1
|
Muñoz-Shugulí C, Rodríguez-Mercado F, Guarda A, Galotto MJ, Jiménez A, Garrigós MC, Ramos M. Release and Disintegration Properties of Poly(lactic Acid) Films with Allyl Isothiocyanate-β-Cyclodextrin Inclusion Complexes for Active Food Packaging. Molecules 2024; 29:5859. [PMID: 39769948 PMCID: PMC11677350 DOI: 10.3390/molecules29245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to enhance the properties and compostability of active poly(lactic acid) (PLA) films by incorporating β-cyclodextrin (β-CD) inclusion complexes with allyl isothiocyanate (AITC). Films were prepared using melt extrusion and characterized based on their structural, chemical, morphological, thermal, and barrier properties. These inclusion complexes improved the thermal stability and moisture absorption of films, enhancing disintegration under composting conditions. The release of AITC in the vapor phase was responsive to relative humidity, maintaining the antimicrobial functionality at low values and releasing effectively at higher humidity levels, with a maximum release at 100%. Incorporating 5% and 10% β-CD:AITC complexes accelerated disintegration under composting conditions, reducing the time by 5 days for disintegration compared to pure PLA, achieving up to 90% in 23 days. These results, with a general improvement in functional properties, suggest that PLA films with β-CD:AITC are promising for developing sustainable, biodegradable antimicrobial packaging solutions for food applications.
Collapse
Affiliation(s)
- Cristina Muñoz-Shugulí
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba EC060155, Ecuador;
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Santiago 9170124, Chile; (F.R.-M.); (A.G.); (M.J.G.)
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Santiago 9170124, Chile; (F.R.-M.); (A.G.); (M.J.G.)
| | - Abel Guarda
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Santiago 9170124, Chile; (F.R.-M.); (A.G.); (M.J.G.)
| | - María José Galotto
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Santiago 9170124, Chile; (F.R.-M.); (A.G.); (M.J.G.)
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03690 Alicante, Spain; (A.J.); (M.C.G.)
| | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03690 Alicante, Spain; (A.J.); (M.C.G.)
| | - Marina Ramos
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03690 Alicante, Spain; (A.J.); (M.C.G.)
| |
Collapse
|
2
|
Uyarcan M, Güngör SC. Improving functional properties of starch-based films by ultraviolet (UV-C) technology: Characterization and application on minced meat packaging. Int J Biol Macromol 2024; 282:137085. [PMID: 39481730 DOI: 10.1016/j.ijbiomac.2024.137085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
This study aimed to utilize UV-C technology to improve the functional properties of starch-based films for minced meat packaging. Starch film solutions were exposed to UV-C light for varying durations (15, 30, 60, and 120 min). Results revealed significant reductions in the water solubility, swelling degree, and elongation at break values of films following treatment (P < 0.05). Opacity values consistently increased with prolonged UV exposure time, particularly in films treated for 30, 60, and 120 min (P < 0.05). Also, the water contact angle of films significantly increased (P < 0.05) while their water vapor permeability decreased. SEM observations showed that UV-C treatment resulted in excellent miscibility, compatibility, and strong intermolecular bonding in starch films. FTIR, X-ray diffraction, and thermogravimetric analysis further confirmed the excellent compatibility of UV-C-treated films within the film matrix. Notably, starch films treated with UV-C for 60 min exhibited the best characteristics for minced meat packaging. Minced meat packaged with these treated films showed lower thiobarbituric acid values (0.033 mg MDA/kg sample) and total viable counts (5.93 log CFU/g) than those packaged with untreated films throughout storage. These findings highlight the significant potential of UV-C-treated starch-based films, particularly those treated for 60 min, as functional packaging solutions for minced meat preservation.
Collapse
Affiliation(s)
- Müge Uyarcan
- Manisa Celal Bayar University, Faculty of Engineering and Natural Sciences, Food Engineering Department, Manisa, Turkey.
| | - Sude Cansın Güngör
- Manisa Celal Bayar University, Faculty of Engineering and Natural Sciences, Food Engineering Department, Manisa, Turkey
| |
Collapse
|
3
|
Wongphan P, Promhuad K, Srisa A, Laorenza Y, Oushapjalaunchai C, Harnkarnsujarit N. Unveiling the Future of Meat Packaging: Functional Biodegradable Packaging Preserving Meat Quality and Safety. Polymers (Basel) 2024; 16:1232. [PMID: 38732702 PMCID: PMC11085279 DOI: 10.3390/polym16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Meat quality and shelf life are important parameters affecting consumer perception and safety. Several factors contribute to the deterioration and spoilage of meat products, including microbial growth, chemical reactions in the food's constituents, protein denaturation, lipid oxidation, and discoloration. This study reviewed the development of functional packaging biomaterials that interact with food and the environment to improve food's sensory properties and consumer safety. Bioactive packaging incorporates additive compounds such as essential oils, natural extracts, and chemical substances to produce composite polymers and polymer blends. The findings showed that the incorporation of additive compounds enhanced the packaging's functionality and improved the compatibility of the polymer-polymer matrices and that between the polymers and active compounds. Food preservatives are alternative substances for food packaging that prevent food spoilage and preserve quality. The safety of food contact materials, especially the flavor/odor contamination from the packaging to the food and the mass transfer from the food to the packaging, was also assessed. Flavor is a key factor in consumer purchasing decisions and also determines the quality and safety of meat products. Novel functional packaging can be used to preserve the quality and safety of packaged meat products.
Collapse
Affiliation(s)
- Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Chayut Oushapjalaunchai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M. Properties of active packaging of PLA-PCL film integrated with chitosan as an antibacterial agent and syzygium cumini seed extract as an antioxidant agent. Heliyon 2024; 10:e23952. [PMID: 38192781 PMCID: PMC10772727 DOI: 10.1016/j.heliyon.2023.e23952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
Active packaging is becoming increasingly significant in the food industry. The present study aims to explore the use of Syzygium Cumini Seed Extract (SCSE) as an antioxidant and chitosan as an antibacterial agent to produce active packaging based on polylactic acid (PLA), poly ε-caprolactone (PCL), and polyethylene glycol (PEG) blend. Using advanced characterization techniques, active packaging (PLA/PCL/PEG) incorporating with 0.5 g chitosan-0.5 mL SCSE was evaluated for its mechanical, physical, structural, and antibacterial-antioxidant properties. The addition of chitosan-SCSE caused an 18.57 % increase in tensile strength and decreased the Water Vapor Transmission Rate (WVTR) by up to 52 %, whereas smooth surface microscopy indicated good compatibility between polymers and active agents. Active packaging incorporating chitosan-SCSE reduced 96.66 % of Gram-positive bacteria Staphylococcus aureus and 73.98 % of Gram-negative bacteria, Escherichia coli. During 15 days of storage, the active packaging was able to slow the increase in Total Volatile Basic Nitrogen (TVBN) in beef and prevent the decrease in vitamin C contents in pineapple.
Collapse
Affiliation(s)
- Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Sumatera Utara, Indonesia
| | - Hamidah Harahap
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Sumatera Utara, Indonesia
| | - Elisa Julianti
- Department of Food and Science Technology, Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Sumatera Utara, Indonesia
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Sumatera Utara, Indonesia
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| |
Collapse
|
5
|
Muthamma K, Acharya S, Sunil D, Shetty P, Abdul Salam AA, Kulkarni SD, Anand PJ. Fluorene-naphthalene Schiff base as a smart pigment in invisible ink with multiple security features for advanced anticounterfeiting and forensic applications. J Colloid Interface Sci 2024; 653:209-219. [PMID: 37713919 DOI: 10.1016/j.jcis.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Smart functional materials with captivating optical properties are of immense importance due to their versatile applicability in anticounterfeiting and forensic science. A fluorene-naphthalene Schiff base (FNH) that displays aggregation induced emission, mechanofluorochromism and excitation wavelength dependent fluorescence inherent to the pristine and ground samples is synthesized. Water/solvent-based invisible security inks for flexo/screen printing were formulated using FNH as a smart pigment to check the originality of documents/branded products etc. The prints with good photostability, adherence to substrate and rub resistance are invisible in daylight showcasing multiple non-destructive and destructive techniques to authenticate the document. The inked area on UV dull paper substrate exhibits a weak emission, which is observed by the forger under UVA light. However, the user can validate the authenticity of the document by rubbing the print with hard objects, especially using a metal coin or glass rod to perceive a human eye detectable intensification in the orange fluorescence under the same illumination source. The intensity of the orange fluorescence reverts to the original, which enables the reuse of the security document after originality check. Yet another nondestructive authentication method is to observe a cyan fluorescence from the print and orangish yellow fluorescence from the rubbed printed region when shined with a 270-400 nm light source, whereas a cyanish green fluorescence both from the unrubbed and rubbed regions of the print when illuminated with a visible light source ranging from 420 to 480 nm. An additional verification through a destructive technique is to perceive red and yellow fluorescence of the ink film upon contact with THF and NaOH/KOH, respectively and a penetrating red fluorescence from the rear side of the THF-exposed printed area of the paper. The multi-level security features that cannot be easily replicated by the forger but allows a simple and easy validation process by the user are unique to FNH, used as a single pigment in the inks. Further, the applicability of the ground FNH in forensic science is established to distinctly observe Level I to II details of latent fingerprints.
Collapse
Affiliation(s)
- Kashmitha Muthamma
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Acharya
- Department of Atomic & Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Prakasha Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic & Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Suresh D Kulkarni
- Department of Atomic & Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - P J Anand
- Manipal Technologies Limited, Manipal, Karnataka 576104, India
| |
Collapse
|
6
|
Nobile M, Chiesa LM, Arioli F, Panseri S. Bio-based packaging combined to protective atmosphere to manage shelf life of salami to enhance food safety and product quality. Meat Sci 2024; 207:109366. [PMID: 37857029 DOI: 10.1016/j.meatsci.2023.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Plastics are currently the most widely used and most suitable packaging material to meet quality and food safety, particularly for meat products, because of their perishable nature. Biopolymers are very interesting from the point of view of sustainability. This study focused on the application of biodegradable packaging (polylactic acid, PLA) for sliced salami in a protective atmosphere, as a potential replacement for the one currently used (polyethylene terephthalate, PET), monitoring the shelf life of the meat product through microbiological, chemical (colorimetric, pH and volatile compound determination) and sensory analysis. The results showed that the PLA-packaged salami maintained the red color throughout the entire shelf life; pH monitoring was essentially constant over time (from 5.63 to 5.70). Only one difference was detected at the end of shelf life regarding the main markers of product alteration (hexanal, 3-hydroxy-2-butanone, ethanol and 3-methyl-1-butanol), that were not sensory perceived remaining appreciated by the consumer panel.
Collapse
Affiliation(s)
- Maria Nobile
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| | - Luca Maria Chiesa
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy.
| | - Francesco Arioli
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| |
Collapse
|
7
|
Chaudhari AK, Das S, Dwivedi A, Dubey NK. Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. Int J Biol Macromol 2023; 253:127688. [PMID: 37890742 DOI: 10.1016/j.ijbiomac.2023.127688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh 233001, India.
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Awanindra Dwivedi
- National Centre for Disease Control, Ministry of Health and Family Welfare, New Delhi 110054, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Tosif MM, Bains A, Goksen G, Ali N, Rusu AV, Trif M, Chawla P. Application of Taro ( Colocasia esculenta) Mucilage as a Promising Antimicrobial Agent to Extend the Shelf Life of Fresh-Cut Brinjals (Eggplants). Gels 2023; 9:904. [PMID: 37998994 PMCID: PMC10670827 DOI: 10.3390/gels9110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Taro rhizomes are a rich source of polysaccharides, including starch and mucilage. However, mucilage has excellent anti-microbial efficacy, and unique gel-forming and techno-functional properties. Therefore, this study aimed to extract and utilize taro mucilage (TM), which is viscous and has a gel-like texture, for the shelf-life enhancement of fresh-cut brinjals (eggplants). Mucilage was extracted using hot-water extraction and the yield was calculated to be 6.25 ± 0.87% on a dry basis. Different formulations of coating gel solutions were prepared: 1, 2, 3, 4, 5, 6, and 7%. The selection of the coating gel solution was carried out based on particle size. The smallest particle size was observed in treatment T5 (154 ± 0.81 nm) and zeta potential -27.22 ± 0.75 mV. Furthermore, cut brinjals were coated with the prepared mucilage gel solution and this showed a significant effect on the overall physicochemical properties of cut brinjals. Maximum weight loss occurred on the 10th day (12.67 ± 0.24%), as compared with coated brinjals (8.99 ± 0.42%). Minor changes were observed in pH, for the control sample significantly decreased from 4.58 ± 0.45 to 2.99 ± 0.75 on the 0th day to the 10th day, respectively. Titrable acidity of coated and uncoated cut brinjals was found to be at 0.31 ± 0.44% on the 0th day, which increased up to 0.66 ± 0.20% for the control and 0.55 ± 0.68% for coated brinjals on the 10th day. The taro mucilage coating gel (TMCG) solution showed pseudo-plastic behavior or shear-thinning fluid behavior. FTIR data confirmed the existence of several functional groups including various sugars, proteins, and hydroxylic groups. Antioxidant activity of coated and uncoated cut brinjals was found to be 22.33 ± 0.37% and 22.15 ± 0.49%, respectively. The TMCG solution showed effective results towards the various food pathogenic microorganisms. Overall, it is a natural, renewable resource that is biodegradable. This makes it an environmentally friendly alternative to synthetic additives or thickeners. It is cost effective, easily available, eco-friendly, and non-toxic. This can be an attractive feature for consumers looking for sustainable and eco-friendly options.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| |
Collapse
|
9
|
Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M. Smart Packaging Based on Polylactic Acid: The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on Physical-Mechanical Properties, Colony Reduction, Perishable Food Shelf Life, and Future Prospective. Polymers (Basel) 2023; 15:4103. [PMID: 37896347 PMCID: PMC10611019 DOI: 10.3390/polym15204103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in consumer lifestyles have raised awareness of a variety of food options and packaging technologies. Active and smart packaging is an innovative technology that serves to enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging, as a subset of this technology, entails the integration of additives into packaging materials, thereby facilitating the preservation or extension of product quality and shelf life. This technological approach stimulates a heightened demand for safer food products with a prolonged shelf life. Active packaging predominantly relies on the utilization of natural active substances. Therefore, the combination of active substances has a significant impact on the characteristics of active packaging, particularly on polymeric blends like polylactic acid (PLA) as a matrix. Therefore, this review will summarize how the addition of natural active agents influences the performance of smart packaging through systematic analysis, providing new insights into the types of active agents on physical-mechanical properties, colony reduction, and its application in foods. Through their integration, the market for active and smart packaging systems is expected to have a bright future.
Collapse
Affiliation(s)
- Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Hamidah Harahap
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Elisa Julianti
- Department of Food and Science Technology, Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| |
Collapse
|
10
|
Muñoz-Gimena PF, Oliver-Cuenca V, Peponi L, López D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers (Basel) 2023; 15:2972. [PMID: 37447617 DOI: 10.3390/polym15132972] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The research of starch as a matrix material for manufacturing biodegradable films has been gaining popularity in recent years, indicating its potential and possible limitations. To compete with conventional petroleum-based plastics, an enhancement of their low resistance to water and limited mechanical properties is essential. This review aims to discuss the various types of nanofillers and additives that have been used in plasticized starch films including nanoclays (montmorillonite, halloysite, kaolinite, etc.), poly-saccharide nanofillers (cellulose, starch, chitin, and chitosan nanomaterials), metal oxides (titanium dioxide, zinc oxide, zirconium oxide, etc.), and essential oils (carvacrol, eugenol, cinnamic acid). These reinforcements are frequently used to enhance several physical characteristics including mechanical properties, thermal stability, moisture resistance, oxygen barrier capabilities, and biodegradation rate, providing antimicrobial and antioxidant properties. This paper will provide an overview of the development of starch-based nanocomposite films and coatings applied in food packaging systems through the application of reinforcements and additives.
Collapse
Affiliation(s)
| | - Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
11
|
Moldovan A, Cuc S, Prodan D, Rusu M, Popa D, Taut AC, Petean I, Bomboş D, Doukeh R, Nemes O. Development and Characterization of Polylactic Acid (PLA)-Based Nanocomposites Used for Food Packaging. Polymers (Basel) 2023; 15:2855. [PMID: 37447500 DOI: 10.3390/polym15132855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The present study is focused on polylactic acid (PLA) blending with bio nanoadditives, such as Tonsil® (clay) and Aerosil®, to obtain nanocomposites for a new generation of food packaging. The basic composition was enhanced using Sorbitan oleate (E494) and Proviplast as plasticizers, increasing the composite samples' stability and their mechanical strength. Four mixtures were prepared: S1 with Tonsil®; S2 with Aerosil®; S3 with Aerosil® + Proviplast; and S4 with Sabosorb. They were complexly characterized by FT-IR spectroscopy, differential scanning calorimetry, mechanical tests on different temperatures, and absorption of the saline solution. FTIR shows a proper embedding of the filler component into the polymer matrix and DSC presents a good stability at the living body temperature for all prepared samples. Micro and nanostructural aspects were evidenced by SEM and AFM microscopy, revealing that S3 has the most compact and uniform filler distribution and S4 has the most irregular one. Thus, S3 evidenced the best diametral tensile strength and S4 evidenced the weakest values. All samples present the best bending strength at 18 °C and fair values at 4 °C, with the best values being obtained for the S1 sample and the worst for S4. The lack of mechanical strength of the S4 sample is compensated by its best resistance at liquid penetration, while S1 is more affected by the liquid infiltrations. Finally, results show that PLA composites are suitable for biodegradable and disposable food packages, and the desired properties could be achieved by proper adjustment of the filler proportions.
Collapse
Affiliation(s)
- Andrei Moldovan
- Department Environmental Engineering and Sustainable Development Entrepreneurship, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Stanca Cuc
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 400294 Cluj-Napoca, Romania
| | - Doina Prodan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 400294 Cluj-Napoca, Romania
| | - Mircea Rusu
- Lamar Auto Services S.R.L. Corpadea, 407038 Cluj-Napoca, Romania
| | - Dorin Popa
- Faculty of Exact Sciences and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Adrian Catalin Taut
- Applied Electronics Department, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Street, 400084 Cluj-Napoca, Romania
| | - Dorin Bomboş
- S.C. Medacril S.R.L., 8 Carpați Street, 551022 Mediaş, Romania
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploiesti, Romania
| | - Rami Doukeh
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploiesti, Romania
| | - Ovidiu Nemes
- Department Environmental Engineering and Sustainable Development Entrepreneurship, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Martínez-Aguilar V, Peña-Juárez MG, Carrillo-Sanchez PC, López-Zamora L, Delgado-Alvarado E, Gutierrez-Castañeda EJ, Flores-Martínez NL, Herrera-May AL, Gonzalez-Calderon JA. Evaluation of the Antioxidant and Antimicrobial Potential of SiO 2 Modified with Cinnamon Essential Oil ( Cinnamomum Verum) for Its Use as a Nanofiller in Active Packaging PLA Films. Antioxidants (Basel) 2023; 12:antiox12051090. [PMID: 37237956 DOI: 10.3390/antiox12051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
One of the main causes of food spoilage is the lipid oxidation of its components, which generates the loss of nutrients and color, together with the invasion of pathogenic microorganisms. In order to minimize these effects, active packaging has played an important role in preservation in recent years. Therefore, in the present study, an active packaging film was developed using polylactic acid (PLA) and silicon dioxide (SiO2) nanoparticles (NPs) (0.1% w/w) chemically modified with cinnamon essential oil (CEO). For the modification of the NPs, two methods (M1 and M2) were tested, and their effects on the chemical, mechanical, and physical properties of the polymer matrix were evaluated. The results showed that CEO conferred to SiO2 NPs had a high percentage of 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical inhibition (>70%), cell viability (>80%), and strong inhibition to E. coli, at 45 and 11 µg/mL for M1 and M2, respectively, and thermal stability. Films were prepared with these NPs, and characterizations and evaluations on apple storage were performed for 21 days. The results show that the films with pristine SiO2 improved tensile strength (28.06 MPa), as well as Young's modulus (0.368 MPa) since PLA films only presented values of 27.06 MPa and 0.324 MPa, respectively; however, films with modified NPs decreased tensile strength values (26.22 and 25.13 MPa), but increased elongation at break (from 5.05% to 10.32-8.32%). The water solubility decreased from 15% to 6-8% for the films with NPs, as well as the contact angle, from 90.21° to 73° for the M2 film. The water vapor permeability increased for the M2 film, presenting a value of 9.50 × 10-8 g Pa-1 h-1 m-2. FTIR analysis indicated that the addition of NPs with and without CEO did not modify the molecular structure of pure PLA; however, DSC analysis indicated that the crystallinity of the films was improved. The packaging prepared with M1 (without Tween 80) showed good results at the end of storage: lower values in color difference (5.59), organic acid degradation (0.042), weight loss (24.24%), and pH (4.02), making CEO-SiO2 a good component to produce active packaging.
Collapse
Affiliation(s)
- Verónica Martínez-Aguilar
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550 Col. Lomas 2da. Sección, San Luis Potosí 78210, Mexico
| | - Mariana G Peña-Juárez
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550 Col. Lomas 2da. Sección, San Luis Potosí 78210, Mexico
| | - Perla C Carrillo-Sanchez
- Maestría en Ingeniería y Tecnología de Materiales, Universidad de La Salle Bajío, Av. Universidad 602, Lomas del Campestre, León 37150, Mexico
| | - Leticia López-Zamora
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de Méxicoen Orizaba, Oriente 9 No. 852 Emiliano Zapata, Orizaba 94320, Mexico
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
- Facultad de Ciencias Quimicas, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
| | - Emmanuel J Gutierrez-Castañeda
- Cátedras CONACYT-Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550 Lomas 2da Sección, San Luis Potosí 78210, Mexico
| | - Norma L Flores-Martínez
- Ingeniería Agroindustrial, Universidad Politécnica de Guanajuato, Avenida Universidad Sur #1001 Comunidad Juan Alonso, Cortazar 38496, Mexico
| | - Agustín L Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río 94294, Mexico
| | - Jose Amir Gonzalez-Calderon
- Cátedras CONACYT-Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #64, Zona Universitaria, San Luis Potosí 78290, Mexico
| |
Collapse
|
13
|
Patiño Vidal C, Luzi F, Puglia D, López-Carballo G, Rojas A, Galotto MJ, López de Dicastillo C. Development of a sustainable and antibacterial food packaging material based in a biopolymeric multilayer system composed by polylactic acid, chitosan, cellulose nanocrystals and ethyl lauroyl arginate. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
14
|
Huang S, Zou S, Wang Y. Construction of compostable packaging with antibacterial property and improved performance using sprayed coatings of modified cellulose nanocrystals. Carbohydr Polym 2023; 305:120539. [PMID: 36737191 DOI: 10.1016/j.carbpol.2023.120539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Increasing concerns about food safety and the environment have facilitated the development of eco-friendly antibacterial packaging. This study aimed to demonstrate a facile way to fabricate active packaging materials with modified cellulose nanocrystals (CNCs) and compare the effects of different modified CNCs on the performance of compostable materials. Polylactic acid (PLA) film was selected as a model, and CNCs were modified with methacrylamide, cetyltrimethylammonium bromide, and zinc oxide, respectively, and then applied on the surface of PLA films by spray-coating. All modified CNCs showed excellent antibacterial activity against S. aureus and E. coli (>99.999 %). The effects of different CNC modifications on the performance of PLA films were investigated. Compared to neat PLA films, PLA/CNC films exhibited improved mechanical strength with maintained flexibility, lower gas permeability, and faster compost disintegration rate, and extended the shelf life of wrapped pork samples from 3 days to >10 days. Therefore, this work will also facilitate the applications of PLA materials in eco-friendly packaging.
Collapse
Affiliation(s)
- Shuting Huang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Sheng Zou
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
15
|
Villegas C, Martínez S, Torres A, Rojas A, Araya R, Guarda A, Galotto MJ. Processing, Characterization and Disintegration Properties of Biopolymers Based on Mater-Bi ® and Ellagic Acid/Chitosan Coating. Polymers (Basel) 2023; 15:polym15061548. [PMID: 36987328 PMCID: PMC10053201 DOI: 10.3390/polym15061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Among the most promising synthetic biopolymers to replace conventional plastics in numerous applications is MaterBi® (MB), a commercial biodegradable polymer based on modified starch and synthetic polymers. Actually, MB has important commercial applications as it shows interesting mechanical properties, thermal stability, processability and biodegradability. On the other hand, research has also focused on the incorporation of natural, efficient and low-cost active compounds into various materials with the aim of incorporating antimicrobial and/or antioxidant capacities into matrix polymers to extend the shelf life of foods. Among these is ellagic acid (EA), a polyphenolic compound abundant in some fruits, nuts and seeds, but also in agroforestry and industrial residues, which seems to be a promising biomolecule with interesting biological activities, including antioxidant activity, antibacterial activity and UV-barrier properties. The objective of this research is to develop a film based on commercial biopolymer Mater-Bi® (MB) EF51L, incorporating active coating from chitosan with a natural active compound (EA) at two concentrations (2.5 and 5 wt.%). The formulations obtained complete characterization and were carried out in order to evaluate whether the incorporation of the coating significantly affects thermal, mechanical, structural, water-vapor barrier and disintegration properties. From the results, FTIR analysis yielded identification, through characteristic peaks, that the type of MB used is constituted by three polymers, namely PLA, TPS and PBAT. With respect to the mechanical properties, the values of tensile modulus and tensile strength of the MB-CHI film were between 15 and 23% lower than the values obtained for the MB film. The addition of 2.5 wt.% EA to the CHI layer did not generate changes in the mechanical properties of the system, whereas a 5 wt.% increase in ellagic acid improved the mechanical properties of the CHI film through the addition of natural phenolic compounds at high concentrations. Finally, the disintegration process was mainly affected by the PBAT biopolymer, causing the material to not disintegrate within the times indicated by ISO 20200.
Collapse
Affiliation(s)
- Carolina Villegas
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Sara Martínez
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Alejandra Torres
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Adrián Rojas
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Rocío Araya
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Abel Guarda
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - María José Galotto
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
16
|
Casalini S, Giacinti Baschetti M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1021-1041. [PMID: 35396735 PMCID: PMC10084250 DOI: 10.1002/jsfa.11918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, interest in sustainable food packaging systems with additional functionality, able to increase the shelf life of products, has grown steadily. Following this trend, the present review analyzes the state of the art of this active renewable packaging. The focus is on antimicrobial systems containing nanocellulose and chitosan, as support for the incorporation of essential oils. These are the most sustainable and readily available options to produce completely natural active packaging materials. After a brief overview of the different active packaging technologies, the main features of nanocellulose, chitosan, and of the different essential oils used in the field of active packaging are introduced and described. The latest findings about the nanocellulose- and chitosan-based active packaging are then presented. The antimicrobial effectiveness of the different solutions is discussed, focusing on their effect on other material properties. The effect of the different inclusion strategies is also reviewed considering both in vivo and in vitro studies, in an attempt to understand more promising solutions and possible pathways for further development. In general, essential oils are very successful in exerting antimicrobial effects against the most diffused gram-positive and gram-negative bacteria, and affecting other material properties (tensile strength, water vapor transmission rate) positively. Due to the wide variety of biopolymer matrices and essential oils available, it is difficult to create general guidelines for the development of active packaging systems. However, more attention should be dedicated to sensory analysis, release kinetics, and synergetic action of different essential oils to optimize the active packaging on different food products. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Casalini
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| |
Collapse
|
17
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
18
|
John A, Črešnar KP, Bikiaris DN, Zemljič LF. Colloidal Solutions as Advanced Coatings for Active Packaging Development: Focus on PLA Systems. Polymers (Basel) 2023; 15:273. [PMID: 36679154 PMCID: PMC9865051 DOI: 10.3390/polym15020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Due to rising consumer demand the food packaging industry is turning increasingly to packaging materials that offer active functions. This is achieved by incorporating active compounds into the basic packaging materials. However, it is currently believed that adding active compounds as a coating over the base packaging material is more beneficial than adding them in bulk or in pouches, as this helps to maintain the physicochemical properties of the base material along with higher efficiency at the interface with the food. Colloidal systems have the potential to be used as active coatings, while the application of coatings in the form of colloidal dispersions allows for prolonged and controlled release of the active ingredient and uniform distribution, due to their colloidal/nano size and large surface area ratio. The objective of this review is to analyse some of the different colloidal solutions previously used in the literature as coatings for active food packaging and their advantages. The focus is on natural bio-based substances and packaging materials such as PLA, due to consumer awareness and environmental and regulatory issues. The antiviral concept through the surface is also discussed briefly, as it is an important strategy in the context of the current pandemic crisis and cross-infection prevention.
Collapse
Affiliation(s)
- Athira John
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Klementina Pušnik Črešnar
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
19
|
Khanjari A, Esmaeili H, Hamedi M. Shelf life extension of minced squab using poly-lactic acid films containing Cinnamomum verum essential oil. Int J Food Microbiol 2023; 385:109982. [DOI: 10.1016/j.ijfoodmicro.2022.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
20
|
Derbew Gedif H, Tkaczewska J, Jamróz E, Zając M, Kasprzak M, Pająk P, Grzebieniarz W, Nowak N. Developing Technology for the Production of Innovative Coatings with Antioxidant Properties for Packaging Fish Products. Foods 2022; 12:foods12010026. [PMID: 36613241 PMCID: PMC9818252 DOI: 10.3390/foods12010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the effects of furcellaran−gelatine (FUR/GEL) coatings incorporated with herb extracts on the quality retention of carp fish during refrigeration. Nutmeg, rosemary, thyme, milfoil, marjoram, parsley, turmeric, basil and ginger were subjected to water and ethanol extraction methods (10% concentration of herbs). The water extractions of the rosemary and thyme (5%) were used for the further development of coatings due to their high 2,2-Diphenyl-1-picrylhydrazyl (DPPH: 85.49 and 83.28%) and Ferric Reducing Antioxidant Power Assay values (FRAP: 0.46 and 0.56 mM/L) (p < 0.05), respectively. A new, ready-to-cook product with the coatings (carp fillets) was evaluated regarding quality in terms of colour parameters, texture profile, water activity, Thiobarbituric Acid Reactive Substances (TBARSs) and sensory analyses during 12 days of storage at 4 °C. The results show that the colour of the carp fillets treated with the rosemary and thyme extracts became slightly darker and had a propensity towards redness and yellowness. In contrast to the control group, the carp fillets stored in the coatings with the rosemary extract effectively slowed the lipid oxidation processes. Therefore, the innovative coatings produced from carp processing waste may have high potential as components in convenience food products and could extend the shelf-life of carp fillets during refrigerated storage. However, further research is needed to assess the microbiological stability of the obtained food products.
Collapse
Affiliation(s)
- Hana Derbew Gedif
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Department of Food Engineering, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar 26, Ethiopia
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Correspondence:
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Marzena Zając
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Paulina Pająk
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Kraków, ul. Balicka 122, 30-149 Kraków, Poland
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
21
|
Adrar S, Ajji A. Effect of different type of organomontmorillonites on oxygen permeability of
PLA
‐based nanocomposites blown films. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Salima Adrar
- CREPEC, Département de Génie Chimique Polytechnique Montréal Montreal Quebec Canada
| | - Abdellah Ajji
- CREPEC, Département de Génie Chimique Polytechnique Montréal Montreal Quebec Canada
| |
Collapse
|
22
|
Salanță LC, Cropotova J. An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. PLANTS 2022; 11:plants11192488. [PMID: 36235353 PMCID: PMC9570595 DOI: 10.3390/plants11192488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Consumer awareness and demands for quality eco-friendly food products have made scientists determined to concentrate their attention on sustainable advancements in the utilization of bioactive compounds for increasing safety and food quality. Essential oils (EOs) are extracted from plants and exhibit antimicrobial (antibacterial and antifungal) activity; thus, they are used in food products to prolong the shelf-life of foods by limiting the growth or survival of microorganisms. In vitro studies have shown that EOs are effective against foodborne bacteria, such as Escherichia coli, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. The growing interest in essential oils and their constituents as alternatives to synthetic preservatives has been extensively exploited in recent years, along with techniques to facilitate the implementation of their application in the food industry. This paper’s aim is to evaluate the current knowledge on the applicability of EOs in food preservation, and how this method generally affects technological properties and consumers’ perceptions. Moreover, essential aspects concerning the limitation of the available alternatives are highlighted, followed by a presentation of the most promising trends to streamline the EOs’ usability. Incorporating EOs in packaging materials is the next step for green and sustainable foodstuff production and a biodegradable method for food preservation.
Collapse
Affiliation(s)
- Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025 Ålesund, Norway
- Correspondence:
| |
Collapse
|
23
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
González-Ceballos L, Guirado-moreno JC, Guembe-García M, Rovira J, Melero B, Arnaiz A, Diez AM, García JM, Vallejos S. Metal-free organic polymer for the preparation of a reusable antimicrobial material with real-life application as an absorbent food pad. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Hoa VB, Song DH, Seol KH, Kang SM, Kim HW, Kim JH, Moon SS, Cho SH. Application of a Newly Developed Chitosan/Oleic Acid Edible Coating for Extending Shelf-Life of Fresh Pork. Foods 2022; 11:foods11131978. [PMID: 35804793 PMCID: PMC9265712 DOI: 10.3390/foods11131978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023] Open
Abstract
This study aimed at evaluating the applicability of a newly-developed chitosan/oleic acid edible coating for extending the shelf-life of fresh pork under aerobic-packaging conditions. Various coating formulations were used: 2% chitosan alone (CHI), 0.5% (v/v) oleic acid in 2% chitosan (CHI/0.5%OA) and 1% (v/v) oleic acid in 2% chitosan (CHI/1%OA) were prepared. For coating, fresh pork slices were fully immersed in the coating solutions for 30 s and dried naturally at 4 °C for 30 min. The coated samples were placed on trays, over-wrapped with plastic film, stored at 4 °C for 21 days, and were analyzed for shelf-life stability. Samples without coating were used as control. It was found that the aerobic bacteria and Pseudomonas spp. counts, and total volatile basic nitrogen (TVBN) content were almost two to three times lower in the CHI/OA-coated samples compared to the control after 21 days of storage (p < 0.05). The CHI/OA coating combination completely inhibited growth of E. coli, and protected the meat from discoloration after 21 days of storage. In particular, the addition of OA increased the concentration of volatiles associated with pleasant aromas. This study provides an application potential of chitosan/oleic acid edible coating in preservation of fresh pork to prolong the shelf-life and improve safety.
Collapse
Affiliation(s)
- Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Dong-Heon Song
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Kuk-Hwan Seol
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Sun-Moon Kang
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Hyun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Jin-Hyoung Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | | | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
- Correspondence: ; Tel.: +82-(0)63-238-7351
| |
Collapse
|
26
|
Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Vieira IRS, de Carvalho APAD, Conte-Junior CA. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3673-3716. [PMID: 35713102 DOI: 10.1111/1541-4337.12990] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
Inorganic nanoparticles (NPs) and natural antioxidant compounds are an emerging trend in the food industry. Incorporating these substances in biobased and biodegradable matrices as polysaccharides (e.g., starch, cellulose, and chitosan) and proteins has highlighted the potential in active food packaging applications due to more significant antimicrobial, antioxidant, UV blocking, oxygen scavenging, water vapor permeability effects, and low environmental impact. In recent years, the migration of metal NPs and metal oxides in food contact packaging and their toxicological potential have raised concerns about the safety of the nanomaterials. In this review, we provide a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging. The intrinsic properties of NPs and natural antioxidant actives in packaging materials are evaluated to extend shelf-life, safety, and food quality. Toxicological and safety aspects of inorganic NPs are highlighted to understand the current controversy on applying some nanomaterials in food packaging. The synergism of inorganic NPs and plant-derived natural antioxidant actives (e.g., vitamins, polyphenols, and carotenoids) and essential oils (EOs) potentiated the antibacterial and antioxidant properties of biodegradable nanocomposite films. Biodegradable packaging films based on green NPs-this is biosynthesized from plant extracts-showed suitable mechanical and barrier properties and had a lower environmental impact and offered efficient food protection. Furthermore, AgNPs and TiO2 NPs released metal ions from packaging into contents insufficiently to cause harm to human cells, which could be helpful to understanding critical gaps and provide progress in the packaging field.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Anna Paula Azevedo de de Carvalho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil.,Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
Nie J, Wu Z, Pang B, Guo Y, Li S, Pan Q. Fabrication of ZnO@Plant Polyphenols/Cellulose as Active Food Packaging and Its Enhanced Antibacterial Activity. Int J Mol Sci 2022; 23:ijms23095218. [PMID: 35563609 PMCID: PMC9104473 DOI: 10.3390/ijms23095218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the efficient use of bioresources and bioproducts, plant polyphenol (PPL) was extracted from larch bark and further applied to prepare ZnO@PPL/Cel with cellulose to examine its potential as an active package material. The structure and morphology were fully characterized by XRD, SEM, FTIR, XPS and Raman spectra. It was found that PPL is able to cover ZnO and form a coating layer. In addition, PPL cross-links with cellulose and makes ZnO distribute evenly on the cellulose fibers. Coating with PPL creates a pinecone-like morphology in ZnO, which is constructed by subunits of 50 nm ZnO slices. The interactions among ZnO, PPL and cellulose have been attributed to hydrogen bonding, which plays an important role in guiding the formation of composites. The antibacterial properties against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were tested by the inhibition zone method. Our composite ZnO@PPL/Cel has superior antibacterial activity compared to ZnO/Cel. The antibacterial mechanism has also been elaborated on. The low cost, simple preparation method and good performance of ZnO@PPL/Cel suggest the potential for it to be applied as active food packaging.
Collapse
Affiliation(s)
- Jingheng Nie
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
| | - Ziyang Wu
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
| | - Bo Pang
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
| | - Yuanru Guo
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
- Correspondence: (Y.G.); (Q.P.)
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
- Correspondence: (Y.G.); (Q.P.)
| |
Collapse
|
29
|
Chen S, Wang P, Wenzhao M, Lingling W, Saldaña MD, Xiaoli F, Jin Y, Sun W. Preparation and Characterization of
PLA‐Lemon
Essential Oil Nanofibrous Membranes for the Preservation of Mongolian Cheese. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sixu Chen
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot, 010018 China
| | - Pengyang Wang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot, 010018 China
| | - Meng Wenzhao
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot, 010018 China
| | - Wu Lingling
- Foreign Language College Inner Mongolia Agricultural University Hohhot, 010018 China
| | - Marleny D.A. Saldaña
- Department of Agricultural, Food and Nutritional Science (AFNS) University of Alberta T6G 2P5 Edmonton AB Canada
| | - Fan Xiaoli
- Inner Mongolia Autonomous Region Hohhot Ecological Environment Monitoring Station Hohhot, 010030 China
| | - Ye Jin
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot, 010018 China
| | - Wenxiu Sun
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot, 010018 China
- Department of Agricultural, Food and Nutritional Science (AFNS) University of Alberta T6G 2P5 Edmonton AB Canada
| |
Collapse
|
30
|
Grabska-Zielińska S, Gierszewska M, Olewnik-Kruszkowska E, Bouaziz M. Polylactide Films with the Addition of Olive Leaf Extract-Physico-Chemical Characterization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7623. [PMID: 34947221 PMCID: PMC8706180 DOI: 10.3390/ma14247623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
The aim of this work was to obtain and characterize polylactide films (PLA) with the addition of poly(ethylene glycol) (PEG) as a plasticizer and chloroformic olive leaf extract (OLE). The composition of OLE was characterized by LC-MS/MS techniques. The films with the potential for using in the food packaging industry were prepared using a solvent evaporation method. The total content of the phenolic compounds and DPPH radical scavenging assay of all the obtained materials have been tested. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (FTIR-ATR) allows for determining the molecular structure, while Scanning Electron Microscopy (SEM) indicated differences in the films' surface morphology. Among other crucial properties, mechanical properties, thickness, degree of crystallinity, water vapor permeation rate (WVPR), and color change have also been evaluated. The results showed that OLE contains numerous active substances, including phenolic compounds, and PLA/PEG/OLE films are characterized by improved antioxidant properties. The OLE addition into PLA/PEG increases the material crystallinity, while the WVPR values remain almost unaffected. From these studies, significant insight was gained into the possibility of the application of chloroform as a solvent for both olive leaf extraction and for the preparation of OLE, PLA, and PEG-containing film-forming solutions. Finally, evaporation of the solvent from OLE can be omitted.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Mohamed Bouaziz
- Electrochemistry and Environmental Laboratory, National Engineering School of Sfax, University of Sfax, BP1173, Sfax 3038, Tunisia;
| |
Collapse
|
31
|
Hoa VB, Song DH, Seol KH, Kang SM, Kim HW, Kim JH, Cho SH. Coating with chitosan containing lauric acid (C12:0) significantly extends the shelf-life of aerobically - Packaged beef steaks during refrigerated storage. Meat Sci 2021; 184:108696. [PMID: 34741876 DOI: 10.1016/j.meatsci.2021.108696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
The present research aimed at investigating the application potential of a newly developed chitosan/lauric acid edible coating in preservation of fresh beef under refrigerated storage and aerobic packaging conditions. The 2-cm thick steaks were coated with 2% chitosan (CHI), 1 mM lauric acid in 2% chitosan (CHI/1 mM LA) or 3 mM lauric acid in 2% chitosan (CHI/3 mM LA), and over-wrapped in permeable film. Non-coated samples were used as a control (CON). Results showed that the inhibitory effects against the spoilage bacteria growth, volatile basic nitrogen formation and lipid oxidation of the chitosan coating was increased with the incorporation of lauric acid (p˂0.05). More importantly, the incorporation of lauric acid almost completely protected the meat samples against the discoloration after 21 days of storage. The coating with chitosan or chitosan/lauric acid completely inhibited the formation of bacterial spoilage-derived volatile compounds. Overall, coating of chitosan containing 1-3 mM lauric acid could be a promising method in preservation of fresh beef to improve safety and quality under aerobic packaging condition.
Collapse
Affiliation(s)
- Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Dong-Heon Song
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Kuk-Hwan Seol
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Sun-Moon Kang
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jin-Hyoung Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
32
|
Munteanu BS, Vasile C. Encapsulation of Natural Bioactive Compounds by Electrospinning-Applications in Food Storage and Safety. Polymers (Basel) 2021; 13:3771. [PMID: 34771329 PMCID: PMC8588354 DOI: 10.3390/polym13213771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Packaging is used to protect foods from environmental influences and microbial contamination to maintain the quality and safety of commercial food products, to avoid their spoilage and to extend their shelf life. In this respect, bioactive packaging is developing to additionally provides antibacterial and antioxidant activity with the same goals i.e., extending the shelf life while ensuring safety of the food products. New solutions are designed using natural antimicrobial and antioxidant agents such as essential oils, some polysaccharides, natural inorganic nanoparticles (nanoclays, oxides, metals as silver) incorporated/encapsulated into appropriate carriers in order to be used in food packaging. Electrospinning/electrospraying are receiving attention as encapsulation methods due to their cost-effectiveness, versatility and scalability. The electrospun nanofibers and electro-sprayed nanoparticles can preserve the functionality and protect the encapsulated bioactive compounds (BC). In this review are summarized recent results regarding applications of nanostructured suitable materials containing essential oils for food safety.
Collapse
Affiliation(s)
| | - Cornelia Vasile
- Laboratory of Physical Chemistry of Polymers, “P. Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|