1
|
Veronesi F, Zielli SO, Brogini S, Artioli E, Arceri A, Mazzotti A, Faldini C, Giavaresi G. Scaffolds for Osteochondral Lesions of the Talus: Systematic Review and Meta-Analysis of the Last Ten Years Literature. Bioengineering (Basel) 2024; 11:970. [PMID: 39451345 PMCID: PMC11505056 DOI: 10.3390/bioengineering11100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Scaffolds are widely used devices for the treatment of osteochondral lesions of the talus (OCLT), aimed at enhancing mechanical stability and fostering chondrogenic differentiation. A systematic review and meta-analysis were performed to evaluate the safety, and clinical and radiological results of scaffolds for OCLT management. On 2 January 2024, a search was performed in four databases (PubMed, Embase, Web of Science, and Scopus), according to PRISMA guidelines. The risk of bias in the included studies was also evaluated. Thirty clinical studies were included in the qualitative analysis: 12 retrospective case series, 3 retrospective comparative studies, 9 prospective case series, 1 prospective comparative study, and 1 Randomized Controlled Trial (RCT). Natural scaffolds, such as bilayer collagen (COLL)I/III and hyaluronic scaffolds, were the most employed. Only minor adverse events were observed, even if more serious complications were shown, especially after medial malleolar osteotomy. An overall clinical and radiological improvement was observed after a mean of 36.3 months of follow-up. Patient age and Body Mass Index (BMI), lesion size, and location were correlated with the clinical outcomes, while meta-analysis revealed significant improvement in clinical scores with hyaluronic scaffolds compared to microfracture alone. This study highlights the safety and positive clinical outcomes associated with the use of scaffolds for OCLT. In the few available comparative studies, scaffolds have also demonstrated superior clinical outcomes compared to microfractures alone. Nevertheless, the analysis has shown the limitations of the current literature, characterized by an overall low quality and scarcity of RCTs.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (S.B.); (G.G.)
| | - Simone Ottavio Zielli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
| | - Silvia Brogini
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (S.B.); (G.G.)
| | - Elena Artioli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Alberto Arceri
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
| | - Antonio Mazzotti
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (S.B.); (G.G.)
| |
Collapse
|
2
|
Zhou H, Zhang Z, Mu Y, Yao H, Zhang Y, Wang DA. Harnessing Nanomedicine for Cartilage Repair: Design Considerations and Recent Advances in Biomaterials. ACS NANO 2024; 18:10667-10687. [PMID: 38592060 DOI: 10.1021/acsnano.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale. This review presents a comprehensive survey of recent research in nanomedicine for cartilage repair, with a primary focus on biomaterial design considerations and recent advances. The review commences with an introductory overview of the intricate cartilage microenvironment and further delves into key biomaterial design parameters crucial for treating cartilage damage, including microstructure, surface charge, and active targeting. The focal point of this review lies in recent advances in nano drug delivery systems and nanotechnology-enabled 3D matrices for cartilage repair. We discuss the compositions and properties of these nanomaterials and elucidate how these materials impact the regeneration of damaged cartilage. This review underscores the pivotal role of nanotechnology in improving the efficacy of biomaterials utilized for the treatment of cartilage damage.
Collapse
Affiliation(s)
- Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Zhang Z, Mu Y, Zhou H, Yao H, Wang DA. Cartilage Tissue Engineering in Practice: Preclinical Trials, Clinical Applications, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:473-490. [PMID: 36964757 DOI: 10.1089/ten.teb.2022.0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Articular cartilage defects significantly compromise the quality of life in the global population. Although many strategies are needed to repair articular cartilage, including microfracture, autologous osteochondral transplantation, and osteochondral allograft, the therapeutic effects remain suboptimal. In recent years, with the development of cartilage tissue engineering, scientists have continuously improved the formulations of therapeutic cells, biomaterial-based scaffolds, and biological factors, which have opened new avenues for better therapeutics of cartilage lesions. This review focuses on advances in cartilage tissue engineering, particularly in preclinical trials and clinical applications, prospects, and challenges.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
4
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
5
|
Hollander JJ, Dahmen J, Emanuel KS, Stufkens SA, Kennedy JG, Kerkhoffs GM. The Frequency and Severity of Complications in Surgical Treatment of Osteochondral Lesions of the Talus: A Systematic Review and Meta-Analysis of 6,962 Lesions. Cartilage 2023; 14:180-197. [PMID: 37144397 PMCID: PMC10416205 DOI: 10.1177/19476035231154746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 05/06/2023] Open
Abstract
OBJECTIVE The primary aim was to determine and compare the complication rate of different surgical treatment options for osteochondral lesions of the talus (OLTs). The secondary aim was to analyze and compare the severity and types of complications. DESIGN A literature search was performed in MEDLINE (PubMed), EMBASE (Ovid), and the Cochrane Library. Methodological quality was assessed using the Methodological Index for Non-Randomized Studies (MINORS). Primary outcome was the complication rate per surgical treatment option. Secondary outcomes included the severity (using the Modified Clavien-Dindo-Sink Complication Classification System for Orthopedic Surgery) and types of complications. The primary outcome, the severity, and the sub-analyses were analyzed using a random effects model. A moderator test for subgroup-analysis was used to determine differences. The types of complications were presented as rates. RESULTS In all, 178 articles from the literature search were included for analysis, comprising 6,962 OLTs with a pooled mean age of 35.5 years and follow-up of 46.3 months. Methodological quality was fair. The overall complication rate was 5% (4%-6%; treatment group effect, P = 0.0015). Analysis resulted in rates from 3% (2%-4%) for matrix-assisted bone marrow stimulation to 15% (5%-35%) for metal implants. Nerve injury was the most observed complication. CONCLUSIONS In 1 out of 20 patients treated surgically for an OLT, a complication occurs. Metal implants have a significantly higher complication rate compared with other treatment modalities. No life-threatening complications were reported.
Collapse
Affiliation(s)
- Julian J. Hollander
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jari Dahmen
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kaj S. Emanuel
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sjoerd A.S. Stufkens
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - John G. Kennedy
- Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Gino M.M.J. Kerkhoffs
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Guo X, Ma Y, Min Y, Sun J, Shi X, Gao G, Sun L, Wang J. Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product. Bioact Mater 2023; 20:501-518. [PMID: 35846847 PMCID: PMC9253051 DOI: 10.1016/j.bioactmat.2022.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022] Open
Abstract
Hyaline cartilage plays a critical role in maintaining joint function and pain. However, the lack of blood supply, nerves, and lymphatic vessels greatly limited the self-repair and regeneration of damaged cartilage, giving rise to various tricky issues in medicine. In the past 30 years, numerous treatment techniques and commercial products have been developed and practiced in the clinic for promoting defected cartilage repair and regeneration. Here, the current therapies and their relevant advantages and disadvantages will be summarized, particularly the tissue engineering strategies. Furthermore, the fabrication of tissue-engineered cartilage under research or in the clinic was discussed based on the traid of tissue engineering, that is the materials, seed cells, and bioactive factors. Finally, the commercialized cartilage repair products were listed and the regulatory issues and challenges of tissue-engineered cartilage repair products and clinical application would be reviewed. Tissue engineered cartilage, a promising strategy for articular cartilage repair. Nearly 20 engineered cartilage repair products in clinic based on clinical techniques. Combination product, the classification of tissue-engineered cartilage. Key regulatory compliance issues for combination products.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author.
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
| | - Yue Min
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiayi Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author. Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
- Corresponding author. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis RL, Ghorbani F, Oliveira JM. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208852. [PMID: 36633376 DOI: 10.1002/adma.202208852] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Indexed: 05/09/2023]
Abstract
Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 15875-4413, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, 89195-741, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 8916877391, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Samaneh Vahedi
- Department of Material Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Farnaz Ghorbani
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
8
|
Kolar M, Drobnič M. Multilayered biomimetic scaffolds for cartilage repair of the talus. A systematic review of the literature. Foot Ankle Surg 2023; 29:2-8. [PMID: 36379845 DOI: 10.1016/j.fas.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The aim of the present review was to analyze the available evidence in the literature on the clinical and radiological outcomes of multilayered biomimetic scaffolds in the treatment of osteochondral lesions of the talus (OLTs). DESIGN A systematic search was performed in three databases to identify clinical trials, where the multilayered biomimetic scaffolds were used for the treatment of OLTs. The PRISMA guidelines were followed. Qualitative analysis of the relevant data of the included studies was executed. The methodological quality of the analyzed studies was assessed with a modified Coleman Methodology Score (CMS). RESULTS A total of 10 studies with 87 patients were included in the analysis. Only three multilayered biomimetic scaffolds have been investigated in clinical trials for the treatment of OLTs. The worst clinical and radiological outcomes, as well as safety profile were observed for the TruFit scaffold (Smith & Nephew, Andover, MA, USA), which had already been withdrawn from the market. The other two scaffolds (MaioRegen, Finceramica, Italy; Agili-C, Cartiheal, Israel) performed significantly better in the majority of the reviewed studies, especially in the clinical aspect. The radiological findings, the improvements of MOCART scores, the completeness of lesions' fill, and the structure of regenerated tissue were much more inconsistent. CONCLUSIONS Two of the multilayered biomimetic scaffolds demonstrated an adequate potential in the treatment of complex OLTs. However, limited studies availability and their low level of medical evidence request further high-level investigations before the clinical decision making for such scaffolds in the treatment of OLTs can be defined.
Collapse
Affiliation(s)
- Matic Kolar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloška cesta 9, 1000 Ljubljana, Slovenia; Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 9, 1000 Ljubljana, Slovenia.
| | - Matej Drobnič
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloška cesta 9, 1000 Ljubljana, Slovenia; Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 9, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Anwander H, Vetter P, Kurze C, Farn CJ, Krause FG. Evidence for operative treatment of talar osteochondral lesions: a systematic review. EFORT Open Rev 2022; 7:460-469. [PMID: 35900197 PMCID: PMC9297053 DOI: 10.1530/eor-21-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Purpose
Operative treatment of talar osteochondral lesions is challenging with various treatment options. The aims were (i) to compare patient populations between the different treatment options in terms of demographic data and lesion size and (ii) to correlate the outcome with demographic parameters and preoperative scores.
Methods
A systemic review was conducted according to the PRISMA guidelines. The electronic databases Pubmed (MEDLINE) and Embase were screened for reports with the following inclusion criteria: minimum 2-year follow-up after operative treatment of a talar osteochondral lesion in at least ten adult patients and published between 2000 and 2020.
Results
Forty-five papers were included. Small lesions were treated using BMS, while large lesions with ACI. There was no difference in age between the treatment groups. There was a correlation between preoperative American Orthopaedic Foot and Ankle Society (AOFAS) score and change in AOFAS score (R = −0.849, P < 0.001) as well as AOFAS score at follow-up (R = 0.421, P = 0.008). Preoperative size of the cartilage lesion correlates with preoperative AOFAS scores (R= −0.634, P = 0.001) and with change in AOFAS score (R = 0.656, P < 0.001) but not with AOFAS score at follow-up. Due to the heterogeneity of the studies, a comparison of the outcome between the different operative techniques was not possible.
Conclusion
Patient groups with bigger lesions and inferior preoperative scores did improve the most after surgery.
Level of evidence
IV.
Collapse
Affiliation(s)
- Helen Anwander
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Vetter
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christophe Kurze
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Chui J Farn
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taiwan, Republic of China
| | - Fabian G Krause
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, Pountos I, Caterson EJ. Highlights on Advancing Frontiers in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:633-664. [PMID: 34210148 PMCID: PMC9242713 DOI: 10.1089/ten.teb.2021.0012] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The field of tissue engineering continues to advance, sometimes in exponential leaps forward, but also sometimes at a rate that does not fulfill the promise that the field imagined a few decades ago. This review is in part a catalog of success in an effort to inform the process of innovation. Tissue engineering has recruited new technologies and developed new methods for engineering tissue constructs that can be used to mitigate or model disease states for study. Key to this antecedent statement is that the scientific effort must be anchored in the needs of a disease state and be working toward a functional product in regenerative medicine. It is this focus on the wildly important ideas coupled with partnered research efforts within both academia and industry that have shown most translational potential. The field continues to thrive and among the most important recent developments are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies that warrant special attention. Developments in the aforementioned areas as well as future directions are highlighted in this article. Although several early efforts have not come to fruition, there are good examples of commercial profitability that merit continued investment in tissue engineering. Impact statement Tissue engineering led to the development of new methods for regenerative medicine and disease models. Among the most important recent developments in tissue engineering are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies. These technologies and an understanding of them will have impact on the success of tissue engineering and its translation to regenerative medicine. Continued investment in tissue engineering will yield products and therapeutics, with both commercial importance and simultaneous disease mitigation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan, USA
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Annabelle Fricker
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ehsanul Hoque Apu
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Taby Ahsan
- RoosterBio, Inc., Frederick, Maryland, USA
| | - Ippokratis Pountos
- Academic Department of Trauma and Orthopaedics, University of Leeds, Leeds, United Kingdom
| | - Edward J. Caterson
- Division of Plastic Surgery, Department of Surgery, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
11
|
Begines B, Arevalo C, Romero C, Hadzhieva Z, Boccaccini AR, Torres Y. Fabrication and Characterization of Bioactive Gelatin-Alginate-Bioactive Glass Composite Coatings on Porous Titanium Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15008-15020. [PMID: 35316017 PMCID: PMC8990524 DOI: 10.1021/acsami.2c01241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 05/10/2023]
Abstract
In this research work, the fabrication of biphasic composite implants has been investigated. Porous, commercially available pure Ti (50 vol % porosity and pore distributions of 100-200, 250-355, and 355-500 μm) has been used as a cortical bone replacement, while different composites based on a polymer blend (gelatin and alginate) and bioactive glass (BG) 45S5 have been applied as a soft layer for cartilage tissues. The microstructure, degradation rates, biofunctionality, and wear behavior of the different composites were analyzed to find the best possible coating. Experiments demonstrated the best micromechanical balance for the substrate containing 200-355 μm size range distribution. In addition, although the coating prepared from alginate presented a lower mass loss, the composite containing 50% alginate and 50% gelatin showed a higher elastic recovery, which entails that this type of coating could replicate the functions of the soft tissue in areas of the joints. Therefore, results revealed that the combinations of porous commercially pure Ti and composites prepared from alginate/gelatin/45S5 BG are candidates for the fabrication of biphasic implants not only for the treatment of osteochondral defects but also potentially for any other diseases affecting simultaneously hard and soft tissues.
Collapse
Affiliation(s)
- Belen Begines
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, c/ Profesor García González
2, Seville 41012, Spain
| | - Cristina Arevalo
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
| | - Carlos Romero
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
- Department
of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. de la Universidad 30, Leganés, Madrid 28911, Spain
| | - Zoya Hadzhieva
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Yadir Torres
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
| |
Collapse
|
12
|
van Diepen PR, Dahmen J, Altink JN, Stufkens SA, Kerkhoffs GM. Location Distribution of 2,087 Osteochondral Lesions of the Talus. Cartilage 2021; 13:1344S-1353S. [PMID: 32909458 PMCID: PMC8808869 DOI: 10.1177/1947603520954510] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The primary aim of this study was to evaluate the exact location distribution in patients with osteochondral lesions of the talus (OLTs) using a 9-grid scheme. The secondary aim is to match lesion location to lesion size, arthroscopic or open operation, and trauma occurrence. METHODS A systematic review was performed in the databases PubMed, EMBASE, and Cochrane. Search terms consisted of "talus" and "osteochondral lesion." Two independent reviewers evaluated search results and conducted the quality assessment using the Methodological Index for Non-Randomized Studies (MINORS). Primary outcome measure was OLT location in the 9 zone-grid. Secondary outcome measures were OLT size in 9-zones, preoperative radiological modality use, demographic lesion size variables as well as open or arthroscopic treatment. RESULTS Fifty-one articles with 2,087 OLTs were included. Heterogeneity concerning methodological nature was observed and methodological quality was low. The posteromedial (28%) and centromedial (31%) zones combined as one location was the location with the highest incidence of OLTs with a rate of 59%. Individual OLT size was reported for only 153 lesions (7%). Preoperative combination of X-ray and magnetic resonance imaging (MRI), and/or computed tomography (CT) was reported in 20 studies (43%). Trauma was reported in 78% of patients. Furthermore, 67% was treated arthroscopically and 76% received primary OLT treatment. CONCLUSION The majority of OLTs are located in the posteromedial and centromedial zone, while the largest OLTs were reported in the centrocentral zone. Further research is required to identify the prognostic impact of location occurrence on the outcomes following OLT treatment.
Collapse
Affiliation(s)
- Pascal R. van Diepen
- Department of Orthopedic Surgery,
Amsterdam UMC, Amsterdam Movement Sciences, University of Amsterdam, Amsterdam, the
Netherlands,Academic Center for Evidence-Based
Sports medicine (ACES), Amsterdam, the Netherlands,Amsterdam Collaboration for Health and
Safety in Sports (ACHSS), AMC/VUMC IOC Research Center, Amsterdam, the
Netherlands
| | - Jari Dahmen
- Department of Orthopedic Surgery,
Amsterdam UMC, Amsterdam Movement Sciences, University of Amsterdam, Amsterdam, the
Netherlands,Academic Center for Evidence-Based
Sports medicine (ACES), Amsterdam, the Netherlands,Amsterdam Collaboration for Health and
Safety in Sports (ACHSS), AMC/VUMC IOC Research Center, Amsterdam, the
Netherlands
| | - J. Nienke Altink
- Department of Orthopedic Surgery,
Amsterdam UMC, Amsterdam Movement Sciences, University of Amsterdam, Amsterdam, the
Netherlands,Academic Center for Evidence-Based
Sports medicine (ACES), Amsterdam, the Netherlands,Amsterdam Collaboration for Health and
Safety in Sports (ACHSS), AMC/VUMC IOC Research Center, Amsterdam, the
Netherlands
| | - Sjoerd A.S. Stufkens
- Department of Orthopedic Surgery,
Amsterdam UMC, Amsterdam Movement Sciences, University of Amsterdam, Amsterdam, the
Netherlands,Academic Center for Evidence-Based
Sports medicine (ACES), Amsterdam, the Netherlands,Amsterdam Collaboration for Health and
Safety in Sports (ACHSS), AMC/VUMC IOC Research Center, Amsterdam, the
Netherlands
| | - Gino M.M.J. Kerkhoffs
- Department of Orthopedic Surgery,
Amsterdam UMC, Amsterdam Movement Sciences, University of Amsterdam, Amsterdam, the
Netherlands,Academic Center for Evidence-Based
Sports medicine (ACES), Amsterdam, the Netherlands,Amsterdam Collaboration for Health and
Safety in Sports (ACHSS), AMC/VUMC IOC Research Center, Amsterdam, the
Netherlands,Gino M.M.J. Kerkhoffs, Department of
Orthopedic Surgery, Academic Medical Center, University of Amsterdam,
Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands.
| |
Collapse
|
13
|
Migliorini F, Maffulli N, Eschweiler J, Driessen A, Tingart M, Baroncini A. Reliability of the MOCART score: a systematic review. J Orthop Traumatol 2021; 22:39. [PMID: 34613499 PMCID: PMC8494868 DOI: 10.1186/s10195-021-00603-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The present systematic review analysed the available literature to assess reliability of the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score in the evaluation of knee and ankle osteochondral lesions. METHODS All the studies using the MOCART score for knee and/or talus chondral defects were accessed in March 2021. A multivariate analysis was performed to assess associations between the MOCART score at last follow-up and data of patients at baseline, clinical scores and complications. A multiple linear model regression analysis was used. RESULTS The MOCART score evidenced no association with patient age (P = 0.6), sex (P = 0.1), body mass index (P = 0.06), defect size (P = 0.9), prior length of symptoms (P = 0.9) or visual analogue scale (P = 0.07). For chondral defects of the knee, no statistically significant association was found between the MOCART score and the International Knee Documentation Committee (P = 0.9) and with the Lysholm Knee Scoring Scales (P = 0.2), Tegner Activity Scale (P = 0.2), visual analogue scale P = 0.07), rate of failure (P = 0.2) and revision (P = 0.9). For chondral defect of the talus, no statistically significant associations were found between the MOCART score and the American Orthopedic Foot and Ankle Score (P = 0.3), Tegner Activity Scale (P = 0.4), visual analogue scale (P = 0.1), rate of failure (P = 0.1) and revision (P = 0.7). CONCLUSION The MOCART score demonstrated no association with patient characteristics and with the surgical outcome in patients who underwent surgical management for knee and talus chondral defects. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital Aachen, Aachen, Germany.
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, England, UK
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London, E1 4DG, England, UK
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Arne Driessen
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Alice Baroncini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
14
|
The development of natural polymer scaffold-based therapeutics for osteochondral repair. Biochem Soc Trans 2021; 48:1433-1445. [PMID: 32794551 DOI: 10.1042/bst20190938] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Due to the limited regenerative capacity of cartilage, untreated joint defects can advance to more extensive degenerative conditions such as osteoarthritis. While some biomaterial-based tissue-engineered scaffolds have shown promise in treating such defects, no scaffold has been widely accepted by clinicians to date. Multi-layered natural polymer scaffolds that mimic native osteochondral tissue and facilitate the regeneration of both articular cartilage (AC) and subchondral bone (SCB) in spatially distinct regions have recently entered clinical use, while the transient localized delivery of growth factors and even therapeutic genes has also been proposed to better regulate and promote new tissue formation. Furthermore, new manufacturing methods such as 3D bioprinting have made it possible to precisely tailor scaffold micro-architectures and/or to control the spatial deposition of cells in requisite layers of an implant. In this way, natural and synthetic polymers can be combined to yield bioactive, yet mechanically robust, cell-laden scaffolds suitable for the osteochondral environment. This mini-review discusses recent advances in scaffolds for osteochondral repair, with particular focus on the role of natural polymers in providing regenerative templates for treatment of both AC and SCB in articular joint defects.
Collapse
|
15
|
Clinical Application Status of Articular Cartilage Regeneration Techniques: Tissue-Engineered Cartilage Brings New Hope. Stem Cells Int 2020; 2020:5690252. [PMID: 32676118 PMCID: PMC7345961 DOI: 10.1155/2020/5690252] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaline articular cartilage lacks blood vessels, lymphatics, and nerves and is characterised by limited self-repair ability following injury. Traditional techniques of articular cartilage repair and regeneration all have certain limitations. The development of tissue engineering technology has brought hope to the regeneration of articular cartilage. The strategies of tissue-engineered articular cartilage can be divided into three types: “cell-scaffold construct,” cell-free, and scaffold-free. In “cell-scaffold construct” strategies, seed cells can be autologous chondrocytes or stem. Among them, some commercial products with autologous chondrocytes as seed cells, such as BioSeed®-C and CaReS®, have been put on the market and some products are undergoing clinical trials, such as NOVOCART® 3D. The stem cells are mainly pluripotent stem cells and mesenchymal stem cells from different sources. Cell-free strategies that indirectly utilize the repair and regeneration potential of stem cells have also been used in clinical settings, such as TruFit and MaioRegen. Finally, the scaffold-free strategy is also a new development direction, and the short-term repair results of related products, such as NOVOCART® 3D, are encouraging. In this paper, the commonly used techniques of articular cartilage regeneration in surgery are reviewed. By studying different strategies and different seed cells, the clinical application status of tissue-engineered articular cartilage is described in detail.
Collapse
|
16
|
Zhao E, Carney D, Chambers M, Ewalefo S, Hogan M. The role of biologic in foot and ankle trauma-a review of the literature. Curr Rev Musculoskelet Med 2018; 11:495-502. [PMID: 30054808 DOI: 10.1007/s12178-018-9512-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The use of biologics in orthopedics is becoming increasingly popular as an adjuvant in healing musculoskeletal injuries. Though many biologics involved in the management of foot and ankle injuries are used based on physician preference, reports of improved outcomes when combined with standard operative treatment has led to further clinical interest especially in foot and ankle trauma. RECENT FINDINGS The most recent studies have shown benefits for biologic use in patients predisposed to poor bone and soft tissue healing. Biologics have shown benefit in treating soft tissue injuries such as Achilles ruptures as well as the complications of trauma such as non-unions and osteoarthritis. Biologics have shown some benefit in improving functional and pain scores, as well as reducing time to heal in foot and ankle traumatic injuries, with particular success shown with patients that have risk factors for poor healing. As the use of biologics continues to increase, there is a need for high-level studies to confirm early findings of lower level reports.
Collapse
Affiliation(s)
- Emily Zhao
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Dwayne Carney
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Monique Chambers
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Samuel Ewalefo
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - MaCalus Hogan
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA.
| |
Collapse
|