1
|
Papoutsis K. Alternatives to DPA and ethoxyquin for preventing the development of superficial scald in apples: A review. Food Chem X 2024; 23:101730. [PMID: 39239534 PMCID: PMC11375236 DOI: 10.1016/j.fochx.2024.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Apples are one of most economically important crops worldwide with a production of approximately 96 million tons in 2022. During postharvest storage, apple quality can decline due to the development of physiological disorders. Superficial scald is one of the main physiological disorders that develops in apples during cold storage and results in quality deterioration. Superficial scald is controlled by synthetic antioxidants such as diphenylamine (DPA) and ethoxyquin. Both chemicals have been banned from the EU due to their toxicity. The current review provides an update on superficial scald complicated development mechanism and summarizes studies investigating postharvest treatments as alternatives to DPA and ethoxyquin. Ethylene and oxygen are important factors that trigger the development of superficial scald in apples by regulating various metabolic pathways during cold storage. More studies are required to investigate alternatives to synthetic antioxidants and elucidate the contribution level of the different metabolites to superficial scald development.
Collapse
Affiliation(s)
- Konstantinos Papoutsis
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, SE-230 53, Box 101, Alnarp, Sweden
| |
Collapse
|
2
|
Pieczywek PM, Nosalewicz A, Zdunek A. A novel application of laser speckle imaging technique for prediction of hypoxic stress of apples. PLANT METHODS 2024; 20:147. [PMID: 39342339 PMCID: PMC11437772 DOI: 10.1186/s13007-024-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Fruit storage methods such as dynamic controlled atmosphere (DCA) technology enable adjusting the level of oxygen in the storage room, according to the physiological state of the product to slow down the ripening process. However, the successful application of DCA requires precise and reliable sensors of the oxidative stress of the fruit. In this study, respiration rate and chlorophyll fluorescence (CF) signals were evaluated after introducing a novel predictors of apples' hypoxic stress based on laser speckle imaging technique (LSI). RESULTS Both chlorophyll fluorescence and LSI signals were equally good for stress detection in principle. However, in an application with automatic detection based on machine learning models, the LSI signal proved to be superior, due to its stability and measurement repeatability. Moreover, the shortcomings of the CF signal appear to be its inability to indicate oxygen stress in tissues with low chlorophyll content but this does not apply to LSI. A comparison of different LSI signal processing methods showed that method based on the dynamics of changes in image content was better indicators of stress than methods based on measurements of changes in pixel brightness (inertia moment or laser speckle contrast analysis). Data obtained using the near-infrared laser provided better prediction capabilities, compared to the laser with red light. CONCLUSIONS The study showed that the signal from the scattered laser light phenomenon is a good predictor for the oxidative stress of apples. Results showed that effective prediction using LSI was possible and did not require additional signals. The proposed method has great potential as an alternative indicator of fruit oxidative stress, which can be applied in modern storage systems with a dynamically controlled atmosphere.
Collapse
Affiliation(s)
- Piotr Mariusz Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Artur Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
3
|
Pillai ARS, Eapen AS, Zhang W, Roy S. Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review. Foods 2024; 13:1529. [PMID: 38790829 PMCID: PMC11121366 DOI: 10.3390/foods13101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Over the last decades, a significant rise in fruit consumption has been noticed as they contain numerous nutritional components, which has led to the rise in fruit production globally. However, fruits are highly liable to spoilage in nature and remain vulnerable to losses during the storage and preservation stages. Therefore, it is crucial to enhance the storage life and safeness of fruits for the consumers. To keep up the grade and prolong storage duration, various techniques are employed in the food sector. Among these, biopolymer coatings have gained widespread acceptance due to their improved characteristics and ideal substitution for synthetic polymer coatings. As there is concern regarding the safety of the consumers and sustainability, edible coatings have become a selective substitution for nurturing fruit quality and preventing decay. The application of polysaccharide-based edible coatings offers a versatile solution to prevent the passage of moisture, gases, and pathogens, which are considered major threats to fruit deterioration. Different polysaccharide substances such as chitin, pectin, carrageenan, cellulose, starch, etc., are extensively used for preparing edible coatings for a wide array of fruits. The implementation of coatings provides better preservation of the fruits such as mango, strawberry, pineapple, apple, etc. Furthermore, the inclusion of functional ingredients, including polyphenols, natural antioxidants, antimicrobials, and bio-nanomaterials, into the edible coating solution matrix adds to the nutritional, functional, and sensory attributes of the fruits. The blending of essential oil and active agents in polysaccharide-based coatings prevents the growth of food-borne pathogens and enhances the storage life of the pineapple, also improving the preservation of strawberries and mangoes. This paper aims to provide collective data regarding the utilization of polysaccharide-based edible coatings concerning their characteristics and advancements for fruit preservation.
Collapse
Affiliation(s)
- Athira R. S. Pillai
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| | - Ansu Sara Eapen
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| |
Collapse
|
4
|
Khera K, Büchele F, Wood RM, Thewes FR, Wagner R, Hagemann MH, Neuwald DA. Impact of different storage conditions with combined use of ethylene blocker on 'Shalimar' apple variety. Sci Rep 2024; 14:8485. [PMID: 38605100 PMCID: PMC11009402 DOI: 10.1038/s41598-024-57688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
This research investigates the impact of storage conditions on the quality and preservation of 'Shalimar' apples, a relatively new cultivar known for its resistance to apple scab and powdery mildew. The study explores the efficacy of different storage techniques such as regular atmosphere (RA), controlled atmosphere (CA), and dynamic controlled atmosphere with CO2 Monitoring (DCA-CD), as well as the integration of 1-methylcyclopropene (1-MCP) at different storage temperatures (1 °C and 3 °C). Various fruit quality parameters were monitored under different storage conditions, including firmness, titratable acidity, total soluble solids, background color, respiration, ethylene production, and volatile compounds. The results indicate that the controlled atmosphere (CA) at 1 °C emerges as an efficient method for long-term storage. However, it is noted that CA storage may impact the apple aroma, emphasizing the need for a balance between preservation and consumer acceptability. On the other hand, DCA-CD at variable temperatures (approximately 2.5 °C) offers a promising approach for maintaining fruit quality and a higher concentration of volatile compounds. Integrating 1-MCP enhances firmness, but its impact varies across storage conditions. Principal component analysis (PCA) provides insights into the relationships between storage conditions, fruit quality, and volatile compounds. This study contributes valuable insights into optimizing storage strategies for 'Shalimar' apples, addressing sustainability and quality preservation in apple production.
Collapse
Affiliation(s)
- Kartik Khera
- Lake of Constance Research Centre for Fruit Cultivation (KOB), Schuhmacherhof 6, Ravensburg, Germany
- Department Production Systems of Horticultural Crops, University of Hohenheim, 70593, Stuttgart, Germany
| | - Felix Büchele
- Lake of Constance Research Centre for Fruit Cultivation (KOB), Schuhmacherhof 6, Ravensburg, Germany
| | - Rachael Maree Wood
- Horticulture and Product Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Fabio Rodrigo Thewes
- University of Santa Maria, v. Roraima n 9702 1000 Cidade Universitaria, Bairro - Camobi, Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Roger Wagner
- University of Santa Maria, v. Roraima n 9702 1000 Cidade Universitaria, Bairro - Camobi, Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Michael Helmut Hagemann
- Department Production Systems of Horticultural Crops, University of Hohenheim, 70593, Stuttgart, Germany
| | - Daniel Alexandre Neuwald
- Lake of Constance Research Centre for Fruit Cultivation (KOB), Schuhmacherhof 6, Ravensburg, Germany.
- Department Production Systems of Horticultural Crops, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
5
|
Fan X, Gurtler JB, Mattheis JP. Possible sources of Listeria monocytogenes contamination of fresh-cut apples and antimicrobial interventions during antibrowning treatments: a review. J Food Prot 2023; 86:100100. [PMID: 37150354 DOI: 10.1016/j.jfp.2023.100100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Fresh-cut apples, being rich in antioxidants and other nutrients, have emerged as popular snacks in restaurants, at home and in school lunch programs, partially due to freshness, convenience, and portion size availability. Two major challenges in processing fresh-cut apples are browning of cut surfaces and contamination with human pathogens. Regarding human pathogens, contamination by Listeria monocytogenes is a major concern, as evidenced by two recent outbreaks of whole apples and numerous recalls of fresh-cut apples. Antibrowning agents currently used by the industry have little to no antimicrobial properties. The present review discusses possible origins of L. monocytogenes in fresh-cut apples, including contaminated whole apples, and contamination via the processing environment and the equipment in fresh-cut facilities. Treatment with antibrowning solutions could be an opportunity for Listeria contamination and represents the last chance to inactivate pathogens. The discussion is focused on the antibrowning treatments where formulations and coatings with antibrowning and antimicrobial properties have been developed and evaluated against Listeria and other microorganisms. In addition, several research needs and considerations are discussed to further reduce the chance of pathogen contamination on fresh-cut apples.
Collapse
Affiliation(s)
- Xuetong Fan
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Joshua B Gurtler
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - James P Mattheis
- U. S. Department of Agriculture, Agricultural Research Service, Tree Fruit Research Laboratory, 1104 N. Western Avenue, Wenatchee, WA 98801
| |
Collapse
|
6
|
Jaeger SR, Antúnez L, Ares G. An exploration of what freshness in fruit means to consumers. Food Res Int 2023; 165:112491. [PMID: 36869502 DOI: 10.1016/j.foodres.2023.112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Perceived freshness is a key determinant of consumers' food choices but remains an imprecisely defined concept. A comprehensive and consumer-centric definition of freshness appears to be lacking, and the present research was situated in this knowledge gap, seeking, in particular, to explore the complexity of freshness in consumers' minds. People from the USA (n = 2092) took part in an online survey and completed a text highlighting task. Herein, participants read a text that described different aspects of freshness and the technologies used to prolong freshness during storage. While reading, they used highlighting functions within the software to indicate text content that they liked/disliked or agreed/disagreed with. The combined results from text highlighting and responses to the open-ended question "Considering the fruit you eat, why is freshness important to you?" confirmed that freshness is a complex construct with multiple dimensions and suggested that the complexity of freshness extends from food in general to specific product categories (in the case of fruit and apples). Further, the findings showed that freshness is desired by consumers because fruit are perceived as healthier and better tasting. The findings revealed negative attitudes towards stored fruit among participants, but also indicated some acceptance of the fact that some storage was unavoidable. Results provide useful insights to the development for communication strategies to increase consumer acceptance of stored apples and fruits in general.
Collapse
Affiliation(s)
- Sara R Jaeger
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Private Bag 92169, Victoria Street West, Auckland, New Zealand.
| | - Lucía Antúnez
- Sensometrics & Consumer Science, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República. By Pass de Rutas 8 y 101 s/n. CP 91000. Pando, Canelones, Uruguay
| | - Gastón Ares
- Sensometrics & Consumer Science, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República. By Pass de Rutas 8 y 101 s/n. CP 91000. Pando, Canelones, Uruguay
| |
Collapse
|
7
|
Liu B, Xin Q, Zhang M, Chen J, Lu Q, Zhou X, Li X, Zhang W, Feng W, Pei H, Sun J. Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods 2022; 12:foods12010173. [PMID: 36613389 PMCID: PMC9818659 DOI: 10.3390/foods12010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mango (Mangifera indica L.) is an important tropical fruit with a delicate taste, pleasant aroma, and high nutritional value. In recent years, with the promotion of the rural revitalization strategy and the development of the poverty alleviation industry, China has gradually become an important mango producer. However, the short shelf life of mango fruit, the difficulty in regulating the postharvest quality, and the lack of preservation technology are the main problems that need to be solved in China's mango industry. In this paper, the physiological changes and mechanisms of mango during postharvest ripening were summarized, including sugar and acid changes, pigment synthesis and accumulation, and aroma formation and accumulation. The physical, chemical, and biological technologies (such as endogenous phytohormones, temperature, light, chemical preservatives, and edible coatings) commonly used in the regulation of mango postharvest ripening and their action principles were emphatically expounded. The shortcomings of the existing mango postharvest ripening regulation technology and physiological mechanism research were analyzed in order to provide a reference for the industrial application and development of mango postharvest.
Collapse
Affiliation(s)
- Bangdi Liu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qi Xin
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Min Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jianhu Chen
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qingchen Lu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xinqun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiangxin Li
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wanli Zhang
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wei Feng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haisheng Pei
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jing Sun
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Correspondence:
| |
Collapse
|
8
|
Nyamende NE, Sigge GO, Belay ZA, Mphahlele RR, Oyenihi AB, Mditshwa A, Hussein ZM, Caleb OJ. Advances in non-thermal technologies for whole and minimally processed apple fruit – A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Effects of different pretreatment methods on drying kinetics, three-dimensional deformation, quality characteristics and microstructure of dried apple slices. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Organic acids metabolism and GABA shunt involved in maintaining quality of Malus domestica by methyl jasmonate treatment. Food Res Int 2022; 160:111741. [DOI: 10.1016/j.foodres.2022.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
|
11
|
Varivoda AA, Svetlakova EV, Ziruk IV, Kirichenko IS, Kolosova OY, Povetkin SN, Ivakhnenko BO. Development of a scientific concept of industrial storage systems for environmentally safe apples. POTRAVINARSTVO 2022. [DOI: 10.5219/1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The research project has developed and justified the storage modes of apples in a modified gas environment by creating an isolated "closed loop" of high-pressure polyethylene; the expediency of creating highly efficient technologies for storing fresh fruits in a controlled atmosphere, in bioactive bactericidal packages and by creating microfilm on the surface of fruits has been confirmed. The prospects of using a progressive method of storing fruits in a modified gas atmosphere by creating an isolated "closed circuit" in a separate refrigerating chamber without using expensive equipment (in normal and subnormal gas environments) are proved. New technologies have been developed for storing apple fruits susceptible to infectious and physiological diseases based on improved storage methods with minimal losses. The consumption rates of Phytosporin-M for the surface treatment of fruits were determined and optimized to control the intensity of biochemical and microbiological processes during storage. The modes and technologies of post-harvest fruit processing with the Phytosporin-M biopreparation have been substantiated.
Collapse
|
12
|
Changes of Sensory Quality, Flavor-Related Metabolites and Gene Expression in Peach Fruit Treated by Controlled Atmosphere (CA) under Cold Storage. Int J Mol Sci 2022; 23:ijms23137141. [PMID: 35806145 PMCID: PMC9266655 DOI: 10.3390/ijms23137141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Controlled atmosphere (CA) has been used to alleviate chilling injury (CI) of horticultural crops caused by cold storage. However, the effects of CA treatment on peach fruit sensory quality and flavor-related chemicals suffering from CI remain largely unknown. Here, we stored peach fruit under CA with 5% O2 and 10% CO2 at 0 °C up to 28 d followed by a subsequent 3 d shelf-life at 20 °C (28S3). CA significantly reduced flesh browning and improved sensory quality at 28S3. Though total volatiles declined during extended cold storage, CA accumulated higher content of volatile esters and lactones than control at 28S3. A total of 14 volatiles were positively correlated with consumer acceptability, mainly including three C6 compounds, three esters and four lactones derived from the fatty acid lipoxygenase (LOX) pathway. Correspondingly, the expression levels of genes including PpLOX1, hyperoxide lyase PpHPL1 and alcohol acyltransferase PpAAT1 were positively correlated with the change of esters and lactones. CA elevated the sucrose content and the degree of fatty acids unsaturation under cold storage, which gave us clues to clarify the mechanism of resistance to cold stress. The results suggested that CA treatment improved sensory quality by alleviating CI of peach fruits under cold storage.
Collapse
|
13
|
Occurrence of Patulin and Polyphenol Profile of Croatian Traditional and Conventional Apple Cultivars during Storage. Foods 2022; 11:foods11131912. [PMID: 35804728 PMCID: PMC9266231 DOI: 10.3390/foods11131912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Apples and apple-based products are among the most consumed fruits around the world. However, they are susceptible to infection with the fungi Penicilium expansum. In addition to the reduction of apple quality, secondary metabolism of this fungus produces a mycotoxin patulin that has a negative effect on human health. Currently, there is no available research in the literature on the resistance of Croatian traditional apple cultivars to contamination with P. expansum, and consequently, on the patulin content in apples and apple juice produced from those apples. Although the mechanism of apple resistance to fungal diseases has not yet been sufficiently investigated, some studies have shown that polyphenolic compounds have some impact on fungi growth. In order to contribute with new knowledge, this research deals with monitoring the growth of P. expansum on apples, patulin detection by LC/MS-MS, determination of polyphenol profile by validated HPLC method, and determining the effect of polyphenolic compounds on fungi growth and patulin production during apple storage. The results of this study have shown that Croatian traditional apple cultivars harvested from family farm Horvatić contain higher concentration of polyphenolic compounds and higher antioxidant activity. At the same time, they showed more resistance to infection by P. expansum than conventional ones. The higher content of dihydrochalcones and flavanols encouraged the biosynthesis of patulin in examined cultivars. However, the higher content of non-flavonoids such as 2-6 dimethoxybenzoic acid, 4-hydroxycinnamic acid and chlorogenic acid leads to decrease in content of patulin. In conclusion, it seems that content of polyphenols and patulin production are correlated.
Collapse
|
14
|
Impact of Bacterial Cellulose Nanocrystals-Gelatin/Cinnamon Essential Oil Emulsion Coatings on the Quality Attributes of ‘Red Delicious’ Apples. COATINGS 2022. [DOI: 10.3390/coatings12060741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to assess the effectiveness of bacterial cellulose nanocrystals (BCNCs)-gelatin (GelA)/cinnamon essential oil (CEO) emulsion coatings containing various CEO concentrations (1200, 1800, and 2400 μL/L) in retarding ripening and senescence of ‘Red Delicious’ apples during cold storage (60 days at 4 °C). Coatings decreased the weight loss (WL) (~3.6%), as compared to uncoated fruit (~4.8%). A direct relationship between CEO concentration and respiration rate/ethylene production was also disclosed. Flesh firmness was higher for coated samples, with better results detected especially when the highest amount of CEO was applied (36.48 N for the 2400 μL/L delivered dose vs. 32.60 N for the 1200 μL/L one). These findings were corroborated by additional tests on the surface color, total acidity, soluble solids content, pH, ascorbic acid, and activities of polyphenol oxidase (PPO) and peroxidase (POD). This study demonstrated the capability of BCNCs-GelA/CEO systems to dramatically enhance the storability and quality of apples during refrigerated storage, thus avoiding undesired losses and increasing the economic performance of fresh fruit industries.
Collapse
|
15
|
Butkeviciute A, Viskelis J, Liaudanskas M, Viskelis P, Janulis V. Impact of Storage Controlled Atmosphere on the Apple Phenolic Acids, Flavonoids, and Anthocyanins and Antioxidant Activity In Vitro. PLANTS 2022; 11:plants11020201. [PMID: 35050089 PMCID: PMC8781301 DOI: 10.3390/plants11020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Apples are seasonal fruits, and it is important to prepare them adequately for storage and ensure proper storage conditions. In this study, we used ten different apple cultivars: ‘Alva’, ‘Auksis’, ‘Connell Red’, ‘Cortland’, ‘Ligol’, ‘Lodel’, ‘Noris’, ‘Rubin’, ‘Sampion’, and ‘Spartan’. We studied the qualitative and quantitative composition of phenolic compounds in the apple and apple extracts antioxidants activity before placing them in the controlled atmosphere chambers and again at the end of the experiment, eight months later. Different concentrations of O2, CO2, and N2, constant temperature, relative humidity, and removal of endogenous ethylene were continually maintained. HPLC analysis showed that the highest amount of 2265.7 ± 152.5 µg/g of chlorogenic acid was found in apple samples of the ‘Auksis’ cultivar stored under variant IV conditions. Different concentrations of gas in the controlled atmosphere chambers caused changes in antioxidant activity in whole apple and apple peel extracts. In our study, we found that the antioxidant activity of apple extracts varied between samples of different apple cultivars and depended on the composition of the controlled atmosphere. Determining the optimal storage conditions is beneficial to providing the consumers with apples that have a known and minimally altered chemical composition of phenolic compounds and the strongest antioxidant activity, which determine the use of apples in the healthy food chain.
Collapse
Affiliation(s)
- Aurita Butkeviciute
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
- Correspondence: ; Tel.: +37-037-621-56190
| | - Jonas Viskelis
- Laboratory of Biochemistry and Technology, Lithuanian Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Lithuania; (J.V.); (P.V.)
| | - Mindaugas Liaudanskas
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
| | - Pranas Viskelis
- Laboratory of Biochemistry and Technology, Lithuanian Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Lithuania; (J.V.); (P.V.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
| |
Collapse
|
16
|
Abel N, Rotabakk BT, Lerfall J. Mild processing of seafood-A review. Compr Rev Food Sci Food Saf 2021; 21:340-370. [PMID: 34913247 DOI: 10.1111/1541-4337.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Recent years have shown a tremendous increase in consumer demands for healthy, natural, high-quality convenience foods, especially within the fish and seafood sector. Traditional processing technologies such as drying or extensive heating can cause deterioration of nutrients and sensory quality uncompilable with these demands. This has led to development of many novel processing technologies, which include several mild technologies. The present review highlights the potential of mild thermal, and nonthermal physical, and chemical technologies, either used alone or in combination, to obtain safe seafood products with good shelf life and preference among consumers. Moreover, applications and limitations are discussed to provide a clear view of the potential for future development and applications. Some of the reviewed technologies, or combinations thereof, have shown great potential for non-seafood products, yet data are missing for fish and seafood in general. The present paper visualizes these knowledge gaps and the potential for new technology developments in the seafood sector. Among identified gaps, the combination of mild heating (e.g., sous vide or microwave) with more novel technologies such as pulsed electric field, pulsed light, soluble gas stabilization, cold plasma, or Ohmic heat must be highlighted. However, before industrial applications are available, more research is needed.
Collapse
Affiliation(s)
- Nanna Abel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
17
|
Yuan J, Wang H, Li Y, Chen L, Zheng Y, Jiang Y, Tang Y, Li X, Wang L, Li J. 1‐MCP
and pulsed controlled atmosphere affect internal storage disorders and desired quality of watercored “Fuji” apples. J Food Saf 2021. [DOI: 10.1111/jfs.12935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junwei Yuan
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Haifen Wang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Yusheng Li
- Changli Research Institute of Pomology Hebei Academy of Agriculture and Forestry Sciences Changli China
| | - Lan Chen
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Yanli Zheng
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Yao Tang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Luyin Wang
- Xinjiang Red Flag Slope Agricultural Development Group Co., Ltd. Xinjiang China
| | - Jixin Li
- Xinjiang Academy of Agricultural and Reclamation Science Xinjiang China
| |
Collapse
|
18
|
Wang K, Ngea GLN, Godana EA, Shi Y, Lanhuang B, Zhang X, Zhao L, Yang Q, Wang S, Zhang H. Recent advances in Penicillium expansum infection mechanisms and current methods in controlling P. expansum in postharvest apples. Crit Rev Food Sci Nutr 2021; 63:2598-2611. [PMID: 34542350 DOI: 10.1080/10408398.2021.1978384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the most significant challenges associated with postharvest apple deterioration is the blue mold caused by Penicillium expansum, which leads to considerable economic losses to apple production industries. Apple fruits are susceptible to mold infection owing to their high nutrient and water content, and current physical control methods can delay but cannot completely inhibit P. expansum growth. Biological control methods present promising alternatives; however, they are not always cost effective and have application restrictions. P. expansum infection not only enhances disease pathogenicity, but also inhibits the expression of host-related defense genes. The implementation of new ways to investigate and control P. expansum are expected with the advent of omics technology. Advances in these techniques, together with molecular biology approaches such as targeted gene deletion and whole genome sequencing, will lead to a better understanding of the P. expansum infectious machinery. Here, we review the progress of research on the blue mold disease caused by P. expansum in apples, including physiological and molecular infection mechanisms, as well as various methods to control this common plant pathogen.
Collapse
Affiliation(s)
- Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Département de Transformation et Contrôle de Qualité des Produits Halieutique, Institut des Sciences Halieutiques, Université de Douala à Yabassi, Douala-Bassa, Cameroun
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Boen Lanhuang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Iordănescu OA, Băla M, Iuga AC, Gligor (Pane) D, Dascălu I, Bujancă GS, David I, Hădărugă NG, Hădărugă DI. Antioxidant Activity and Discrimination of Organic Apples ( Malus domestica Borkh.) Cultivated in the Western Region of Romania: A DPPH· Kinetics-PCA Approach. PLANTS 2021; 10:plants10091957. [PMID: 34579489 PMCID: PMC8466220 DOI: 10.3390/plants10091957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Apple (Malus domestica Borkh.) is one of the most used fruit for beverages in Romania. The goal of the study was to evaluate the antioxidant activity and discrimination of various parts of organic and non-organic apple varieties cultivated in the western region of Romania using the DPPH· kinetics–PCA (principal component analysis) approach. Organic and non-organic apples were subjected to solid–liquid ethanol extraction. Core and shell extracts were mixed with DPPH· and spectrophotometrically monitored at 517 nm. Antioxidant activity and mean DPPH· reaction rate at various time ranges reveal significant differences between organic and non-organic samples, as well as apple parts. Organic core and shell extracts had higher antioxidant activities than the corresponding non-organic samples (74.5–96.9% and 61.9–97.2%, respectively, 23.5–94.3% and 59.5–95.5%). Significant differences were observed for the DPPH· reaction rate for the first ½ min, especially in the presence of organic core extracts (3.7–4.8 μM/s). The organic samples were well discriminated by DPPH· kinetics–PCA, the most important variables being the DPPH· reaction rate for the first time range. This is the first DPPH· kinetics–PCA approach applied for discriminating between organic and non-organic fruits and can be useful for evaluating the quality of such type of fruits.
Collapse
Affiliation(s)
- Olimpia Alina Iordănescu
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Maria Băla
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Alina Carmen Iuga
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Dina Gligor (Pane)
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
| | - Ionuţ Dascălu
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Gabriel Stelian Bujancă
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania;
| | - Ioan David
- Department of Food Science, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Correspondence: (I.D.); or (N.G.H.); Tel.: +40-256-277-423 (N.G.H.)
| | - Nicoleta Gabriela Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
- Department of Food Science, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Correspondence: (I.D.); or (N.G.H.); Tel.: +40-256-277-423 (N.G.H.)
| | - Daniel Ioan Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| |
Collapse
|
20
|
Razali Z, Somasundram C, Nurulain SZ, Kunasekaran W, Alias MR. Postharvest Quality of Cherry Tomatoes Coated with Mucilage from Dragon Fruit and Irradiated with UV-C. Polymers (Basel) 2021; 13:polym13172919. [PMID: 34502959 PMCID: PMC8434347 DOI: 10.3390/polym13172919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Cherry tomatoes are climacteric fruits that have a limited shelf life. Over the years, many methods have been applied to preserve the fruit quality and safety of these fruits. In this study, a novel method of combining mucilage from dragon fruits and UV-C irradiation was carried out. Cherry tomatoes were subjected to UV-C irradiation and edible coating, both as a stand-alone and hurdle treatment. The edible coating was prepared from the mucilage of white dragon fruits. Quality parameters including color, weight loss, total soluble solids, titratable acidity, ascorbic acid, antioxidant analysis (total phenolic content and flavonoid content), and microbial analysis were measured throughout 21 days of storage at 4 °C. Results showed that the hurdle treatment extended shelf life by 21 days, reduced weight loss (0.87 ± 0.05%) and color changes (11.61 ± 0.95 ΔE), and inhibited microbes better than stand-alone treatments. Furthermore, fruits treated with the combination of UV-C and edible coating also contained higher total polyphenol content (0.132 ± 0.003 mg GAE/100 mL), total flavonoid content (13.179 ± 0.002 mg CE/100 mL), and ascorbic acid (1.07 ± 0.06 mg/100 mL). These results show that the combination of UV-C and edible coating as a hurdle treatment could be an innovative method to preserve shelf life and quality of fruits.
Collapse
Affiliation(s)
- Zuliana Razali
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.S.); (S.Z.N.); (M.R.A.)
- The Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Chandran Somasundram
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.S.); (S.Z.N.); (M.R.A.)
- The Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Zalifah Nurulain
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.S.); (S.Z.N.); (M.R.A.)
| | - Wijenthiran Kunasekaran
- Cytonex Sdn Bhd, Kuala Lumpur, Federal Territory of Kuala Lumpur, Kuala Lumpur 51200, Malaysia;
| | - Matthew Raj Alias
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.S.); (S.Z.N.); (M.R.A.)
| |
Collapse
|
21
|
Changes in the Biochemical Composition and Physicochemical Properties of Apples Stored in Controlled Atmosphere Conditions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apples are an important component of the diet and are used in the food industry in the production of food products and beverages. The aim of the study was to determine the changes in the biochemical composition and physicochemical properties of apples stored in a controlled atmosphere. We studied the biochemical composition (sugars, ascorbic acid, soluble solids, and titratable acidity) and physicochemical properties (color coordinates, peel, and flesh firmness) in the apple samples before placing them in the controlled atmosphere chambers and at the end of the experiment 8 months later. The total content of sugars and soluble solids was found to increase in the samples of apples stored in I to VIII conditions. The study showed a decrease in titratable acidity in apple samples of all cultivars stored in I to VIII conditions. The values of C*, L*, a*, and b* co-ordinates of apple colors were evaluated. Apple samples stored in VI conditions were the lightest color, and their lightness was close to that of fresh fruit. The firmness of apple peel samples of the ‘Sampion’ cultivar stored in I and III–VI conditions increased. The study is valuable and proves that, under the studied conditions, it is possible to extend the time of the provision of apples to the consumers with minimal changes in their chemical composition and nutritional value.
Collapse
|
22
|
Variation of Triterpenes in Apples Stored in a Controlled Atmosphere. Molecules 2021; 26:molecules26123639. [PMID: 34198648 PMCID: PMC8232341 DOI: 10.3390/molecules26123639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Apples are seasonal fruits, and thus after harvesting apples of optimal picking maturity, it is important to prepare them properly for storage and to ensure proper storage conditions in order to minimize changes in the chemical composition and commercial quality of the apples. We studied the quantitative composition of triterpenic compounds in the whole apple, apple peel and apple flesh samples before placing them in the controlled atmosphere (CA) chambers, and at the end of the experiment, 8 months later. HPLC analysis showed that highest total amount of triterpenic compounds (1.99 ± 0.01 mg g-1) was found in the whole apple samples of the 'Spartan' cultivar stored under variant VIII (O2-20%, CO2-3%, N2-77%) conditions. Meanwhile, the highest amount of triterpenic compounds (11.66 ± 0.72 mg g-1) was determined in the apple peel samples of the 'Auksis' cultivar stored under variant II (O2-5%, CO2-1%, N2-94%) conditions. In the apple peel samples of the 'Auksis' cultivar stored under variant I (O2-21%, CO2-0.03%, N2-78.97%) conditions, the amount of individual triterpenic compounds (ursolic, oleanolic, corosolic, and betulinic acids) significantly decreased compared with amount determined before the storage. Therefore, in the apple flesh samples determined triterpenic compounds are less stable during the storage under controlled atmosphere conditions compared with triterpenic compounds determined in the whole apple and apple peel samples.
Collapse
|
23
|
Steffens CA, Amarante CVT, Espindola BP, Hendges MV, Heinzen AS, Pikart FC, Santana GRO. Ethanol vapor, initial low O
2
, and high CO
2
stresses in the storage of Laetitia Plums. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cristiano André Steffens
- Department of Plant Science, Postharvest Research Center University of Santa Catarina State, Centre for Agroveterinary Sciences Lages Brazil
| | - Cassandro Vidal Talamini Amarante
- Department of Plant Science, Postharvest Research Center University of Santa Catarina State, Centre for Agroveterinary Sciences Lages Brazil
| | - Bruno Pansera Espindola
- Department of Plant Science, Postharvest Research Center University of Santa Catarina State, Centre for Agroveterinary Sciences Lages Brazil
| | - Marcos Vinícius Hendges
- Department of Plant Science, Postharvest Research Center University of Santa Catarina State, Centre for Agroveterinary Sciences Lages Brazil
| | - Angélica Schmitz Heinzen
- Department of Plant Science, Postharvest Research Center University of Santa Catarina State, Centre for Agroveterinary Sciences Lages Brazil
| | - Filipe Christian Pikart
- Department of Plant Science, Postharvest Research Center University of Santa Catarina State, Centre for Agroveterinary Sciences Lages Brazil
| | - Grez Roberta Oliveira Santana
- Department of Plant Science, Postharvest Research Center University of Santa Catarina State, Centre for Agroveterinary Sciences Lages Brazil
| |
Collapse
|
24
|
Mohammed M, Alqahtani N, El-Shafie H. Development and Evaluation of an Ultrasonic Humidifier to Control Humidity in a Cold Storage Room for Postharvest Quality Management of Dates. Foods 2021; 10:foods10050949. [PMID: 33926023 PMCID: PMC8145257 DOI: 10.3390/foods10050949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Dates are subjected to postharvest losses in quality and quantity caused by water loss, fermentation, insect infestation, and microbial spoilage during storage. Cold storage is the main element in the postharvest quality management used for fruit preservation. Although cold storage is used for dates, precision control of the relative humidity (RH) using ultrasonic applications is not used thus far, or it is applied to other fruits on a small scale. Therefore, we designed and constructed an ultrasonic humidifier (DUH) for RH control in the cold storage room (CSR) of dates. The optimum air velocity of 3 m s-1 at the outlets of the DUH ducts produced a mist amount of 6.8 kg h-1 with an average droplet diameter of 4.26 ± 1.43 µm at the applied voltage of 48 V and frequency of 2600 kHz of the transducers. The experimental validation was carried out by comparing a CSR controlled with the DUH with two conventional CSRs. The three tested CSRs were similar in dimensions, cooling system, and amount of stored dates. The time required for cooling 800 kg of dates in the controlled CSR from 25 °C to the target temperature of 5 °C was approximately 48 h. The DUH precisely controlled the RH at the maximum RH set point of 80% in the tested CSR at 5 °C. The controlled RH at 80% has a positive impact on the physicochemical characteristics of the stored dates. It significantly reduced the weight loss of the fruits and preserved fruit mass, moisture content, water activity, firmness, and color parameters. However, no significant effect was observed on fruit dimensions, sphericity, and aspect ratio. The microbial loads of mesophilic aerobic bacteria, molds, and yeasts fell within the acceptable limits in all tested CSRs. Both stored date fruits and artificially infested dates showed no signs of insect activity in the controlled CSR at the temperature of 5 °C and RH of 80%. The DUH proved to be a promising technology for postharvest quality management for dates during cold storage.
Collapse
Affiliation(s)
- Maged Mohammed
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.A.); (H.E.-S.)
- Agricultural Engineering Department, Faculty of Agriculture, Menoufia University, Shebin El Koum 32514, Egypt
- Correspondence:
| | - Nashi Alqahtani
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.A.); (H.E.-S.)
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Hamadttu El-Shafie
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.A.); (H.E.-S.)
- Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Shambat 13314, Sudan
| |
Collapse
|
25
|
Han JW, Zuo M, Zhu WY, Zuo JH, Lü EL, Yang XT. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Al-Behadili FJ, Agarwal M, Xu W, Ren Y. Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephritidae) Eggs and Larvae Responses to a Low-Oxygen/High-Nitrogen Atmosphere. INSECTS 2020; 11:insects11110802. [PMID: 33203006 PMCID: PMC7696186 DOI: 10.3390/insects11110802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Many chemicals have been removed from registration for the postharvest treatment of insect pests due to consumer/environmental safety and phytotoxicity. There is very limited operation for international trade purposes, particularly for management of Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae) on harvested fruit. Therefore, the non-chemical method is being considered for postharvest treatment of fruit. This study explored and evaluated Medfly response to low-oxygen and high-nitrogen treatment. The results will guide the development of a novel postharvest strategy and the approach to controlling this destructive fruit fly and other pests. Abstract The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is one of the most damaging horticultural insect pests. This study used a low-oxygen/high-nitrogen bioassay to control C. capitata. Two low-oxygen treatments were applied (0.5% O2 + 99.5 N2 and 5% O2 + 95% N2) to C. capitata eggs and 1st, 2nd and 3rd instar larvae from 0 to nine days on a carrot diet at 25 °C; 70—75% RH. The pupariation, adult emergence, and sex ratios of survived flies were examined. The results demonstrate that increased mortality of all tested life stages correlated with increased exposure times at both levels of low-oxygen treatments. Complete control of eggs was achieved after eight days and nine days for larvae using 0.5% O2 at 25 °C; 70–75% RH. The 3rd instar was the most tolerant stage, while the egg was the most susceptible stage to the low-oxygen environment. There were no significant differences in sex ratios between emerged adults after low-oxygen and control treatments. The present work demonstrates and confirms the mortalities of C. capitata caused by low-oxygen treatment, which may help develop new postharvest strategies to control this destructive fruit fly pest.
Collapse
Affiliation(s)
- Farhan J.M. Al-Behadili
- College of Science, Health, Engineering and Education, Murdoch, WA 6150, Australia; (F.J.M.A.-B.); (M.A.)
- College of Agriculture, Misan University, Misan 62001, Iraq
| | - Manjree Agarwal
- College of Science, Health, Engineering and Education, Murdoch, WA 6150, Australia; (F.J.M.A.-B.); (M.A.)
| | - Wei Xu
- College of Science, Health, Engineering and Education, Murdoch, WA 6150, Australia; (F.J.M.A.-B.); (M.A.)
- Correspondence: (W.X.); (Y.R.)
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch, WA 6150, Australia; (F.J.M.A.-B.); (M.A.)
- Correspondence: (W.X.); (Y.R.)
| |
Collapse
|
27
|
Why Per Capita Apple Consumption Is Falling: Insights from the Literature and Case Evidence from South Tyrol. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Per capita apple consumption is falling in many European countries while overall fruit intake is growing or is stable, and consumption of other fruits is increasing. The reasons for the consumption decline of the world’s third most produced fruit are unclear. Based on an extensive literature review and a logit regression of data from a postal survey of 153 apple consumers in South Tyrol, Italy, the purpose of this study is to explain this trend. We show that (i) the increasing average age of consumers, (ii) economic factors such as consumer incomes and apple prices in combination with other demographic characteristics at least for some population segments, (iii) the dissatisfaction of some consumers with available mainstream apple varieties, and (iv) the below-average nutrient content of apples as compared to other fruits for health-conscious consumers are among the main causes. For the European apple growing industry, the decline in local per capita apple consumption may not be an economic problem if the industry decides to focus on emerging markets in the future. However, innovating fruit quality and better satisfying apple consumer preferences in high-income markets may prove to be more challenging.
Collapse
|
28
|
Content of major phenolic compounds in apples: Benefits of ultra-low oxygen conditions in long-term storage. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Dias C, L. Amaro A, C. Salvador Â, Silvestre AJD, Rocha SM, Isidoro N, Pintado M. Strategies to Preserve Postharvest Quality of Horticultural Crops and Superficial Scald Control: From Diphenylamine Antioxidant Usage to More Recent Approaches. Antioxidants (Basel) 2020; 9:E356. [PMID: 32344588 PMCID: PMC7222380 DOI: 10.3390/antiox9040356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
Horticultural crops are vulnerable to several disorders, which affect their physiological and organoleptic quality. For about forty years, the control of physiological disorders (such as superficial scald) in horticultural crops, particularly in fruit, was achieved through the application of the antioxidant diphenylamine (DPA), usually combined with controlled atmosphere (CA) conditions. However, identification of DPA residues and metabolites in treated fruits, associated with their toxicity, banned the use of this antioxidant in Europe. This triggered the urgent need for novel and, ideally, natural and sustainable alternatives, combined with adequate storage conditions to protect cultivars from harmful agents. This review systematizes the state-of-the-art DPA application on several fresh cultivars, such as apples, pears, and vegetables (potatoes, spinach, etc.), as well as the possible mechanisms of the action and effects of DPA, emphasizing its antioxidant properties. Alternative methods to DPA are also discussed, as well as respective effects and limitations. Recent research on scald development molecular pathways are highlighted to open new non-chemical strategies opportunities. This appraisal shows that most of the current solutions have not lead to satisfactory commercial results; thus, further research aimed to understand the mechanisms underlying postharvest disorders and to design sustainable and safe solutions to improve horticultural products storage is needed.
Collapse
Affiliation(s)
- Cindy Dias
- CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.)
| | - Ana L. Amaro
- CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.)
| | - Ângelo C. Salvador
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | | | - Sílvia M. Rocha
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Nélson Isidoro
- Cooperativa Agrícola dos Fruticultores do Cadaval, CRL (COOPVAL), Estrada Nacional 115, Km 26, 2550-108 Cadaval, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.)
| |
Collapse
|
30
|
Zhang W, Li X, Jiang W. Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. Int J Biol Macromol 2019; 154:1205-1214. [PMID: 31730971 DOI: 10.1016/j.ijbiomac.2019.10.275] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
In the present study, the antioxidant chitosan (CS)-banana peels extract (BPE) composite film was developed. The different content of BPE (4%, 8% and 12%) was added to the CS film not only as the antioxidant but also as the cross-linking. The CS, CS-4% BPE, CS-8% BPE and CS-12% BPE films were characterized by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD) and thermogravimetric analysis (TGA). The physical and mechanical properties possessed by the CS and CS-BPE films were compared as well, and the CS-4 %BPE composite film exhibited the most excellent properties. The decline in moisture contents, water solubility and water vapor permeability of CS-BPE composite film indicated the reduced hydrophilicity. Moreover, the CS-BPE composite film exhibited excellent antioxidant activity in different food simulants. Finally, the optimal concentration of CS-BPE coating treatment was identified and applied to apple fruit, and the results showed that CS-BPE coating was more capable of improving the postharvest quality of apple fruit than CS coating. This study evidences the promising nature of CS-BPE composite film and coating as a desirable alternative for active packaging and it is believed as conducive to valorization of banana peel by-products for allied applications.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
31
|
Donadel JZ, Thewes FR, Anese RDO, Schultz EE, Berghetti MRP, Ludwig V, Klein B, Cichoski AJ, Barin JS, Both V, Brackmann A, Wagner R. Key volatile compounds of ‘Fuji Kiku’ apples as affected by the storage conditions and shelf life: Correlation between volatile emission by intact fruit and juice extracted from the fruit. Food Res Int 2019; 125:108625. [DOI: 10.1016/j.foodres.2019.108625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022]
|
32
|
Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Gou X, Tian Y, Yang X, Sun L, Guo Y. Freezing point temperature is in favor of not-from-concentrate apple juice storage. Food Sci Nutr 2019; 7:2242-2251. [PMID: 31367352 PMCID: PMC6657751 DOI: 10.1002/fsn3.1028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
The short storage period is still a problem hindering the promotion of not-from-concentrate (NFC) apple juice, despite the fact it possesses higher nutritional value and more attractive taste compared with its concentrated counterparts. In this study, we compared the effects of temperature range including room temperature (25°C), refrigerator temperature (4°C), freezing point temperature (-1.5°C), and frozen temperature (-18°C), respectively, on the quality of NFC apple juices during a long storage period (150 days). The results suggested that all the juices exhibited good safety during the storage, and the juice stored at -1.5°C possessed higher polyphenol contents, physicochemical properties, less color alteration, and less loss of aroma and taste than 25 and 4°C. Besides, although an exceedingly low temperature (-18°C) could greatly retard the juice deterioration, the loss of aroma and taste was significant. Overall, our results indicated that the NFC juice was most favored by storage at freezing point temperature (-1.5°C), with the highest similarity to the freshly squeezed apple juice.
Collapse
Affiliation(s)
- Xiaoju Gou
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - You Tian
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Xi Yang
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Lijun Sun
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Yurong Guo
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| |
Collapse
|
34
|
Eslami Jahromi K, Pan Q, Khodabakhsh A, Sikkens C, Assman P, Cristescu SM, Moselund PM, Janssens M, Verlinden BE, Harren FJM. A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2334. [PMID: 31117174 PMCID: PMC6566869 DOI: 10.3390/s19102334] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
Abstract
We present a fully integrated and transportable multi-species trace gas sensor based on a mid-infrared (MIR) supercontinuum light source. The high brightness (surpassing synchrotron) and ultra-broad spectral bandwidth (2-4 μm) of this light source allows simultaneous detection of multiple broadband absorbing gas species. High sensitivity in the sub-ppmv level has been achieved by utilizing an astigmatic multipass cell. A grating-based spectrometer at a scanning rate of 20 Hz is developed employing a balanced detection scheme. A multi-component global fitting algorithm is implemented into a central LabVIEW program to perform real-time data analysis. The obtained concentration values are validated by the standard gas chromatography mass spectrometry (GC-MS) method. Field application of the sensor for quality control of stored fruits at a small scale is demonstrated, involving the detection of ethylene, ethanol, ethyl acetate, acetaldehyde, methanol, acetone, and water simultaneously. The sensor also shows promising potentials for other applications, such as environmental monitoring and biomedical research.
Collapse
Affiliation(s)
- Khalil Eslami Jahromi
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Qing Pan
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Amir Khodabakhsh
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Cor Sikkens
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Paul Assman
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Simona M Cristescu
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | | | - Maxime Janssens
- Flanders Center of Postharvest Technology, Willem de Croylaan 42, 3001 Heverlee, Belgium.
| | - Bert E Verlinden
- Flanders Center of Postharvest Technology, Willem de Croylaan 42, 3001 Heverlee, Belgium.
| | - Frans J M Harren
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Cao Y, Xu K, Zhu X, Bai Y, Yang W, Li C. Role of Modified Atmosphere in Pest Control and Mechanism of Its Effect on Insects. Front Physiol 2019; 10:206. [PMID: 30914968 PMCID: PMC6422892 DOI: 10.3389/fphys.2019.00206] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Pests not only attack field crops during the growing season, but also damage grains and other food products stored in granaries. Modified or controlled atmospheres (MAs or CAs) with higher or lower concentrations of atmospheric gases, mainly oxygen (O2), carbon dioxide (CO2), ozone (O3), and nitric oxide (NO), provide a cost-effective method to kill target pests and protect stored products. In this review, the most recent discoveries in the field of MAs are discussed, with a focus on pest control as well as current MA technologies. Although MAs have been used for more than 30 years in pest control and play a role in storage pest management, the specific mechanisms by which insects are affected by and adapt to low O2 (hypoxia) and high carbon CO2 (hypercapnia) are not completely understood. Insect tolerance to hypoxia/anoxia and hypercapnia involves a decrease in aerobic metabolism, including decreased NADPH enzyme activity, and subsequently, decreases in glutathione production and catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase activities, as well as increases in carboxyl esterase and phosphatase activities. In addition, hypoxia induces energy and nutrient production, and in adapted insects, glycolysis and pyruvate carboxylase fluxes are downregulated, accompanied with O2 consumption and acetate production. Consequently, genes encoding various signal transduction pathway components, including epidermal growth factor, insulin, Notch, and Toll/Imd signaling, are downregulated. We review the changes in insect energy and nutrient sources, metabolic enzymes, and molecular pathways in response to modified O2, CO2, NO, and O3 concentrations, as well as the role of MAs in pest control. This knowledge will be useful for applying MAs in combination with temperature control for pest control in stored food products.
Collapse
Affiliation(s)
- Yu Cao
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Kangkang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Xiaoye Zhu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Yu Bai
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Wenjia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| |
Collapse
|
36
|
Pan Y, Li X, Jia X, Zhao Y, Li H, Zhang L. Storage temperature without fluctuation enhances shelf‐life and improves postharvest quality of peach. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanfang Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Xiaoyu Jia
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Yating Zhao
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Hui Li
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Lu Zhang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| |
Collapse
|