1
|
Cai R, Tan CP, Lai OM, Dang Y, Liu A, Choeng LZ, Pan D, Du L. Cold argon plasma-induced aggregated and non-aggregated structural changes in casein and peptidomic insights into allergenicity. Food Chem 2025; 468:142408. [PMID: 39674013 DOI: 10.1016/j.foodchem.2024.142408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Casein (CN) is a common allergen that is challenging to avoid in modern foods. The effect of cold argon plasma (CAP) on reducing CN antigenicity was investigated, focusing on alterations in epitope structure and sequence. CAP mainly contains hydroxyl radicals (∙OH). After a 12-min CAP treatment, the result of ELISA demonstrated an 80.46 % reduction in antigenicity. Transmission electron microscopy and electrophoresis revealed that certain CN aggregated, while multispectral analysis indicated that part of CN was fragmented into smaller peptides. The predictive 3D model suggested the disruption of linear epitopes located in the α-helix region might contribute to the reduced allergenicity. The peptide sequences were compared to the linear epitopes predicted by immunoinformatics approaches, revealing some reduction or breakage of key allergic sequences. Meanwhile, amino acids with aromatic side chains and hydrophobic groups were susceptible to CAP-induced modifications. This investigation demonstrated CAP could be beneficial for processing hypoallergenic foods.
Collapse
Affiliation(s)
- Ruiyi Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Ling-Zhi Choeng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
2
|
Nasiru MM, Boateng EF, Alnadari F, Bako HK, Ibeogu HI, Feng J, Song J, Liu H, Zhang Q, Masisi K, Roth CM, Yan W, Zhang J, Li C. Cold plasma reengineers peanut protein isolate: Unveiling changes in functionality, rheology, and structure. Int J Biol Macromol 2025; 286:138407. [PMID: 39645126 DOI: 10.1016/j.ijbiomac.2024.138407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the effects of cold plasma (CP) treatment on peanut protein isolate (PPI), focusing on functionality, rheology, and structural modifications across various treatment times (0, 90, 180, 270, 360, and 450 s) and voltages (120, 140, and 160 kV). Key findings include a significant increase in solubility from 9.99 mg/mL to 15.98 mg/mL, as well as 161.07 % enhanced water-holding capacity (WHC) and 448.45 % oil-holding capacity (OHC). CP treatment also improved foaming capacity (FC) to 186.46 % and increased emulsion capacity (EC) and emulsion stability (ES) by 185.90 % at 160 kV. Rheological analysis showed shear-thinning behaviour, with viscosity decreasing as the shear rate increased-higher voltages (140 kV and 160 kV) further reduced viscosity, indicating lower resistance to flow. Additionally, CP-treated PPI exhibited viscoelasticity, with increased storage and loss moduli at higher frequencies, indicating greater stiffness. Spectroscopic studies demonstrated shifts in the protein's secondary structure, altering the balance among alpha-helix, beta-sheet, and random coil components, which highlights CP's role in reengineering PPI. FTIR-ATR spectra revealed reductions in the 3200-3400 cm-1 range, suggesting changes in protein backbone vibrations and hydrogen bonding. Particle size analysis showed significant increases, especially at higher voltages and longer treatment times, stabilizing after 270 s. Zeta potential assays indicated a gradual decrease in negative surface charge, suggesting enhanced protein aggregation. Overall, CP treatment significantly improves the functional and rheological properties of PPI while inducing structural changes, making it more suitable for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Mustapha Muhammad Nasiru
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Evans Frimpong Boateng
- Department of Food Science and Technology, School of Agriculture and Technology, University of Energy and Natural Resources, Bono, Ghana
| | - Fawze Alnadari
- Research and Development Center of Jiangsu Tianmeijian Nature Bioengineering Co., Ltd., Nanjing 210046, PR China
| | - Hadiza Kabir Bako
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Henry Isaiah Ibeogu
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Huan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qingqiang Zhang
- College of Biology and Food, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Chuon Mony Roth
- Cambodia Laboratory of Agricultural Products and Foods, Ministry of Agriculture Forestry and Fisheries of Cambodia, Phnom Penh 10103, Cambodia
| | - Wenjing Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chunyang Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| |
Collapse
|
3
|
Wei Y, Ning D, Sun L, Gu Y, Zhuang Y, Ding Y, Fan X. Breaking barriers: Elevating legume protein functionality in food products through non-thermal technologies. Food Chem X 2025; 25:102169. [PMID: 39872822 PMCID: PMC11770516 DOI: 10.1016/j.fochx.2025.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Legume proteins have recently gained significant interest in the food industry for their eco-friendliness and nutritional qualities. Research shows that the replacement of specific animal protein sources with legume proteins presents sustainability and economic benefit. Nonetheless, legume proteins frequently exhibit inferior functional properties and palatability compared to animal proteins. Various non-thermal technologies, including high hydrostatic pressure, ultrasound, cold plasma, pulsed electric field, and dynamic high-pressure microjet, had been investigated to enhance the functional properties of legume proteins without loss of nutritional and sensory properties. Although these technologies show potential, no systematic study has been conducted to summarize and compare their effects on different legume proteins. This review aims to fill this gap by addressing the most promising approaches of non-thermal technologies for the modification of functional properties of legume proteins. New insights are discussed, elaborating the effect of non-thermal technologies on the structural and functional behavior of proteins.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland Sciences, Kunming 650201, China
- Yunnan Technology Innovation Center of Woody Oil, Kunming 650201, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Technology Innovation Center of Woody Oil, Kunming 650201, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
4
|
Liu Y, Sun J, Wen Z, Wang J, Roopesh MS, Pan D, Du L. Functionality enhancement of pea protein isolate through cold plasma modification for 3D printing application. Food Res Int 2024; 197:115267. [PMID: 39593346 DOI: 10.1016/j.foodres.2024.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Pea protein isolate (PPI) is a valued sustainable protein source, but its relatively poor functional properties limit its applications. This study reports on the effects of cold argon plasma (CP) treatment of a 15 % (w/w) PPI solution on the functionality, structure, and oxidative characteristics of PPI, as well as its application in 3D-printed plant-based meat. Results indicate that hydroxyl radicals and high-energy excited-state argon atoms are the primary active substances. A decrease in free sulfhydryl content and an increase in carbonyl content were observed in treated PPI, indicating oxidative modification. Compared to the control group, the gel strength of PPI was increased by 62.5 % and the storage modulus was significantly improved after 6 min treatment, forming a more ordered and highly cross-linked 3D gel network. Additionally, CP significantly improved the water-holding capacity, oil-holding capacity, emulsifying activity, and emulsion stability of PPI. The α-helix and random coil content in PPI decreased, while the β-sheet content increased, resulting in a more ordered secondary structure after CP treatment. Compared to untreated PPI, the consistency coefficient (K) increased from 36.00 to 47.68 Pa·sn. The treated PPI exhibited higher apparent viscosity and storage modulus and demonstrated better 3D printing performance and self-supporting ability. This study demonstrates that CP can significantly enhance the functional properties of PPI, providing great potential and prospects for improving the printability of 3D printing materials and developing plant protein foods with low-allergenicity.
Collapse
Affiliation(s)
- Ye Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jiayu Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Zimo Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
5
|
Li J, Rao W, Sun Y, Zhou C, Xia Q, He J, Pan D, Du L. Structural and gel property changes in chicken myofibrillar protein induced by argon cold plasma-activated water: With a molecular docking perspective. Food Res Int 2024; 197:115271. [PMID: 39593348 DOI: 10.1016/j.foodres.2024.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
This study investigated the effects of plasma-activated water (PAW) generated with argon at discharge times of 0, 4, 8, 12, and 16 min on the gel properties and structures of chicken myofibrillar protein (MP). Under treatments of 8, 12, and 16 min, both the gel strength and water retention capacity of MP significantly improved, with the gel strength (0.53 N) peaking at 16 min and the lowest cooking loss(30.38 %). As the treatment time increased from 0 to 16 min, the storage modulus also gradually increased. Results from low-field nuclear magnetic resonance indicated a slowing of water proton mobility, with the proportion of bound water rising from 0.26 % (0 min) to 0.52 % at 16 min. Fourier transform infrared spectroscopy, endogenous fluorescence spectroscopy and scanning electron microscopy confirmed PAW's alteration of MP's secondary and tertiary structures and gel microstructure. Additionally, this study explored the influence of argon PAW's primary active species on MP from a molecular docking perspective·H2O2 could form hydrogen bonds with MP, while O3 and NO2‾could interact via both hydrogen bonds and electrostatic interactions. Thus, PAW can alter protein structure and enhance MP's functional properties, providing insights for applying cold plasma in processing chicken gel products.
Collapse
Affiliation(s)
- Junqi Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Wei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
6
|
Xu X, Fan L, Li J. Freeze-thaw stability of high-internal-phase emulsion stabilized by chickpea protein microgel particles and its application in surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8621-8633. [PMID: 39011982 DOI: 10.1002/jsfa.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Future applications of high-internal-phase emulsions (HIPEs) are highly regarded, but poor freeze-thaw stability limits their utilization in frozen products. This study aimed to characterize the structure of chickpea protein microgel particles (HCPI) induced by NaCl and to assess its impact on the freeze-thaw stability of HIPEs. RESULTS The results showed that NaCl induction (0-400 mmol L-1) increased the surface hydrophobicity (175.9-278.9) and interfacial adsorbed protein content (84.9%-91.3%) of HCPI. HIPEs prepared with HCPI induced by high concentration of NaCl exhibited superior flocculation index and centrifugal stability, and their freeze-thaw stability was better than that of natural chickpea protein. The increase in NaCl concentration reduced the droplet aggregation and coalescence index of the freeze-thaw emulsions, diminishing the precipitation of oil from the emulsion. Linear and nonlinear rheology showed that the strengthened gel structure (higher G' values) restricted water flow and counteracted the damage to the interfacial film by ice crystals at 100-400 mmol L-1 NaCl, thus improving the viscoelasticity of the freeze-thaw emulsions. Finally, the thawing loss of surimi gel with HCPI-200 HIPE was reduced by 2.04% compared to directly adding oil. CONCLUSION This study provided a promising strategy to improve the freeze-thaw stability of HIPEs and reduce the thawing loss of frozen products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyun Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Wang K, Zhang R, Hu W, Dang Y, Huang M, Wang N, Du S, Gao X. Effect of exogenous selenium on physicochemical, structural, functional, thermal, and gel rheological properties of mung bean (Vigna radiate L.) protein. Food Res Int 2024; 191:114706. [PMID: 39059959 DOI: 10.1016/j.foodres.2024.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Selenium (Se) biofortification during the growth process of mung bean is an effective method to improve the Se content and quality. However, the effect of Se biofortification on the physicochemical properties of mung bean protein is unclear. The objective of this study was to clarify the changes in the composition, Se forms, particle structure, functional properties, thermal stability, and gel properties of mung bean protein at four Se application levels. The results showed that the Se content of mung bean protein increased in a dose-dependent manner, with 7.96-fold (P1) and 8.52-fold (P2) enhancement at the highest concentration. Exogenous Se application promotes the conversion of inorganic Se to organic Se. Among them, selenomethionine (SeMet) and methyl selenocysteine (MeSeCys) replaced Met and Cys through the S metabolic pathway and became the dominant organic Se forms in Se-enriched mung bean protein, accounting for more than 80 % of the total Se content. Exogenous Se at 30 g/hm2 significantly up-regulated protein content and promoted the synthesis of sulfur-containing protein components and hydrophobic amino acids in the presence of increased levels of SeMet and MeSeCys. Meanwhile, Cys and Met substitution altered the sulfhydryl groups (SH), β-sheets, and β-turns of protein. The particle size and microstructural characteristics depend on the protein itself and were not affected by exogenous Se. The Se-induced increase in the content of hydrophobic amino acids and β-sheets synergistically increases the thermal stability of the protein. Moderate Se application altered the functional properties of mung bean protein, which was mainly reflected in the significant increase in oil holding capacity (OHC) and foaming capacity (FC). In addition, the increase in SH and β-sheets induced by exogenous Se could alter the protein intermolecular network, contributing to the increase in storage modulus (G') and loss modulus (G″), which resulted in the formation of more highly elastic gels. This study further promotes the application of mung bean protein in the field of food processing and provides a theoretical basis for the extensive development of Se-enriched mung bean protein.
Collapse
Affiliation(s)
- Kexin Wang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China; Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Ruipu Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Wenxuan Hu
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Yueyi Dang
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Mengdi Huang
- Luoyang Academy of Agricultural and Forestry Science, Luoyang 471000, Henan Province, China
| | - Na Wang
- Weinan Institute of Agricultural Sciences, Weinan 714000, Shaanxi Province, China
| | - Shuangkui Du
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China.
| | - Xiaoli Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
8
|
Liu Y, Guo X, Liu T, Fan X, Yu X, Zhang J. Study on the structural characteristics and emulsifying properties of chickpea protein isolate-citrus pectin conjugates prepared by Maillard reaction. Int J Biol Macromol 2024; 264:130606. [PMID: 38447830 DOI: 10.1016/j.ijbiomac.2024.130606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Chickpea protein isolate (CPI) typically exhibits limited emulsifying properties under various food processing conditions, including pH variations, different salt concentrations, and elevated temperatures, which limits its applications in the food industry. In this study, CPI-citrus pectin (CP) conjugates were prepared through the Maillard reaction to investigate the influence of various CP concentrations on the structural and emulsifying properties of CPI. With the CPI/CP ratio of 1:2, the degree of graft reached 35.54 %, indicating the successful covalent binding between CPI and CP. FT-IR and intrinsic fluorescence spectroscopy analyses revealed alterations in the secondary and tertiary structures of CPI after glycosylation modification. The solubility of CPI increased from 81.39 % to 89.59 % after glycosylation. Moreover, freshly prepared CPI emulsions showed an increase in interfacial protein adsorption (70.33 % to 92.71 %), a reduction in particle size (5.33 μm to 1.49 μm), and a decrease in zeta-potential (-34.9 mV to -52.5 mV). Simultaneously, the long-term stability of the emulsions was assessed by employing a LUMiSizer stability analyzer. Furthermore, emulsions prepared with CPI:CP 1:2 exhibited excellent stability under various environmental stressors. In conclusion, the results of this study demonstrate that the glycosylation is a valuable approach to improve the emulsifying properties of CPI.
Collapse
Affiliation(s)
- Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiyu Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|