold significant importance across various fields, ranging from biomedical applications to environmental and food industries. These CDs offer unique advantages over traditional carbon nanomaterials, including affordability, biodegradability, ease of operation, and multiple bioactivities. This work aims to provide a comprehensive overview of recent developments in food-based CDs, focusing on their characteristics, properties, therapeutic applications in biomedicine, and safety assessment methods. The review highlights the potential of food-based CDs in biomedical applications, including antibacterial, antifungal, antivirus, anticancer, and anti-immune hyperactivity. Furthermore, current strategies employed for evaluating the safety of food-based CDs have also been reported. In conclusion, this review offers valuable insights into their potential across diverse sectors and underscores the significance of safety assessment measures to facilitate their continued advancement and application.
Collapse
Affiliation(s)
- Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Nodali Ndraha
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ren-Siang Wu
- Division of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Hsin-Yun Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Sin-Wei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Kuang-Min Yang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| |
Collapse
|