1
|
Rhee J, Shin I, Kim J, Lee J, Cho B, Kim J, Park M, Kim E. LC-MS-MS method for mitragynine and 7-hydroxymitragynine in hair and its application in authentic hair samples of suspected kratom abusers. J Anal Toxicol 2024; 48:429-438. [PMID: 38780234 DOI: 10.1093/jat/bkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Kratom is a natural psychoactive product known primarily in Southeast Asia, including Thailand, Malaysia, etc. It is also known as krathom, kakuam, ithang, thom (Thailand), biak-biak, ketum (Malaysia) and mambog (Philippines) and is sometimes used as an opium substitute. It is stimulant at doses of 1-5 g, analgesic at doses of 5-15 g and euphoric and sedative at doses of >15 g. Mitragynine is the most abundant indole compound in kratom (Mitragyna speciosa) and is metabolized in humans to 7-hydroxymitragynine, the more active metabolite. Adverse effects include seizures, nausea, vomiting, diarrhea, tachycardia, restlessness, tremors, hallucinations and death. There are few studies on the analytical method for the detection of mitragynine and 7-hydroxymitragynine in hair. Therefore, this study proposes a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the analysis of kratom in hair. Hair samples were first weighed to ∼10 mg and washed with methanol. Then the washed hair samples were cut into pieces and incubated in methanol with stirring and heating (16 h/38℃). Extracts were then analyzed by LC-MS-MS. This method was validated by determining the limit of detection (LOD), limit of quantification, linearity, intra- and inter-day accuracy and precision, recovery and matrix effects. The intra- and inter-day precision (CV%) and accuracy (bias%) were within ±20%, which was considered acceptable. Using this newly developed LC-MS-MS method, the simultaneous detection of mitragynine and 7-hydroxymitragynine in six authentic hair samples was achieved to provide the direct evidence of kratom use in the past. Mitragynine concentrations ranged from 16.0 to 2,067 pg/mg (mean 905.3 pg/mg), and 7-hydroxymitragynine concentrations ranged from 0.34 to 15 pg/mg (mean 7.4 pg/mg) in six authentic hair samples from kratom abusers. This may be due to the higher sensitivity of the LOD in this study, with values of 0.05 pg/mg for mitragynine and 0.2 pg/mg for 7-hydroxymitragynine in hair.
Collapse
Affiliation(s)
- Jongsook Rhee
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Ilchung Shin
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Jihyun Kim
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Juseun Lee
- Forensic Science Department, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| | - Byungsuk Cho
- Forensic Science Department, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| | - Junghyun Kim
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Meejung Park
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Eunmi Kim
- Forensic Science Department, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| |
Collapse
|
2
|
Thepthien BO, Jayasvasti I, Ham E. The prevalence of kratom use and association with co-occurring substance use among adolescents: a 2022 Bangkok behavioral surveillance survey, Thailand. J Ethn Subst Abuse 2024:1-15. [PMID: 38900672 DOI: 10.1080/15332640.2024.2367233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Thailand removed kratom from the list of prohibited substances in 2021, possession and consumption of Kratom is now legal. It is prohibited from selling Kratom to anyone under the age of 18 and/or who is pregnant or breastfeeding. While there are benefits from kratom use with few reported adverse effects, escalating dose and increased use frequency raise the risk for toxic events in the setting of polysubstance use or development of a use disorder. We utilized data from the Behavior Surveillance Survey in Bangkok (n = 5,740) to examine the use of kratom with other substances use in the 12 months before the survey. The prevalence of past-year kratom use among students was 9.3% (95%CI = 8.7-9.9), with higher proportions of males (12.4 versus 6.1%, p < 0.001). The factors associated with past 12-month kratom use were academic performance (Medium GPA; AOR = 2.41, 95% CI = 1.76-3.29; Low GPA; AOR = 4.15, 95% CI = 2.94-5.87), close friend use substance (AOR = 1.94, 95% CI = 1.44-2.59), cannabis use (AOR = 6.84, 95% CI = 4.61-10.15), consumed alcohol (AOR = 2.32, 95% CI = 1.77-3.02), smoked conventional cigarettes (AOR = 4.20, 95% CI = 3.16-5.58), used e-cigarettes (AOR = 4.37, 95% CI = 3.30-5.79) used illicit opioids (AOR = 8.13, 95% CI = 4.35-15.18), and other illicit drug use (AOR = 9.15, 95% CI = 3.78-22.14). These findings may be useful for the initial targeting of efforts to reduce adolescent consumption of kratom. Future studies should examine the effect of regulatory policies or other Thai FDA-related policies use of illicit drugs and e-cigarettes on kratom use.
Collapse
Affiliation(s)
- Bang-On Thepthien
- ASEAN Institute for Health Development, Mahidol University, Salaya, Thailand
| | | | - Eunyoung Ham
- Faculty of Child Welfare, Namseoul University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Citti C, Laganà A, Capriotti AL, Montone CM, Cannazza G. Kratom: The analytical challenge of an emerging herbal drug. J Chromatogr A 2023; 1703:464094. [PMID: 37262932 DOI: 10.1016/j.chroma.2023.464094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Mitragyna speciosa or kratom is emerging worldwide as a "legal" herbal drug of abuse. An increasing number of papers is appearing in the scientific literature regarding its pharmacological profile and the analysis of its chemical constituents, mainly represented by alkaloids. However, its detection and identification are not straightforward as the plant material is not particularly distinctive. Hyphenated techniques are generally preferred for the identification and quantification of these compounds, especially the main purported psychoactive substances, mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG), in raw and commercial products. Considering the vast popularity of this recreational drug and the growing concern about its safety, the analysis of alkaloids in biological specimens is also of great importance for forensic and toxicological laboratories. The review addresses the analytical aspects of kratom spanning the extraction techniques used to isolate the alkaloids, the qualitative and quantitative analytical methods and the strategies for the distinction of the naturally occurring isomers.
Collapse
Affiliation(s)
- Cinzia Citti
- Institute of Nanotechnology - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce 73100, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| |
Collapse
|
4
|
Public Health Implications and Possible Sources of Lead (Pb) as a Contaminant of Poorly Regulated Kratom Products in the United States. TOXICS 2022; 10:toxics10070398. [PMID: 35878303 PMCID: PMC9320411 DOI: 10.3390/toxics10070398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023]
Abstract
Kratom (Mitragyna speciosa) is a tropical tree that is indigenous to Southeast Asia. Kratom leaf products have been used in traditional folk medicine for their unique combination of stimulant and opioid-like effects. Kratom is being increasingly used in the West for its reputed benefits in the treatment of pain, depression, and opioid use disorder (OUD). Recent studies from the United States Food and Drug Administration (FDA, Silver Spring, MD, USA) and our laboratory have shown that many kratom products being sold in the United States are contaminated with potentially hazardous levels of lead (Pb). In this commentary, we discuss the public health implications of the presence of Pb in kratom products, particularly as they relate to the predicted levels of Pb exposure among kratom users. We also considered the specific toxic effects of Pb and how they might relate to the known physiologic and toxicologic effects of kratom. Finally, we consider the possible sources of Pb in kratom products and suggest several areas for research on this issue.
Collapse
|
5
|
Sim YS, Chong ZY, Azizi J, Goh CF. Development and validation of a gradient HPLC-UV method for mitragynine following in vitro skin permeation studies. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123316. [PMID: 35700649 DOI: 10.1016/j.jchromb.2022.123316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/22/2022]
Abstract
Mitragynine is a promising candidate for pain relief and opiate replacement but the investigations for drug delivery are lacking. This study aims to investigate the potential of mitragynine to be delivered through the skin with an emphasis on developing and validating a gradient HPLC-UV analytical method to determine mitragynine in the samples collected during in vitro skin permeation studies. The optimised method involves a gradient elution using a C18 column with a mobile phase comprising acetonitrile and 0.1 %v/v of formic acid (0-1 min: 30:70 to 70:30 (v/v) and hold up to 4 min; 4-6 min: return to 30:70 (v/v) and hold up to 10 min) at a flow rate of 1.2 mL/min. This method was validated based on the standards set by the International Council on Harmonisation guidelines. The method showed mitragynine elution at ∼ 4 min with adequate linearity (R2 ≥ 0.999 for concentration ranges of 0.5-10 and 10-175 μg/mL) and acceptable limits of detection and quantification at 0.47 and 1.43 μg/mL, respectively. The analytical performance is robust with excellent precision and accuracy. This method was used to evaluate the in vitro skin permeation of mitragynine (5 %w/v) from simple solvent systems over 48 hr. The results showed a cumulative amount of mitragynine permeated at ∼ 11 μg/cm2 for dimethyl sulfoxide and ∼ 4 μg/cm2 for propylene glycol. The study not only addressed the issues of the currently available HPLC-UV methods that limit the direct application but also affirmed the potential of mitragynine to be delivered through the skin.
Collapse
Affiliation(s)
- Yee Shan Sim
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Zan Yang Chong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
6
|
PCR combined with lateral flow immunochromatographic assay to differentiate the narcotic Mitragyna speciosa from related species and detect it in forensic evidence. Forensic Sci Int 2021; 331:111149. [PMID: 34933184 DOI: 10.1016/j.forsciint.2021.111149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
Plants in the genus Mitragyna (Rubiaceae) are used in traditional medicine because of their broad therapeutic activity. Four Mitragyna species, M. speciosa (Roxb.) Korth. (MS), M. rotundifolia (Roxb.) Kuntze (MR), M. diversifolia (Wall. ex G. Don) Havil. (MD), and M. hirsuta Havil. (MH), occur in Thailand. M. speciosa, commonly known as 'Kratom' in Thai, is the only narcotic species for which buying, selling, importing or possessing has been prohibited by law in Thailand and some other countries. Mitragynine and 7-hydroxymitragynine, the major psychoactive compounds, are important in the treatment of opioid withdrawal. However, this species is used in traditional medicine to relieve pain and inflammation. Consequently, a rapid and easy technique for differentiating M. speciosa from closely related species is needed for routine forensic analysis. In this study, polymerase chain reaction coupled with lateral flow immunochromatographic assay (PCR-LFA) based on matK was developed for the detection of M. speciosa in forensic specimens. Duplex primers (MS-F-FAM, Ctrl-F-DIG and Ctrl-R-Biotin) were designed based on species-specific nucleotide indels observed exclusively in the matK sequences of M. speciosa. Positive results for M. speciosa are indicated by the clear presence of three black lines on the lateral flow cassette. Forensic samples were investigated, and the three black test lines indicating M. speciosa were observed for seven of eight specimens. PCR-LFA has been proven to be fast, easy and efficient for detecting the narcotic M. speciosa and could be developed as a rapid forensic diagnostic technique for other plants.
Collapse
|
7
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
8
|
Lo Faro AF, Di Trana A, La Maida N, Tagliabracci A, Giorgetti R, Busardò FP. Biomedical analysis of New Psychoactive Substances (NPS) of natural origin. J Pharm Biomed Anal 2019; 179:112945. [PMID: 31704129 DOI: 10.1016/j.jpba.2019.112945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
New psychoactive substances (NPS) can be divided into two main groups: synthetic molecules and active principles of natural origin. With respect to this latter group, a wide range of alkaloids contained in plants, mainly from Asia and South America, can be included in the class of NPS of natural origin. The majority NPS of natural origin presents stimulant and/or hallucinogenic effects (e.g. Catha edulis and Ayahuasca, respectively) while few of them show sedative and relaxing properties (e.g. kratom). Few information is available in relation to the analytical identification of psychoactive principles contained in the plant material. Moreover, to our knowledge, scarce data are present in literature, about the characterization and quantification of the parent drug in biological matrices from intoxication and fatality cases. In addition, the metabolism of natural active principles has not been yet fully investigated for most of the psychoactive substances from plant material. Consequently, their identification is not frequently performed and produced metabolites are often unknown. To fill this gap, we reviewed the currently available analytical methodologies for the identification and quantification of NPS of natural origin in plant material and, whenever possible, in conventional and non-conventional biological matrices of intoxicated and dead subjects. The psychoactive principles contained in the following plants were investigated: Areca catechu, Argyreia nervosa, Ayahuasca, Catha edulis, Ipomoea violacea, Mandragora officinarum, Mitragyna speciosa, Pausinystalia yohimbe, Piper methisticum, Psilocybe, Rivea corymbosa, Salvia divinorum, Sceletium tortuosum, Lactuca virosa. From the results obtained, it can be evidenced that although several analytical methods for the simultaneous quantification of different molecules from the same plants have been developed and validated, a comprehensive method to detect active compounds from different natural specimens both in biological and non-biological matrices is still lacking.
Collapse
Affiliation(s)
- Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Annagiulia Di Trana
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Nunzia La Maida
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Adriano Tagliabracci
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy.
| |
Collapse
|
9
|
Braley C, Hondrogiannis EM. Differentiation of Commercially Available Kratom by Purported Country of Origin using Inductively Coupled Plasma–Mass Spectrometry,. J Forensic Sci 2019; 65:428-437. [DOI: 10.1111/1556-4029.14201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Cody Braley
- Master of Science, Forensic Science Program Department of Chemistry Towson University Towson MD21252‐0001
| | - Ellen M. Hondrogiannis
- Master of Science, Forensic Science Program Department of Chemistry Towson University Towson MD21252‐0001
| |
Collapse
|
10
|
Cowan AF, Elkins KM. Detection and Identification of Kratom (Mitragyna speciosa) and Marijuana (Cannabis sativa) by a Real-Time Polymerase Chain Reaction High-Resolution Melt Duplex Assay . J Forensic Sci 2019; 65:52-60. [PMID: 31433500 DOI: 10.1111/1556-4029.14167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 07/29/2019] [Indexed: 02/05/2023]
Abstract
Mitragyna speciosa (MS), a plant commonly known as kratom, is a widely used "legal high" opiate alternative for pain relief. DNA extracted from MS and 26 additional plant species was amplified by PCR using primers targeting the strictosidine beta-D-glucosidase (SGD) and secologanin synthase 2 (SLS2) genes and detected by high-resolution melt curves using three intercalating dyes. Amplicon sizes were confirmed using agarose gel electrophoresis. The observed melt temperatures for SGD and SLS2 were 77.08 ± 0.38°C and 77.61 ± 0.46°C, respectively, using SYBR® Green I; 80.18 ± 0.27°C and 80.59 ± 0.08°C, respectively, using Radiant™ Green; and 82.19 ± 0.04°C and 82.62 ± 0.13°C, respectively, using the LCGreen® PLUS dye. The SLS2 primers demonstrated higher specificity and identified MS DNA at 0.05 ng/μL. In a duplex reaction, SLS2 and tetrahydrocannabinoic acid synthase gene primers detected and differentiated MS and Cannabis sativa (CS) by melt peaks at 82.63 ± 0.35°C and 85.58 ± 0.23°C, respectively, using LCGreen® PLUS.
Collapse
Affiliation(s)
- Ashley F Cowan
- Chemistry Department, Forensic Science Program, Towson University, 8000 York Rd, Towson, MD, 21252
| | - Kelly M Elkins
- Chemistry Department, Forensic Science Program, Towson University, 8000 York Rd, Towson, MD, 21252
| |
Collapse
|
11
|
Meireles V, Rosado T, Barroso M, Soares S, Gonçalves J, Luís Â, Caramelo D, Simão AY, Fernández N, Duarte AP, Gallardo E. Mitragyna speciosa: Clinical, Toxicological Aspects and Analysis in Biological and Non-Biological Samples. MEDICINES 2019; 6:medicines6010035. [PMID: 30836609 PMCID: PMC6473843 DOI: 10.3390/medicines6010035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
The abuse of psychotropic substances is a well-known phenomenon, and many of them are usually associated with ancestral traditions and home remedies. This is the case of Mitragyna speciosa (kratom), a tropical tree used to improve work performance and to withstand great heat. According to several published studies, the main reasons for kratom consumption involve improving sexual performance and endurance, but also social and recreational uses for the feeling of happiness and euphoria; it is also used for medical purposes as a pain reliever, and in the treatment of diarrhea, fever, diabetes, and hypertension. However, this plant has gained more popularity amongst young people over the last years. Since it is available on the internet for purchase, its use is now widely as a drug of abuse, namely as a new psychoactive substance, being a cheaper alternative to opioids that does not require medical prescription in most countries. According to internet surveys by the European Monitoring Centre for Drugs and Drug Addiction in 2008 and 2011, kratom was one of the most widely supplied new psychoactive substances. The composition of kratom is complex; in fact, more than 40 different alkaloids have been identified in Mitragyna speciosa so far, the major constituent being mitragynine, which is exclusive to this plant. Besides mitragynine, alkaloids such as corynantheidine and 7-hydroxamitragynine also present pharmacological effects, a feature that may be attributed to the remaining constituents as well. The main goal of this review is not only to understand the origin, chemistry, consumption, and analytical methodologies for analysis and mechanism of action, but also the use of secondary metabolites of kratom as therapeutic drugs and the assessment of potential risks associated with its consumption, in order to aid health professionals, toxicologists, and police authorities in cases where this plant is present.
Collapse
Affiliation(s)
- Vânia Meireles
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal.
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Joana Gonçalves
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Débora Caramelo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Y Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Nicolás Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA). Junín 956 7mo piso. Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires C1113AAD, Argentina.
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| |
Collapse
|
12
|
PCR-reverse dot blot of the nucleotide signature sequences of mat K for the identification of Mitragyna speciosa , a narcotic species. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.plgene.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Brown PN, Lund JA, Murch SJ. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna korth: Implications for products sold as kratom. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:302-325. [PMID: 28330725 DOI: 10.1016/j.jep.2017.03.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Mitragyna (Rubiacaeae) has been traditionally used in parts of Africa, Asia and Oceania. In recent years, there has been increased interest in species of Mitragyna with the introduction of products to western markets and regulatory uncertainty. AIM OF THE STUDY This paper reviewed the traditional ethnomedicinal uses of leaves for species belonging to the genus Mitragyna with reference to the botany and known chemistry in order to highlight areas of interest for products currently being sold as kratom. MATERIALS AND METHODS A literature search was conducted using Web of Science, Google Scholar, the Royal Museum for Central Africa, Internet Archive, Hathi Trust, and Biodiversity Heritage Library search engines in the spring of 2015, fall of 2016 and winter of 2017 to document uses of bark, leaf and root material. RESULTS Leaves of M. speciosa (kratom) had the most common documented ethnomedicinal uses as an opium substitute or remedy for addiction. Other species of Mitragyna were reportedly used for treating pain, however the mode of preparation was most often cited as topical application. Other uses of Mitragyna included treatment of fever, skin infections, and as a mild anxiolytic. CONCLUSIONS Mitragyna species have been used medicinally in various parts of the world and that there is significant traditional evidence of use. Modern products that include formulations as topical application of liniments, balms or tinctures may provide effective alternatives for treatment of certain types of pains. Future research is required to establish safety and toxicology limits, medicinal chemistry parameters and the potential for different physiological responses among varying genetic populations to support regulatory requirements for Mitragyna spp.
Collapse
Affiliation(s)
- Paula N Brown
- Natural Health Products and Food Research Group, British Columbia Institute of Technology, 4355 Mathissi Place, Burnaby, British Columbia, Canada V5G 4S8; Department of Biology, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Jensen A Lund
- Natural Health Products and Food Research Group, British Columbia Institute of Technology, 4355 Mathissi Place, Burnaby, British Columbia, Canada V5G 4S8; Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7.
| |
Collapse
|
14
|
Griffin OH, Daniels JA, Gardner EA. Do You Get What You Paid For? An Examination of Products Advertised as Kratom. J Psychoactive Drugs 2016; 48:330-335. [DOI: 10.1080/02791072.2016.1229876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Singh D, Narayanan S, Vicknasingam B. Traditional and non-traditional uses of Mitragynine (Kratom): A survey of the literature. Brain Res Bull 2016; 126:41-46. [PMID: 27178014 DOI: 10.1016/j.brainresbull.2016.05.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The objective of the paper was to highlight the differences in the traditional and non-traditional users of kratom in the South East Asian and Western contexts. METHOD A literature survey of published kratom studies among humans was conducted. Forty published studies relevant to the objective were reviewed. RESULTS Apart from the differences in the sources of supply, patterns of use and social acceptability of kratom within these two regions, the most interesting finding is its evolution to a recreational drug in both settings and the severity of the adverse effects of kratom use reported in the West. While several cases of toxicity and death have emerged in the West, such reports have been non-existent in South East Asia where kratom has had a longer history of use. We highlight the possible reasons for this as discussed in the literature. More importantly, it should be borne in mind that the individual clinical case-reports emerging from the West that link kratom use to adverse reactions or fatalities frequently pertained to kratom used together with other substances. Therefore, there is a danger of these reports being used to strengthen the case for legal sanction against kratom. This would be unfortunate since the experiences from South East Asia suggest considerable potential for therapeutic use among people who use drugs. CONCLUSION Despite its addictive properties, reported side-effects and its tendency to be used a recreational drug, more scientific clinical human studies are necessary to determine its potential therapeutic value.
Collapse
Affiliation(s)
- Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | | |
Collapse
|
16
|
Pantano F, Tittarelli R, Mannocchi G, Zaami S, Ricci S, Giorgetti R, Terranova D, Busardò FP, Marinelli E. Hepatotoxicity Induced by "the 3Ks": Kava, Kratom and Khat. Int J Mol Sci 2016; 17:580. [PMID: 27092496 PMCID: PMC4849036 DOI: 10.3390/ijms17040580] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 04/11/2016] [Indexed: 12/23/2022] Open
Abstract
The 3Ks (kava, kratom and khat) are herbals that can potentially induce liver injuries. On the one hand, growing controversial data have been reported about the hepatotoxicity of kratom, while, on the other hand, even though kava and khat hepatotoxicity has been investigated, the hepatotoxic effects are still not clear. Chronic recreational use of kratom has been associated with rare instances of acute liver injury. Several studies and case reports have suggested that khat is hepatotoxic, leading to deranged liver enzymes and also histopathological evidence of acute hepatocellular degeneration. Numerous reports of severe hepatotoxicity potentially induced by kava have also been highlighted, both in the USA and Europe. The aim of this review is to focus on the different patterns and the mechanisms of hepatotoxicity induced by “the 3Ks”, while trying to clarify the numerous aspects that still need to be addressed.
Collapse
Affiliation(s)
- Flaminia Pantano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Roberta Tittarelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giulio Mannocchi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Serafino Ricci
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Raffaele Giorgetti
- Section of Legal Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy.
| | - Daniela Terranova
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesco P Busardò
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Enrico Marinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
17
|
Oliveira AS, Fraga S, Carvalho F, Araújo AM, Pereira CC, Teixeira JP, de Lourdes Bastos M, de Pinho PG. Chemical characterization and in vitro cyto- and genotoxicity of ‘legal high’ products containing Kratom (Mitragyna speciosa). Forensic Toxicol 2016. [DOI: 10.1007/s11419-015-0305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Neng NR, Ahmad SM, Gaspar H, Nogueira JMF. Determination of mitragynine in urine matrices by bar adsorptive microextraction and HPLC analysis. Talanta 2015; 144:105-9. [PMID: 26452798 DOI: 10.1016/j.talanta.2015.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022]
Abstract
Bar adsorptive microextraction combined with liquid desorption followed by high performance liquid chromatography with diode array detection (BAµE-LD/HPLC-DAD) is proposed for the determination of the psychoactive alkaloid mitragynine (MG) in human urine matrices. By using a modified N-vinylpyrrolidone polymer (P2) sorbent phase, high selectivity and efficiency is achieved. Assays performed by BAµE(P2)-LD/HPLC-DAD on 25 mL water samples spiked at the 8.0 µg L(-1) level yielded average recoveries around 100% of MG, under optimized experimental conditions. The analytical performance showed good precision (RSD<15%), appropriated detection limits of 0.10 µg L(-1) and linear dynamic ranges (0.6-24.0 μg L(-1)) with convenient determination coefficients of 0.9924. By using the standard addition method, the application of the present methodology for the determination of MG in human urine matrices after Kratom consumer, allowed very good performances. The proposed methodology proved to be a suitable alternative to monitor MG in biological fluid matrices, showing to be easy to implement, reliable, sensitive and requiring low sample volumes, when compared with other sorbent-based methods.
Collapse
Affiliation(s)
- N R Neng
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - S M Ahmad
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - H Gaspar
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - J M F Nogueira
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
19
|
Rapid detection by direct analysis in real time-mass spectrometry (DART-MS) of psychoactive plant drugs of abuse: The case of Mitragyna speciosa aka “Kratom”. Forensic Sci Int 2014; 242:210-218. [DOI: 10.1016/j.forsciint.2014.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
|