1
|
Huang W, Zhao S, Liu H, Pan M, Dong H. The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. Int J Mol Sci 2024; 25:1659. [PMID: 38338938 PMCID: PMC10855206 DOI: 10.3390/ijms25031659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
It is well known that proteins are important bio-macromolecules in human organisms, and numerous proteins are widely used in the clinical practice, whereas their application in forensic science is currently limited. This limitation is mainly attributed to the postmortem degradation of targeted proteins, which can significantly impact final conclusions. In the last decade, numerous methods have been established to detect the protein from a forensic perspective, and some of the postmortem proteins have been applied in forensic practice. To better understand the emerging issues and challenges in postmortem proteins, we have reviewed the current application of protein technologies at postmortem in forensic practice. Meanwhile, we discuss the application of proteins in identifying the cause of death, and postmortem interval (PMI). Finally, we highlight the interpretability and limitations of postmortem protein challenges. We believe that utilizing the multi-omics method can enhance the comprehensiveness of applying proteins in forensic practice.
Collapse
Affiliation(s)
- Weisheng Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Shuquan Zhao
- Faculty of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Huine Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Meichen Pan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| |
Collapse
|
2
|
Dey A, Ghosh S, Bhuniya T, Koley M, Bera A, Guha S, Chakraborty K, Muthu S, Gorai S, Vorn R, Vadivalagan C, Anand K. Clinical Theragnostic Signature of Extracellular Vesicles in Traumatic Brain Injury (TBI). ACS Chem Neurosci 2023; 14:2981-2994. [PMID: 37624044 PMCID: PMC10485905 DOI: 10.1021/acschemneuro.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability and fatality worldwide. Depending on the clinical presentation, it is a type of acquired brain damage that can be mild, moderate, or severe. The degree of patient's discomfort, prognosis, therapeutic approach, survival rates, and recurrence can all be strongly impacted by an accurate diagnosis made early on. The Glasgow Coma Scale (GCS), along with neuroimaging (MRI (Magnetic Resonance Imaging) and CT scan), is a neurological assessment tools used to evaluate and categorize the severity of TBI based on the patient's level of consciousness, eye opening, and motor response. Extracellular vesicles (EVs) are a growing domain, explaining neurological complications in a more detailed manner. EVs, in general, play a role in cellular communication. Its molecular signature such as DNA, RNA, protein, etc. contributes to the status (health or pathological stage) of the parental cell. Brain-derived EVs support more specific screening (diagnostic and prognostic) in TBI research. Therapeutic impact of EVs are more promising for aiding in TBI healing. It is nontoxic, biocompatible, and capable of crossing the blood-brain barrier (BBB) to transport therapeutic molecules. This review has highlighted the relationships between EVs and TBI theranostics, EVs and TBI-related clinical trials, and related research domain-associated challenges and solutions. This review motivates further exploration of associations between EVs and TBI and develops a better approach to TBI management.
Collapse
Affiliation(s)
- Anuvab Dey
- Department
of Biological Sciences and Biological Engineering, IIT Guwahati, North
Guwahati, Assam 781039, India
| | | | - Tiyasa Bhuniya
- Department
of Biotechnology, NIT Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Madhurima Koley
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | - Aishi Bera
- Heritage
Institute of Technology, Chowbaga, Anandapur, Kolkata 700107, India
| | - Sudeepta Guha
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | | | - Sathish Muthu
- Department
of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department
of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Sukhamoy Gorai
- Rush University
Medical Center, 1620 W Harrison St, Chicago, Illinois 60612, United States
| | - Rany Vorn
- School
of Nursing and Medicine, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Chithravel Vadivalagan
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
3
|
Olczak M, Poniatowski ŁA, Siwińska A, Kwiatkowska M. Post-mortem detection of neuronal and astroglial biochemical markers in serum and urine for diagnostics of traumatic brain injury. Int J Legal Med 2023; 137:1441-1452. [PMID: 37272985 DOI: 10.1007/s00414-023-02990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023]
Abstract
Currently available epidemiological data shows that traumatic brain injury (TBI) represents one of the leading causes of death that is associated with medico-legal practice, including forensic autopsy, criminological investigation, and neuropathological examination. Attention focused on TBI research is needed to advance its diagnostics in ante- and post-mortem cases with regard to identification and validation of novel biomarkers. Recently, several markers of neuronal, astroglial, and axonal injury have been explored in various biofluids to assess the clinical origin, progression, severity, and prognosis of TBI. Despite clinical usefulness, understanding their diagnostic accuracy could also potentially help translate them either into forensic or medico-legal practice, or both. The aim of this study was to evaluate post-mortem pro-BDNF, NSE, UCHL1, GFAP, S100B, SPTAN1, NFL, MAPT, and MBP levels in serum and urine in TBI cases. The study was performed using cases (n = 40) of fatal head injury and control cases (n = 20) of sudden death. Serum and urine were collected within ∼ 24 h after death and compared using ELISA test. In our study, we observed the elevated concentration levels of GFAP and MAPT in both serum and urine, elevated concentration levels of S100B and SPTAN1 in serum, and decreased concentration levels of pro-BDNF in serum compared to the control group. The obtained results anticipate the possible implementation of performed assays as an interesting tool for forensic and medico-legal investigations regarding TBI diagnosis where the head injury was not supposed to be the direct cause of death.
Collapse
Affiliation(s)
- Mieszko Olczak
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007, Warsaw, Poland.
| | - Łukasz A Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036, Neubrandenburg, Germany
| | - Agnieszka Siwińska
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007, Warsaw, Poland
| | - Magdalena Kwiatkowska
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007, Warsaw, Poland
| |
Collapse
|
4
|
Shama A, Soni T, Jawanda IK, Upadhyay G, Sharma A, Prabha V. The Latest Developments in Using Proteomic Biomarkers from Urine and Serum for Non-Invasive Disease Diagnosis and Prognosis. Biomark Insights 2023; 18:11772719231190218. [PMID: 37528936 PMCID: PMC10387783 DOI: 10.1177/11772719231190218] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Due to diagnostic improvements, medical diagnostics is demanding non-invasive or minimally invasive methods. Non-invasively obtained body fluids (eg., Urine, serum) can replace cerebral fluid, amniotic fluid, synovial fluid, bronchoalveolar lavage fluid, and others for diagnostic reasons. Many illnesses are induced by perturbations of cellular signaling pathways and associated pathway networks as a result of genetic abnormalities. These disturbances are represented by a shift in the protein composition of the fluids surrounding the tissues and organs that is, tissue interstitial fluid (TIF). These variant proteins may serve as diagnostic "signatures" for a variety of disorders. This review provides a concise summary of urine and serum biomarkers that may be used for the diagnosis and prognosis of a variety of disorders, including cancer, brain diseases, kidney diseases, and other system diseases. The studies reviewed in this article suggest that serum and urine biomarkers of various illnesses may be therapeutically useful for future diagnostics. Correct illness management is crucial for disease prognosis, hence non-invasive serum and urine biomarkers have been extensively studied for diagnosis, subclassification, monitoring disease activity, and predicting treatment results and consequences.
Collapse
Affiliation(s)
- Anurag Shama
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Garima Upadhyay
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anshika Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijay Prabha
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Proshchina A, Kharlamova A, Krivova Y, Godovalova O, Otlyga D, Gulimova V, Otlyga E, Junemann O, Sonin G, Saveliev S. Neuromorphological Atlas of Human Prenatal Brain Development: White Paper. Life (Basel) 2023; 13:life13051182. [PMID: 37240827 DOI: 10.3390/life13051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent morphological data on human brain development are quite fragmentary. However, they are highly requested for a number of medical practices, educational programs, and fundamental research in the fields of embryology, cytology and histology, neurology, physiology, path anatomy, neonatology, and others. This paper provides the initial information on the new online Human Prenatal Brain Development Atlas (HBDA). The Atlas will start with forebrain annotated hemisphere maps, based on human fetal brain serial sections at the different stages of prenatal ontogenesis. Spatiotemporal changes in the regional-specific immunophenotype profiles will also be demonstrated on virtual serial sections. The HBDA can serve as a reference database for the neurological research, which provides opportunity to compare the data obtained by noninvasive techniques, such as neurosonography, X-ray computed tomography and magnetic resonance imaging, functional magnetic resonance imaging, 3D high-resolution phase-contrast computed tomography visualization techniques, as well as spatial transcriptomics data. It could also become a database for the qualitative and quantitative analysis of individual variability in the human brain. Systemized data on the mechanisms and pathways of prenatal human glio- and neurogenesis could also contribute to the search for new therapy methods for a large spectrum of neurological pathologies, including neurodegenerative and cancer diseases. The preliminary data are now accessible on the special HBDA website.
Collapse
Affiliation(s)
- Alexandra Proshchina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Anastasia Kharlamova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Yuliya Krivova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Olga Godovalova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Dmitriy Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Victoria Gulimova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Ekaterina Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Olga Junemann
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Gleb Sonin
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Sergey Saveliev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| |
Collapse
|
6
|
Vig V, Garg I, Tuz-Zahra F, Xu J, Tripodis Y, Nicks R, Xia W, Alvarez VE, Alosco ML, Stein TD, Subramanian ML. Vitreous Humor Biomarkers Reflect Pathological Changes in the Brain for Alzheimer's Disease and Chronic Traumatic Encephalopathy. J Alzheimers Dis 2023:JAD230167. [PMID: 37182888 DOI: 10.3233/jad-230167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Patients with eye disease have an increased risk for developing neurodegenerative disease. Neurodegenerative proteins can be measured in the eye; however, correlations between biomarker levels in eye fluid and neuropathological diagnoses have not been established. OBJECTIVE This exploratory, retrospective study examined vitreous humor from 41 postmortem eyes and brain tissue with neuropathological diagnoses of Alzheimer's disease (AD, n = 7), chronic traumatic encephalopathy (CTE, n = 15), both AD + CTE (n = 10), and without significant neuropathology (controls, n = 9). METHODS Protein biomarkers i.e., amyloid-β (Aβ 40,42), total tau (tTau), phosphorylated tau (pTau181,231), neurofilament light chain (NfL), and eotaxin-1 were quantitatively measured by immunoassay. Non-parametric tests were used to compare vitreous biomarker levels between groups. Spearman's rank correlation tests were used to correlate biomarker levels in vitreous and cortical tissue. The level of significance was set to α= 0.10. RESULTS In pairwise comparisons, tTau levels were significantly increased in AD and CTE groups versus controls (p = 0.08 for both) as well as AD versus AD+CTE group and CTE versus AD+CTE group (p = 0.049 for both). Vitreous NfL levels were significantly increased in low CTE (Stage I/II) versus no CTE (p = 0.096) and in low CTE versus high CTE stage (p = 0.03). Vitreous and cortical tissue levels of pTau 231 (p = 0.02, r = 0.38) and t-Tau (p = 0.04, r = -0.34) were significantly correlated. CONCLUSION The postmortem vitreous humor biomarker levels significantly correlate with AD and CTE pathology in corresponding brains, while vitreous NfL was correlated with the CTE staging. This exploratory study indicates that biomarkers in the vitreous humor may serve as a proxy for neuropathological disease.
Collapse
Affiliation(s)
- Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Itika Garg
- Department of Ophthalmology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jia Xu
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Kohlhase K, Frank F, Wilmes C, Koerbel K, Schaller-Paule MA, Miles M, Betz C, Steinmetz H, Foerch C. Brain-specific biomarkers in urine as a non-invasive approach to monitor neuronal and glial damage. Eur J Neurol 2023; 30:729-740. [PMID: 36409153 DOI: 10.1111/ene.15641] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE This study evaluates the quantitative measurability of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and total tau (t-tau) in urine of patients with acute cerebral damage. METHODS Serum and urine samples were prospectively collected from patients with an acute ischemic stroke or intracerebral hemorrhage (target group) and compared to healthy subjects (control group); samples were measured using ultrasensitive single-molecule arrays (Simoa®). Glomerular barrier function was assessed based on albumin-creatinine ratio (ACR); biomarker-creatinine ratios were calculated for correction of urine dilution. RESULTS Ninety-three urine-serum pairs in the target group and 10 urine-serum pairs in the control group were measured. The mean absolute concentration ± standard deviation in urine of the target and control groups were 184.7 ± 362.4 pg/ml and 27.3 ± 24.1 pg/ml for GFAP (r = 0.3 [Wilcoxon effect size], p = 0.007), 17.5 ± 38.6 pg/ml and 0.9 ± 0.3 pg/ml for NfL (r = 0.4, p < 0.005), 320.2 ± 443.3 pg/ml and 109.6 ± 116.8 pg/ml for UCH-L1 (r = 0.26, p = 0.014), and 219.5 ± 255.8 pg/ml and 21.1 ± 27.1 pg/ml for t-tau (r = 0.37, p < 0.005), respectively, whereas biomarker-creatinine ratio was significantly different only for NfL (r = 0.29, p = 0.015) and t-tau (r = 0.32, p < 0.01). In patients with intact glomerular barrier (ACR < 30 mg/g), only NfL in urine was significantly different between the target and control group and showed a significant correlation with the respective serum concentrations (r = 0.58 [Pearson's correlation-coefficient], p < 0.005). CONCLUSION All four investigated biomarkers could be measured in urine, with NfL and t-tau showing the strongest effect size after correction for urine dilution. NfL revealed the most accurate relation between serum and urine concentrations in patients with intact kidney function.
Collapse
Affiliation(s)
- Konstantin Kohlhase
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Franziska Frank
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christian Wilmes
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Kimberly Koerbel
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Martin A Schaller-Paule
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | | | - Christoph Betz
- Medical Clinic III - Department of Nephrology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Helmuth Steinmetz
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Feng L, Sharma A, Wang Z, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Co-administration of Nanowired DL-3-n-Butylphthalide (DL-NBP) Together with Mesenchymal Stem Cells, Monoclonal Antibodies to Alpha Synuclein and TDP-43 (TAR DNA-Binding Protein 43) Enhance Superior Neuroprotection in Parkinson's Disease Following Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:97-138. [PMID: 37480460 DOI: 10.1007/978-3-031-32997-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is one of the potent antioxidant compounds that induces profound neuroprotection in stroke and traumatic brain injury. Our previous studies show that dl-NBP reduces brain pathology in Parkinson's disease (PD) following its nanowired delivery together with mesenchymal stem cells (MSCs) exacerbated by concussive head injury (CHI). CHI alone elevates alpha synuclein (ASNC) in brain or cerebrospinal fluid (CSF) associated with elevated TAR DNA-binding protein 43 (TDP-43). TDP-43 protein is also responsible for the pathologies of PD. Thus, it is likely that exacerbation of brain pathology in PD following brain injury may be thwarted using nanowired delivery of monoclonal antibodies (mAb) to ASNC and/or TDP-43. In this review, the co-administration of dl-NBP with MSCs and mAb to ASNC and/or TDP-43 using nanowired delivery in PD and CHI-induced brain pathology is discussed based on our own investigations. Our observations show that co-administration of TiO2 nanowired dl-NBP with MSCs and mAb to ASNC with TDP-43 induced superior neuroprotection in CHI induced exacerbation of brain pathology in PD, not reported earlier.
Collapse
Affiliation(s)
- Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Chen Q, Chen X, Xu L, Zhang R, Li Z, Yue X, Qiao D. Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies. Forensic Sci Med Pathol 2022; 18:530-544. [PMID: 36117238 DOI: 10.1007/s12024-022-00522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) has high morbidity and poor prognosis and imposes a serious socioeconomic burden. Traumatic axonal injury (TAI), which is one of the common pathological changes in the primary injury of TBI, is often caused by the external force to the head that causes the white matter bundles to generate shear stress and tension; resulting in tissue damage and leading to the cytoskeletal disorder. At present, the forensic pathological diagnosis of TAI-caused death is still a difficult problem. Most of the TAI biomarkers studied are used for the prediction, evaluation, and prognosis of TAI in the living state. The research subjects are mainly humans in the living state or model animals, which are not suitable for the postmortem diagnosis of TAI. In addition, there is still a lack of recognized indicators for the autopsy pathological diagnosis of TAI. Different diagnostic methods and markers have their limitations, and there is a lack of systematic research and summary of autopsy diagnostic markers of TAI. Therefore, this study mainly summarizes the pathological mechanism, common methods, techniques of postmortem diagnosis, and corresponding biomarkers of TAI, and puts forward the strategies for postmortem diagnosis of TAI for forensic cases with different survival times, which is of great significance to forensic pathological diagnosis.
Collapse
Affiliation(s)
- Qianling Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Xuebing Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Rui Zhang
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Zhigang Li
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, 510442, China.
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
10
|
Marksteiner J, Defrancesco M, Humpel C. Saliva tau and phospho-tau-181 measured by Lumipulse in patients with Alzheimer's disease. Front Aging Neurosci 2022; 14:1014305. [PMID: 36247998 PMCID: PMC9557075 DOI: 10.3389/fnagi.2022.1014305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative brain disorder. The determination of beta-amyloid (Aβ)-40, -42, total tau, and phospho-tau-181 (pTau181) in cerebrospinal fluid (CSF) using Lumipulse technology has been established as biomarkers for AD in recent years. As CSF collection is an invasive procedure, one aims to find biomarkers in blood or other human fluids, such as saliva. In the present study, we aim to measure these markers in human saliva. Using Salivettes, we collected saliva samples from healthy controls (n = 27), patients with AD dementia (n = 44), mild cognitive impairment (MCI) (n = 45), depression (n = 31), and 21 blinded samples, all older than 60 years. Lumipulse technology with a G600II was used to detect all four biomarkers. Our data show that the levels of total protein were highly variable and thus biomarker levels were corrected to 1 mg/ml of total protein. Saliva Aβ-40 and -42 were not detectable, because it was not recovered from the Salivettes. However, saliva total tau (577 ± 134 pg/mg, n = 22) and phospho-tau-181 (9.7 ± 1.3 pg/mg, n = 21) could be analyzed by Lumipulse technology. Saliva total tau levels were significantly decreased in patients with AD (≤ 300 pg/mg protein), while pTau181 levels (≥ 18 pg/mg protein) were significantly enhanced in patients with MCI compared to controls. Laboratory diagnosis with a cut-off of ≥ 18 pg/mg protein pTau181 (for MCI) and ≤ 300 pg/mg protein tau (for AD) for blinded samples could diagnose MCI and AD with an accuracy of 71.4%. Despite these initial promising results, the findings must be replicated in larger cohorts, and several technical problems due to saliva processing must be solved and Salivettes should not be used.
Collapse
Affiliation(s)
- Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, State Hospital Hall in Tirol, Hall in Tirol, Austria
| | - Michaela Defrancesco
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Shang Y, Wang Y, Guo Y, Ren L, Zhang X, Wang S, Zhang C, Cai J. Analysis of the risk of traumatic brain injury and evaluation neurogranin and myelin basic protein as potential biomarkers of traumatic brain injury in postmortem examination. Forensic Sci Med Pathol 2022; 18:288-298. [PMID: 35201602 DOI: 10.1007/s12024-022-00459-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
In forensic pathology, traumatic brain injury (TBI) is a frequently encountered cause of death. Unfortunately, the statistic autopsy data, risk investigation about injury patterns, and circumstances of TBI are still sparse. Estimates of survival time post-TBI and postmortem diagnosis of TBI are especially important implications in forensic medicine. Neurogranin (Ng) and myelin basic protein (MBP) represent potential biomarkers of TBI. The present study analyzed retrospectively the forensic autopsy records of TBI cases at a university center of medico-legal investigation from 2008 to 2020. Immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to investigate the expression changes of Ng and MBP in the cortical brain injury adjacent tissues and serum, respectively, from cases of TBI at autopsy with different survival times post-TBI. The results show that the major mechanism of death of TBI is assault, and accident was the major manner of death. Ng and MBP are mainly expressed in the cortical nerve cells and the myelin sheath, respectively. The serum levels of Ng and MBP in each TBI group were higher compared with those in the controls. The brain cortical levels of Ng and MBP decreased at first and then steadily increased with extended survival time post-TBI. The immunopositive ratios and serum concentration of Ng and MBP have shown significant differences among control group and all TBI group (p < 0.001). Collectively, the immunohistochemical analyses of Ng and MBP in human brain tissues may be useful to determine the survival time after TBI, and Ng and MBP level in the human blood specimens could be considered as a postmortem diagnostic tools of TBI in forensic practice.
Collapse
Affiliation(s)
- Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yuxin Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shujuan Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China.
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Pinelli F, Pizzetti F, Veneruso V, Petillo E, Raghunath M, Perale G, Veglianese P, Rossi F. Biomaterial-Mediated Factor Delivery for Spinal Cord Injury Treatment. Biomedicines 2022; 10:biomedicines10071673. [PMID: 35884981 PMCID: PMC9313204 DOI: 10.3390/biomedicines10071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is an injurious process that begins with immediate physical damage to the spinal cord and associated tissues during an acute traumatic event. However, the tissue damage expands in both intensity and volume in the subsequent subacute phase. At this stage, numerous events exacerbate the pathological condition, and therein lies the main cause of post-traumatic neural degeneration, which then ends with the chronic phase. In recent years, therapeutic interventions addressing different neurodegenerative mechanisms have been proposed, but have met with limited success when translated into clinical settings. The underlying reasons for this are that the pathogenesis of SCI is a continued multifactorial disease, and the treatment of only one factor is not sufficient to curb neural degeneration and resulting paralysis. Recent advances have led to the development of biomaterials aiming to promote in situ combinatorial strategies using drugs/biomolecules to achieve a maximized multitarget approach. This review provides an overview of single and combinatorial regenerative-factor-based treatments as well as potential delivery options to treat SCIs.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
| | - Valeria Veneruso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Emilia Petillo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via Buffi 13, 6900 Lugano, Switzerland;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Pietro Veglianese
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
- Correspondence: (P.V.); (F.R.); Tel.: +39-02-3901-4205 (P.V.); +39-02-2399-3145 (F.R.)
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
- Correspondence: (P.V.); (F.R.); Tel.: +39-02-3901-4205 (P.V.); +39-02-2399-3145 (F.R.)
| |
Collapse
|
13
|
Li J, Ji Z, Wang Y, Li T, Luo J, Li J, Shi X, Li L, He L, Wu W. Human Adipose-Derived Stem Cells Combined with Nano-Hydrogel Promote Functional Recovery after Spinal Cord Injury in Rats. BIOLOGY 2022; 11:biology11050781. [PMID: 35625508 PMCID: PMC9138297 DOI: 10.3390/biology11050781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary Nerve regeneration and functional recovery after spinal cord injury (SCI) are worldwide problems. Scientists have achieved encouraging results in the repair of spinal cord injuries using natural or synthetic materials. In this paper, we report that nano-hydrogel combined with human adipose-derived stem cells regulate the inflammatory microenvironment, protect neurons and axons, and promote motor function recovery. In addition, three proteins related to neuronal and axonal growth were screened by Liquid chromatography-mass spectrometry. These results provide evidence for clinical treatment of spinal cord injury. Abstract The treatment of spinal cord injury aims to reconstruct the fiber connection and restore the interrupted neural pathways. Adipose mesenchymal stem cells (ADSCs) can promote the recovery of motor functions in spinal cord injury. However, poor survival of ADSCs and leakage outside of the injury site after local transplantation reduce the number of cells, which seriously attenuates the cumulative effect. We performed heterotopic transplantation on rats with severe spinal cord injury using human ADSCs loaded within self-assembly hydrogel RADA16-RGD (R: arginine; A: alanine; D: aspartic acid; G: glycine). Our results indicate that the combined transplantation of human ADSCs with RADA16-RGD improved the survival of ADSCs at the injured site. The inflammatory reaction was inhibited, with improved survival of the neurons and increased residual area of nerve fibers and myelin protein. The functional behaviors were promoted, as determined by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale score and electrophysiological measurements. ADSCs can promote the repair of spinal cord injury. This study provides new ideas for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Jianping Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
- Department of Human Anatomy, Zhaoqing Medical College, Zhaoqing 526020, China
- Department of Human Anatomy, School of Basic Medicine, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Zhisheng Ji
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yu Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
| | - Tiantian Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
| | - Jinghua Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
| | - Jun Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
| | - Xueshuang Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
| | - Liming Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
| | - Liumin He
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
- Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510630, China
- Correspondence: (L.H.); (W.W.)
| | - Wutian Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Z.J.); (Y.W.); (T.L.); (J.L.); (J.L.); (X.S.); (L.L.)
- Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510630, China
- Re-Stem Biotechnology Co., Ltd., Suzhou 215129, China
- Correspondence: (L.H.); (W.W.)
| |
Collapse
|
14
|
Association between Spinal Cord Injury and Alcohol Dependence: A Population-Based Retrospective Cohort Study. J Pers Med 2022; 12:jpm12030473. [PMID: 35330471 PMCID: PMC8950331 DOI: 10.3390/jpm12030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder. Alcohol abuse has been recognized as hindering SCI patients from rehabilitation, thus leading to longer length of days and poorer prognosis. This article aimed to investigate the association between spinal cord injury (SCI) and alcohol dependence. Data were derived from the National Health Insurance Research Database (NHIRD). The incidence of alcohol dependence between SCI and non-SCI groups was compared. Other possible risk factors were also analyzed. Patients (N = 5670) with SCI from 2000 to 2009 were initially assessed for eligibility. After propensity score matching, 5639 first-time SCI survivors were included. The Cox proportional hazard regression model was used to assess differences in the incidence of alcohol dependence syndrome. Based on the adjusted hazard ratios (HR), the SCI group had a higher hazard for alcohol dependence syndrome compared to the non-SCI group (adjusted HR: 1.39, 95% CI: 1.03~1.86, p = 0.0305). The injury level did not have an impact on the incidence of alcohol dependence syndrome. A higher incidence of alcohol dependence syndrome was related to male patients, lower insurance levels, higher Deyo’s CCI, and psychiatric OPD times. A lower incidence of alcohol dependence syndrome was related to elder age. The incidence of alcohol dependence increased after the occurrence of SCI and was also related to age, sex, monthly income, comorbidities, and psychiatric problems. The injury level did not affect the incidence of alcohol dependence after SCI.
Collapse
|
15
|
Forensic biomarkers of lethal traumatic brain injury. Int J Legal Med 2022; 136:871-886. [PMID: 35226180 PMCID: PMC9005436 DOI: 10.1007/s00414-022-02785-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/21/2022] [Indexed: 11/01/2022]
Abstract
AbstractTraumatic brain injury (TBI) is a major cause of death and its accurate diagnosis is an important concern of daily forensic practice. However, it can be challenging to diagnose TBI in cases where macroscopic signs of the traumatic head impact are lacking and little is known about the circumstances of death. In recent years, several post-mortem studies investigated the possible use of biomarkers for providing objective evidence for TBIs as the cause of death or to estimate the survival time and time since death of the deceased. This work systematically reviewed the available scientific literature on TBI-related biomarkers to be used for forensic purposes. Post-mortem TBI-related biomarkers are an emerging and promising resource to provide objective evidence for cause of death determinations as well as survival time and potentially even time since death estimations. This literature review of forensically used TBI-biomarkers revealed that current markers have low specificity for TBIs and only provide limited information with regards to survival time estimations and time since death estimations. Overall, TBI fatality-related biomarkers are largely unexplored in compartments that are easily accessible during autopsies such as urine and vitreous humor. Future research on forensic biomarkers requires a strict distinction of TBI fatalities from control groups, sufficient sample sizes, combinations of currently established biomarkers, and novel approaches such as metabolomics and mi-RNAs.
Collapse
|
16
|
Zwirner J, Bohnert S, Franke H, Garland J, Hammer N, Möbius D, Tse R, Ondruschka B. Assessing Protein Biomarkers to Detect Lethal Acute Traumatic Brain Injuries in Cerebrospinal Fluid. Biomolecules 2021; 11:1577. [PMID: 34827575 PMCID: PMC8615532 DOI: 10.3390/biom11111577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Diagnosing traumatic brain injury (TBI) from body fluids in cases where there are no obvious external signs of impact would be useful for emergency physicians and forensic pathologists alike. None of the previous attempts has so far succeeded in establishing a single biomarker to reliably detect TBI with regards to the sensitivity: specificity ratio in a post mortem setting. This study investigated a combination of body fluid biomarkers (obtained post mortem), which may be a step towards increasing the accuracy of biochemical TBI detection. In this study, serum and cerebrospinal fluid (CSF) samples from 30 acute lethal TBI cases and 70 controls without a TBI-related cause of death were evaluated for the following eight TBI-related biomarkers: brain-derived neurotrophic factor (BDNF), ferritin, glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6), lactate dehydrogenase, neutrophil gelatinase-associated lipocalin (NGAL), neuron-specific enolase and S100 calcium-binding protein B. Correlations among the individual TBI biomarkers were assessed, and a specificity-accentuated threshold value analysis was conducted for all biomarkers. Based on these values, a decision tree modelling approach was performed to assess the most accurate biomarker combination to detect acute lethal TBIs. The results showed that 92.45% of acute lethal TBIs were able to be diagnosed using a combination of IL-6 and GFAP in CSF. The probability of detecting an acute lethal TBI was moderately increased by GFAP alone and considerably increased by the remaining biomarkers. BDNF and NGAL were almost perfectly correlated (p = 0.002; R2 = 0.944). This study provides evidence that acute lethal TBIs can be detected to a high degree of statistical accuracy using forensic biochemistry. The high inter-individual correlations of biomarkers may help to estimate the CSF concentration of an unknown biomarker, using extrapolation techniques.
Collapse
Affiliation(s)
- Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany;
- Institute of Legal Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Simone Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, 97078 Wuerzburg, Germany;
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany;
| | - Jack Garland
- Forensic and Analytical Science Service, NSW Health Pathology, Lidcombe 2141, Australia;
| | - Niels Hammer
- Institute of Macroscopic and Clinical Anatomy, University of Graz, 8010 Graz, Austria;
- Department of Orthopedic and Trauma Surgery, University of Leipzig, 04103 Leipzig, Germany
- Fraunhofer IWU, 47720 Dresden, Germany
| | - Dustin Möbius
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany;
| | - Rexson Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland 1148, New Zealand;
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany;
| |
Collapse
|
17
|
Hier DB, Obafemi-Ajayi T, Thimgan MS, Olbricht GR, Azizi S, Allen B, Hadi BA, Wunsch DC. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues. Biomark Res 2021; 9:70. [PMID: 34530937 PMCID: PMC8447604 DOI: 10.1186/s40364-021-00325-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The use of blood biomarkers after mild traumatic brain injury (mTBI) has been widely studied. We have identified eight unresolved issues related to the use of five commonly investigated blood biomarkers: neurofilament light chain, ubiquitin carboxy-terminal hydrolase-L1, tau, S100B, and glial acidic fibrillary protein. We conducted a focused literature review of unresolved issues in three areas: mode of entry into and exit from the blood, kinetics of blood biomarkers in the blood, and predictive capacity of the blood biomarkers after mTBI. Findings Although a disruption of the blood brain barrier has been demonstrated in mild and severe traumatic brain injury, biomarkers can enter the blood through pathways that do not require a breach in this barrier. A definitive accounting for the pathways that biomarkers follow from the brain to the blood after mTBI has not been performed. Although preliminary investigations of blood biomarkers kinetics after TBI are available, our current knowledge is incomplete and definitive studies are needed. Optimal sampling times for biomarkers after mTBI have not been established. Kinetic models of blood biomarkers can be informative, but more precise estimates of kinetic parameters are needed. Confounding factors for blood biomarker levels have been identified, but corrections for these factors are not routinely made. Little evidence has emerged to date to suggest that blood biomarker levels correlate with clinical measures of mTBI severity. The significance of elevated biomarker levels thirty or more days following mTBI is uncertain. Blood biomarkers have shown a modest but not definitive ability to distinguish concussed from non-concussed subjects, to detect sub-concussive hits to the head, and to predict recovery from mTBI. Blood biomarkers have performed best at distinguishing CT scan positive from CT scan negative subjects after mTBI.
Collapse
Affiliation(s)
- Daniel B Hier
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Tayo Obafemi-Ajayi
- Cooperative Engineering Program, Missouri State University, Springfield, MO 65897, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Sima Azizi
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Blaine Allen
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Bassam A Hadi
- Department of Surgery, Mercy Hospital, St. Louis MO, Missouri, MO 63141, United States
| | - Donald C Wunsch
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.,National Science Foundation, ECCS Division, Virginia, 22314, USA
| |
Collapse
|
18
|
Aisa MC, Barbati A, Cappuccini B, De Rosa F, Gerli S, Clerici G, Kaptilnyy VA, Ishenko AI, Di Renzo GC. Urinary Nerve Growth Factor in full-term, preterm and intra uterine growth restriction neonates: Association with brain growth at 30-40 days of postnatal period and with neuro-development outcome at two years. A pilot study. Neurosci Lett 2020; 741:135459. [PMID: 33223047 DOI: 10.1016/j.neulet.2020.135459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) are crucial for the peripheral and central nervous system development, respectively, and differential brain and blood levels in Intra Uterine Growth Restriction (IUGR) and prematurity have been found. As reduced growth of brain regions, measured at 30-40 days of postnatal period, has been demonstrated in preterm and IUGR neonates who showed impaired neuro-development at two years of age, in this study, the levels of NGF and BDNF were evaluated in the urine samples of 30-40 day-old subjects who were full-term, preterm and IUGR and showed a normal or an abnormal neuro-development at follow up after two years. Neurotrophins were measured concurrently with volumes of whole brain, thalamus, frontal cortex and cerebellum. Values were then correlated with later neuro-developmental outcome. Biochemical parameters and cerebral volumes were assessed using colorimetric ELISA kits and three-dimensional ultra-sonography (3DUS), respectively. Neuro-development was estimated using the Griffiths-II test. Urinary NGF and brain volumes significantly correlated and were lower in preterm and IUGR subjects characterized by poor neuro-development. No differences were seen in the case of BDNF. The present investigation demonstrates, for the first time, the strong and direct association of NGF with brain growth at the initial phase of the postnatal period and with neuro-developmental outcome in later life. Remarkably, urinary NGF may be suggested as an early prognostic indicator of high long-term risk of motor and cognitive impairment in IUGR and preterm neonates.
Collapse
Affiliation(s)
- Maria Cristina Aisa
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy; GeBiSa, Research Foundation, Perugia, Italy; Centro Europeo per la Medicina e la Ricerca (CEMER), Perugia, Italy.
| | - Antonella Barbati
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | | | | | - Sandro Gerli
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy; GeBiSa, Research Foundation, Perugia, Italy; Department of Obstetrics and Gynecology No. 1 of the Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Graziano Clerici
- Centro Europeo per la Medicina e la Ricerca (CEMER), Perugia, Italy; Department of Obstetrics and Gynecology No. 1 of the Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vitaly Alexandrovich Kaptilnyy
- Department of Obstetrics and Gynecology No. 1 of the Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anatoly Ivanovich Ishenko
- Department of Obstetrics and Gynecology No. 1 of the Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Gian Carlo Di Renzo
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy; GeBiSa, Research Foundation, Perugia, Italy; Second Department of Obstetrics and Gynecology, I. M. Sechenov First State Medical University, 119992 Moscow, Russia; Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Kamer AR, Craig RG, Niederman R, Fortea J, de Leon MJ. Periodontal disease as a possible cause for Alzheimer's disease. Periodontol 2000 2020; 83:242-271. [PMID: 32385876 DOI: 10.1111/prd.12327] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
Abstract
Approximately 47 million people worldwide have been diagnosed with dementia, 60%-80% of whom have dementia of the Alzheimer's disease type. Unfortunately, there is no cure in sight. Defining modifiable risk factors for Alzheimer's disease may have a significant impact on its prevalence. An increasing body of evidence suggests that chronic inflammation and microbial dysbiosis are risk factors for Alzheimer's disease. Periodontal disease is a chronic inflammatory disease that develops in response to response to microbial dysbiosis. Many studies have shown an association between periodontal disease and Alzheimer's disease. The intent of this paper was to review the existing literature and determine, using the Bradford Hill criteria, whether periodontal disease is causally related to Alzheimer's disease.
Collapse
Affiliation(s)
- Angela R Kamer
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, New York, USA
| | - Ronald G Craig
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, New York, USA.,Department of Basic Sciences and Craniofacial Biology, New York University, College of Dentistry, New York, New York, USA
| | - Richard Niederman
- Department of Epidemiology and Health Promotion, New York University, College of Dentistry, New York, New York, USA
| | - Juan Fortea
- Alzheimer Down Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona and Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
20
|
Chen P, Zhang H, Zhang Q, Zhou W, Deng Y, Hu X, Zhang L. Basic Fibroblast Growth Factor Reduces Permeability and Apoptosis of Human Brain Microvascular Endothelial Cells in Response to Oxygen and Glucose Deprivation Followed by Reoxygenation via the Fibroblast Growth Factor Receptor 1 (FGFR1)/ERK Pathway. Med Sci Monit 2019; 25:7191-7201. [PMID: 31551405 PMCID: PMC6778414 DOI: 10.12659/msm.918626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Disruption of the blood–brain barrier (BBB) is a mechanism in the pathogenesis of traumatic brain injury. Basic fibroblast growth factor (bFGF) is expressed in angiogenesis, neurogenesis, and neuronal survival. This study aimed to investigate the role of bFGF in vitro in human brain microvascular endothelial cells (HBMECs) challenged by oxygen-glucose deprivation/reperfusion (OGD/R). Material/Methods HBMECs were cultured in glucose-free medium and an environment with <0.5% oxygen in an anaerobic chamber. Immunocytochemistry, Western blot, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were used to measure the protein and mRNA expression levels of bFGF, tight junction, adherens junction, apoptotic proteins, and matrix metalloproteinases (MMPs). The effects of bFGF on the viability of HBMECs was evaluated using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was evaluated using the TUNEL assay, and endothelial permeability was quantified using a transwell migration assay with fluorescein isothiocyanate (FITC) conjugated with dextran. The effects of bFGF were evaluated following inhibition of fibroblast growth factor receptor 1 (FGFR1) with PD173074 and inhibition of ERK with PD98059. Results Following OGD/R of HBMECs, bFGF significantly reduced cell permeability and apoptosis and significantly inhibited the down-regulation of the expressions of proteins associated with tight junctions, adherens junctions, apoptosis and matrix metalloproteinases (MMPs). The effects of bFGF were mediated by the activation of FGFR1 and ERK, as they were blocked by FGFR1 and ERK inhibitors. Conclusions Permeability and apoptosis of HBMECs challenged by OGD/R were reduced by bFGF by activation of the FGFR1 and the ERK pathway.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Hongguang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Qingtao Zhang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Wei Zhou
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Xi Hu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| |
Collapse
|