1
|
Chernyavskij DA, Lyamzaev KG, Pletjushkina OY, Chen F, Karpukhina A, Vassetzky YS, Chernyak BV, Popova EN. Mitochondrial fragmentation in early differentiation of human MB135 myoblasts: Role of mitochondrial ROS production in the absence of depolarization. Life Sci 2024; 354:122941. [PMID: 39098595 DOI: 10.1016/j.lfs.2024.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
AIMS Study of the role of mitochondria-generated reactive oxygen species (mtROS) and mitochondrial polarization in mitochondrial fragmentation at the initial stages of myogenesis. MAIN METHODS Mitochondrial morphology, Drp1 protein phosphorylation, mitochondrial electron transport chain components content, mtROS and mitochondrial lipid peroxidation levels, and mitochondrial polarization were evaluated on days 1 and 2 of human MB135 myoblasts differentiation. A mitochondria-targeted antioxidant SkQ1 was used to elucidate the effect of mtROS on mitochondria. KEY FINDINGS In immortalized human MB135 myoblasts, mitochondrial fragmentation began on day 1 of differentiation before the myoblast fusion. This fragmentation was preceded by dephosphorylation of p-Drp1 (Ser-637). On day 2, an increase in the content of some mitochondrial proteins was observed, indicating mitochondrial biogenesis stimulation. Furthermore, we found that myogenic differentiation, even on day 1, was accompanied both by an increased production of mtROS, and lipid peroxidation of the inner mitochondrial membrane. SkQ1 blocked these effects and partially reduced the level of mitochondrial fragmentation, but did not affect the dephosphorylation of p-Drp1 (Ser-637). Importantly, mitochondrial fragmentation at early stages of MB135 differentiation was not accompanied by depolarization, as an important stimulus for mitochondrial fragmentation. SIGNIFICANCE Mitochondrial fragmentation during early myogenic differentiation depends on mtROS production rather than mitochondrial depolarization. SkQ1 only partially inhibited mitochondrial fragmentation, without significant effects on mitophagy or early myogenic differentiation.
Collapse
Affiliation(s)
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia; The "Russian Clinical Research Center for Gerontology" of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Fei Chen
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Anna Karpukhina
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia; CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Yegor S Vassetzky
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia; CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| | - Ekaterina N Popova
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| |
Collapse
|
2
|
Kanaan MN, Pileggi CA, Karam CY, Kennedy LS, Fong-McMaster C, Cuperlovic-Culf M, Harper ME. Cystine/glutamate antiporter xCT controls skeletal muscle glutathione redox, bioenergetics and differentiation. Redox Biol 2024; 73:103213. [PMID: 38815331 PMCID: PMC11167394 DOI: 10.1016/j.redox.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Cysteine, the rate-controlling amino acid in cellular glutathione synthesis is imported as cystine, by the cystine/glutamate antiporter, xCT, and subsequently reduced to cysteine. As glutathione redox is important in muscle regeneration in aging, we hypothesized that xCT exerts upstream control over skeletal muscle glutathione redox, metabolism and regeneration. Bioinformatic analyses of publicly available datasets revealed that expression levels of xCT and GSH-related genes are inversely correlated with myogenic differentiation genes. Muscle satellite cells (MuSCs) isolated from Slc7a11sut/sut mice, which harbour a mutation in the Slc7a11 gene encoding xCT, required media supplementation with 2-mercaptoethanol to support cell proliferation but not myotube differentiation, despite persistently lower GSH. Slc7a11sut/sut primary myotubes were larger compared to WT myotubes, and also exhibited higher glucose uptake and cellular oxidative capacities. Immunostaining of myogenic markers (Pax7, MyoD, and myogenin) in cardiotoxin-damaged tibialis anterior muscle fibres revealed greater MuSC activation and commitment to differentiation in Slc7a11sut/sut muscle compared to WT mice, culminating in larger myofiber cross-sectional areas at 21 days post-injury. Slc7a11sut/sut mice subjected to a 5-week exercise training protocol demonstrated enhanced insulin tolerance compared to WT mice, but blunted muscle mitochondrial biogenesis and respiration in response to exercise training. Our results demonstrate that the absence of xCT inhibits cell proliferation but promotes myotube differentiation by regulating cellular metabolism and glutathione redox. Altogether, these results support the notion that myogenesis is a redox-regulated process and may help inform novel therapeutic approaches for muscle wasting and dysfunction in aging and disease.
Collapse
Affiliation(s)
- Michel N Kanaan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; Dr. Eric Poulin Centre for Neuromuscular Disease (CNMD), University of Ottawa, ON, K1H 8M5, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Charbel Y Karam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Luke S Kennedy
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
3
|
Drummond SE, Burns DP, El Maghrani S, Ziegler O, Healy V, O'Halloran KD. Chronic Intermittent Hypoxia-Induced Diaphragm Muscle Weakness Is NADPH Oxidase-2 Dependent. Cells 2023; 12:1834. [PMID: 37508499 PMCID: PMC10377874 DOI: 10.3390/cells12141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic intermittent hypoxia (CIH)-induced redox alterations underlie diaphragm muscle dysfunction. We sought to establish if NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS) underpin CIH-induced changes in diaphragm muscle, which manifest as impaired muscle performance. Adult male mice (C57BL/6J) were assigned to one of three groups: normoxic controls (sham); chronic intermittent hypoxia-exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) administered in the drinking water throughout exposure to CIH. In separate studies, we examined sham and CIH-exposed NOX2-null mice (B6.129S-CybbTM1Din/J). Apocynin co-treatment or NOX2 deletion proved efficacious in entirely preventing diaphragm muscle dysfunction following exposure to CIH. Exposure to CIH had no effect on NOX2 expression. However, NOX4 mRNA expression was increased following exposure to CIH in wild-type and NOX2 null mice. There was no evidence of overt CIH-induced oxidative stress. A NOX2-dependent increase in genes related to muscle regeneration, antioxidant capacity, and autophagy and atrophy was evident following exposure to CIH. We suggest that NOX-dependent CIH-induced diaphragm muscle weakness has the potential to affect ventilatory and non-ventilatory performance of the respiratory system. Therapeutic strategies employing NOX2 blockade may function as an adjunct therapy to improve diaphragm muscle performance and reduce disease burden in diseases characterised by exposure to CIH, such as obstructive sleep apnoea.
Collapse
Affiliation(s)
- Sarah E Drummond
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Sarah El Maghrani
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Oscar Ziegler
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Vincent Healy
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
4
|
Mitochondrial Oxidative Stress and Mitophagy Activation Contribute to TNF-Dependent Impairment of Myogenesis. Antioxidants (Basel) 2023; 12:antiox12030602. [PMID: 36978858 PMCID: PMC10044935 DOI: 10.3390/antiox12030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Many muscular pathologies are associated with oxidative stress and elevated levels of the tumor necrosis factor (TNF) that cause muscle protein catabolism and impair myogenesis. Myogenesis defects caused by TNF are mediated in part by reactive oxygen species (ROS), including those produced by mitochondria (mitoROS), but the mechanism of their pathological action is not fully understood. We hypothesized that mitoROS act by triggering and enhancing mitophagy, an important tool for remodelling the mitochondrial reticulum during myogenesis. We used three recently developed probes—MitoTracker Orange CM-H2TMRos, mito-QC, and MitoCLox—to study myogenesis in human myoblasts. Induction of myogenesis resulted in a significant increase in mitoROS generation and phospholipid peroxidation in the inner mitochondrial membrane, as well as mitophagy enhancement. Treatment of myoblasts with TNF 24 h before induction of myogenesis resulted in a significant decrease in the myoblast fusion index and myosin heavy chain (MYH2) synthesis. TNF increased the levels of mitoROS, phospholipid peroxidation in the inner mitochondrial membrane and mitophagy at an early stage of differentiation. Trolox and SkQ1 antioxidants partially restored TNF-impaired myogenesis. The general autophagy inducers rapamycin and AICAR, which also stimulate mitophagy, completely blocked myogenesis. The autophagy suppression by the ULK1 inhibitor SBI-0206965 partially restored myogenesis impaired by TNF. Thus, suppression of myogenesis by TNF is associated with a mitoROS-dependent increase in general autophagy and mitophagy.
Collapse
|
5
|
Rahman MT, Swierzy IJ, Downie B, Salinas G, Blume M, McConville MJ, Lüder CGK. The Redox Homeostasis of Skeletal Muscle Cells Regulates Stage Differentiation of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:798549. [PMID: 34881198 PMCID: PMC8646093 DOI: 10.3389/fcimb.2021.798549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an obligatory intracellular parasite that causes persistent infections in birds and mammals including ~30% of the world’s human population. Differentiation from proliferative and metabolically active tachyzoites to largely dormant bradyzoites initiates the chronic phase of infection and occurs predominantly in brain and muscle tissues. Here we used murine skeletal muscle cells (SkMCs) to decipher host cellular factors that favor T. gondii bradyzoite formation in terminally differentiated and syncytial myotubes, but not in proliferating myoblast precursors. Genome-wide transcriptome analyses of T. gondii-infected SkMCs and non-infected controls identified ~6,500 genes which were differentially expressed (DEGs) in myotubes compared to myoblasts, largely irrespective of infection. On the other hand, genes related to central carbohydrate metabolism, to redox homeostasis, and to the Nrf2-dependent stress response pathway were enriched in both infected myoblast precursors and myotubes. Stable isotope-resolved metabolite profiling indicated increased fluxes into the oxidative branch of the pentose phosphate pathway (OxPPP) in infected myoblasts and into the TCA cycle in infected myotubes. High OxPPP activity in infected myoblasts was associated with increased NADPH/NADP+ ratio while myotubes exhibited higher ROS levels and lower expression of anti-oxidants and detoxification enzymes. Pharmacological reduction of ROS levels in SkMCs inhibited bradyzoite differentiation, while increased ROS induced bradyzoite formation. Thus, we identified a novel host cell-dependent mechanism that triggers stage conversion of T. gondii into persistent tissue cysts in its natural host cell type.
Collapse
Affiliation(s)
- Md Taibur Rahman
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany.,Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Izabela J Swierzy
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Bryan Downie
- Transcriptome and Genome Analysis Laboratory, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Gabriela Salinas
- Transcriptome and Genome Analysis Laboratory, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Martin Blume
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia.,Junior Research Group 'Metabolism of Microbial Pathogens', Robert-Koch-Institute, Berlin, Germany
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
| | - Carsten G K Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| |
Collapse
|
6
|
Ludikhuize MC, Rodríguez Colman MJ. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxid Redox Signal 2021; 34:1004-1024. [PMID: 32847377 DOI: 10.1089/ars.2020.8126] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Stem cell activation and differentiation occur along changes in cellular metabolism. Metabolic transitions translate into changes in redox balance, cell signaling, and epigenetics, thereby regulating these processes. Metabolic transitions are key regulators of cell fate and exemplify the moonlighting nature of many metabolic enzymes and their associated metabolites. Recent Advances: Forkhead box O transcription factors (FOXOs) are bona fide regulators of cellular homeostasis. FOXOs are multitasking proteins able to regulate cell cycle, cellular metabolism, and redox state. Recent and ongoing research poses FOXOs as key factors in stem cell maintenance and differentiation in several tissues. Critical Issues: The multitasking nature of FOXOs and their tissue-specific expression patterns hinders to disclose a possible conserved mechanism of regulation of stem cell maintenance and differentiation. Moreover, cellular metabolism, cell signaling, and epigenetics establish complex regulatory interactions, which challenge the establishment of the causal/temporal nature of metabolic changes and stem cell activation and differentiation. Future Directions: The development of single-cell technologies and in vitro models able to reproduce the dynamics of stem cell differentiation are actively contributing to define the role of metabolism in this process. This knowledge is key to understanding and designing therapies for those pathologies where the balance between proliferation and differentiation is lost. Importantly, metabolic interventions could be applied to optimize stem cell cultures meant for therapeutical applications, such as transplantations, to treat autoimmune and degenerative disorders. Antioxid. Redox Signal. 34, 1004-1024.
Collapse
Affiliation(s)
- Marlies Corine Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María José Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Lim TB, Foo SYR, Chen CK. The Role of Epigenetics in Congenital Heart Disease. Genes (Basel) 2021; 12:genes12030390. [PMID: 33803261 PMCID: PMC7998561 DOI: 10.3390/genes12030390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect among newborns worldwide and contributes to significant infant morbidity and mortality. Owing to major advances in medical and surgical management, as well as improved prenatal diagnosis, the outcomes for these children with CHD have improved tremendously so much so that there are now more adults living with CHD than children. Advances in genomic technologies have discovered the genetic causes of a significant fraction of CHD, while at the same time pointing to remarkable complexity in CHD genetics. For this reason, the complex process of cardiogenesis, which is governed by multiple interlinked and dose-dependent pathways, is a well investigated process. In addition to the sequence of the genome, the contribution of epigenetics to cardiogenesis is increasingly recognized. Significant progress has been made dissecting the epigenome of the heart and identified associations with cardiovascular diseases. The role of epigenetic regulation in cardiac development/cardiogenesis, using tissue and animal models, has been well reviewed. Here, we curate the current literature based on studies in humans, which have revealed associated and/or causative epigenetic factors implicated in CHD. We sought to summarize the current knowledge on the functional role of epigenetics in cardiogenesis as well as in distinct CHDs, with an aim to provide scientists and clinicians an overview of the abnormal cardiogenic pathways affected by epigenetic mechanisms, for a better understanding of their impact on the developing fetal heart, particularly for readers interested in CHD research.
Collapse
Affiliation(s)
- Tingsen Benson Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Sik Yin Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
8
|
Park C, Lee H, Hong S, Molagoda IMN, Jeong JW, Jin CY, Kim GY, Choi SH, Hong SH, Choi YH. Inhibition of Lipopolysaccharide-Induced Inflammatory and Oxidative Responses by Trans-cinnamaldehyde in C2C12 Myoblasts. Int J Med Sci 2021; 18:2480-2492. [PMID: 34104079 PMCID: PMC8176176 DOI: 10.7150/ijms.59169] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Trans-cinnamaldehyde (tCA), a bioactive component found in Cinnamomum cassia, has been reported to exhibit anti-inflammatory and antioxidant effects, but its efficacy in muscle cells has yet to be found. In this study, we investigated the inhibitory effect of tCA on inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in C2C12 mouse skeletal myoblasts. Methods: To investigate the anti-inflammatory and antioxidant effects of tCA in LPS-treated C2C12 cells, we measured the levels of pro-inflammatory mediator, cytokines, and reactive oxygen species (ROS). To elucidate the mechanism underlying the effect of tCA, the expression of genes involved in the expression of inflammatory and oxidative regulators was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of tCA against LPS in the zebrafish model. Results: tCA significantly inhibited the LPS-induced release of pro-inflammatory mediators and cytokines, which was associated with decreased expression of their regulatory genes. tCA also suppressed the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor, and attenuated the nuclear translocation of nuclear factor-kappa B (NF-κB) and the binding of LPS to TLR4 on the cell surface in LPS-treated C2C12 cells. Furthermore, tCA abolished LPS-induced generation of ROS and expression levels of ROS producing enzymes, NADPH oxidase 1 (NOX1) and NOX2. However, tCA enhanced the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated C2C12 myoblasts. In addition, tCA showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. Conclusions: Our findings suggest that tCA exerts its inhibitory ability against LPS-induced inflammatory and antioxidant stress in C2C12 myoblasts by targeting the TLR4/NF-κB, which might be mediated by the NOXs and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Suhyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Ilandarage Menu Neelaka Molagoda
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Zhengzhou University, Henan 450001, China
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang 50141, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
9
|
Reinoso-Sánchez JF, Baroli G, Duranti G, Scaricamazza S, Sabatini S, Valle C, Morlando M, Casero RA, Bozzoni I, Mariottini P, Ceci R, Cervelli M. Emerging Role for Linear and Circular Spermine Oxidase RNAs in Skeletal Muscle Physiopathology. Int J Mol Sci 2020; 21:E8227. [PMID: 33153123 PMCID: PMC7663755 DOI: 10.3390/ijms21218227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscle atrophy is a pathological condition so far without effective treatment and poorly understood at a molecular level. Emerging evidence suggest a key role for circular RNAs (circRNA) during myogenesis and their deregulation has been reported to be associated with muscle diseases. Spermine oxidase (SMOX), a polyamine catabolic enzyme plays a critical role in muscle differentiation and the existence of a circRNA arising from SMOX gene has been recently identified. In this study, we evaluated the expression profile of circular and linear SMOX in both C2C12 differentiation and dexamethasone-induced myotubes atrophy. To validate our findings in vivo their expression levels were also tested in two murine models of amyotrophic lateral sclerosis: SOD1G93A and hFUS+/+, characterized by progressive muscle atrophy. During C2C12 differentiation, linear and circular SMOX show the same trend of expression. Interestingly, in atrophy circSMOX levels significantly increased compared to the physiological state, in both in vitro and in vivo models. Our study demonstrates that SMOX represents a new player in muscle physiopathology and provides a scientific basis for further investigation on circSMOX RNA as a possible new therapeutic target for the treatment of muscle atrophy.
Collapse
MESH Headings
- Amyotrophic Lateral Sclerosis/genetics
- Amyotrophic Lateral Sclerosis/metabolism
- Amyotrophic Lateral Sclerosis/pathology
- Animals
- Cell Differentiation/genetics
- Cells, Cultured
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Oxidoreductases Acting on CH-NH Group Donors/genetics
- Oxidoreductases Acting on CH-NH Group Donors/physiology
- RNA, Circular/physiology
- RNA, Messenger/physiology
- RNA, Untranslated/physiology
- RNA-Binding Protein FUS/genetics
- Superoxide Dismutase-1/genetics
- Polyamine Oxidase
Collapse
Affiliation(s)
- Jonathan Fernando Reinoso-Sánchez
- Department of Science, “Department of Excellence 2018–2022”, University of Rome “Roma Tre”, 00146 Rome, Italy; (J.F.R.-S.); (G.B.); (P.M.)
| | - Giulia Baroli
- Department of Science, “Department of Excellence 2018–2022”, University of Rome “Roma Tre”, 00146 Rome, Italy; (J.F.R.-S.); (G.B.); (P.M.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry and Molecular Biology—Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (G.D.); (S.S.); (R.C.)
| | | | - Stefania Sabatini
- Laboratory of Biochemistry and Molecular Biology—Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (G.D.); (S.S.); (R.C.)
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- National Research Council, Institute of Translational Pharmacology (IFT), 00133 Rome, Italy
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy;
| | - Robert Anthony Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Irene Bozzoni
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “La Sapienza”, 00185 Rome, Italy;
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Paolo Mariottini
- Department of Science, “Department of Excellence 2018–2022”, University of Rome “Roma Tre”, 00146 Rome, Italy; (J.F.R.-S.); (G.B.); (P.M.)
| | - Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology—Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (G.D.); (S.S.); (R.C.)
| | - Manuela Cervelli
- Department of Science, “Department of Excellence 2018–2022”, University of Rome “Roma Tre”, 00146 Rome, Italy; (J.F.R.-S.); (G.B.); (P.M.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| |
Collapse
|
10
|
Stout AJ, Mirliani AB, Soule-Albridge EL, Cohen JM, Kaplan DL. Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods. Metab Eng 2020; 62:126-137. [PMID: 32890703 PMCID: PMC7666109 DOI: 10.1016/j.ymben.2020.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023]
Abstract
Metabolic engineering of mammalian cells has to-date focused primarily on biopharmaceutical protein production or the manipulation of native metabolic processes towards therapeutic aims. However, significant potential exists for expanding these techniques to diverse applications by looking across the taxonomic tree to bioactive metabolites not synthesized in animals. Namely, cross-taxa metabolic engineering of mammalian cells could offer value in applications ranging fromfood and nutrition to regenerative medicine and gene therapy. Towards the former, recent advances in meat production through cell culture suggest the potential to produce meat with fine cellular control, where tuning composition through cross-taxa metabolic engineering could enhance nutrition and food-functionality. Here we demonstrate this possibility by engineering primary bovine and immortalized murine muscle cells with prokaryotic enzymes to endogenously produce the antioxidant carotenoids phytoene, lycopene and β-carotene. These phytonutrients offer general nutritive value and protective effects against diseases associated with red and processed meat consumption, and so offer a promising proof-of-concept for nutritional engineering in cultured meat. We demonstrate the phenotypic integrity of engineered cells, the ability to tune carotenoid yields, and the antioxidant functionality of these compounds in vitro towards both nutrition and food-quality objectives. Our results demonstrate the potential for tailoring the nutritional profile of cultured meats. They further lay a foundation for heterologous metabolic engineering of mammalian cells for applications outside of the clinical realm.
Collapse
Affiliation(s)
- Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Addison B Mirliani
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Erin L Soule-Albridge
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA; W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
11
|
Yun HR, Jo YH, Kim J, Nguyen NNY, Shin Y, Kim SS, Choi TG. Palmitoyl Protein Thioesterase 1 Is Essential for Myogenic Autophagy of C2C12 Skeletal Myoblast. Front Physiol 2020; 11:569221. [PMID: 33178040 PMCID: PMC7593845 DOI: 10.3389/fphys.2020.569221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle differentiation is an essential process for the maintenance of muscle development and homeostasis. Reactive oxygen species (ROS) are critical signaling molecules involved in muscle differentiation. Palmitoyl protein thioesterase 1 (PPT1), a lysosomal enzyme, is involved in removing thioester-linked fatty acid groups from modified cysteine residues in proteins. However, the role of PPT1 in muscle differentiation remains to be elucidated. Here, we found that PPT1 plays a critical role in the differentiation of C2C12 skeletal myoblasts. The expression of PPT1 gradually increased in response to mitochondrial ROS (mtROS) during muscle differentiation, which was attenuated by treatment with antioxidants. Moreover, we revealed that PPT1 transactivation occurs through nuclear factor erythroid 2-regulated factor 2 (Nrf2) binding the antioxidant response element (ARE) in its promoter region. Knockdown of PPT1 with specific small interference RNA (siRNA) disrupted lysosomal function by increasing its pH. Subsequently, it caused excessive accumulation of autophagy flux, thereby impairing muscle fiber formation. In conclusion, we suggest that PPT1 is factor a responsible for myogenic autophagy in differentiating C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jieun Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ngoc Ngo Yen Nguyen
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Sung Soo Kim,
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Tae Gyu Choi,
| |
Collapse
|
12
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Bottje WG. BOARD INVITED REVIEW: Oxidative stress and efficiency: the tightrope act of mitochondria in health and disease1,2. J Anim Sci 2019; 97:3169-3179. [PMID: 31247079 DOI: 10.1093/jas/skz219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an unavoidable consequence of aerobic metabolism. Whereas high amounts of mitochondrial reactive oxygen species (ROS) can cause oxidation, low levels play important roles in signal transduction. In a Pedigree male (PedM) broiler model of feed efficiency (FE), the low FE phenotype was characterized by increased ROS in isolated mitochondria (muscle, liver, and duodenum) with a pervasive protein oxidation in mitochondria and tissues. Subsequent proteogenomic studies in muscle revealed evidence of enhanced mitoproteome abundance, enhanced mitochondrial phosphocreatine shuttling expression, and enhanced ribosome assembly in the high FE phenotype. Surprisingly, an enhanced infrastructure would foster greater repair of damaged proteins or organelles through the autophagy and proteosome pathways in the high FE phenotype. Although protein and organelle degradation, recycling, and reconstruction would be energetically expensive, it is possible that energy invested into maintaining optimal function of proteins and organelles contributes to cellular efficiency in the high FE phenotype. New findings in mitochondrial physiology have been reported in the last several years. Reverse electron transport (RET), once considered an artifact of in vitro conditions, now is recognized to play significant roles in inflammation, ischemia-reperfusion, muscle differentiation, and energy utilization. A topology of ROS production indicates that ROS derived from Complex I of the respiratory chain primarily causes oxidation, whereas ROS generated from Complex III are primarily involved in cell signaling. It is also apparent that there is a constant fission and fusion process that mitochondria undergo that help maintain optimal mitochondrial function and enables mitochondria to adjust to periods of nutrient limitation and nutrient excess. Understanding the balancing act that mitochondria play in health and disease will continue to be a vital biological component in health-production efficiency and disease in commercial animal agriculture.
Collapse
Affiliation(s)
- Walter G Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR
| |
Collapse
|
14
|
Goncalves RLS, Watson MA, Wong HS, Orr AL, Brand MD. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biol 2019; 28:101341. [PMID: 31627168 PMCID: PMC6812158 DOI: 10.1016/j.redox.2019.101341] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species are important signaling molecules crucial for muscle differentiation and adaptation to exercise. However, their uncontrolled generation is associated with an array of pathological conditions. To identify and quantify the sources of superoxide and hydrogen peroxide in skeletal muscle we used site-specific suppressors (S1QELs, S3QELs and NADPH oxidase inhibitors). We measured the rates of hydrogen peroxide release from isolated rat muscle mitochondria incubated in media mimicking the cytosol of intact muscle. By measuring the extent of inhibition caused by the addition of different site-specific suppressors of mitochondrial superoxide/hydrogen peroxide production (S1QELs for site IQ and S3QELs for site IIIQo), we determined the contributions of these sites to the total signal. In media mimicking resting muscle, their contributions were each 12–18%, consistent with a previous method. In C2C12 myoblasts, site IQ contributed 12% of cellular hydrogen peroxide production and site IIIQo contributed about 30%. When C2C12 myoblasts were differentiated to myotubes, hydrogen peroxide release increased five-fold, and the proportional contribution of site IQ doubled. The use of S1QELs and S3QELs is a powerful new way to measure the relative contributions of different mitochondrial sites to muscle hydrogen peroxide production under different conditions. Our results show that mitochondrial sites IQ and IIIQo make a substantial contribution to superoxide/hydrogen peroxide production in muscle mitochondria and C2C12 myoblasts. The total hydrogen peroxide release rate and the relative contribution of site IQ both increase substantially upon differentiation to myotubes. S1QELs, S3QELs and NOX inhibitors report sites of superoxide/H2O2 generation. Mitochondria and NOXs are the major sources of H2O2 in C2C12 cells. H2O2 release increases 5-fold during differentiation of C2C12 myoblasts to myotubes. The relative contribution of site IQ doubles during differentiation. The relative contributions of site IIIQo and NOXs remain the same.
Collapse
Affiliation(s)
| | - Mark A Watson
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Adam L Orr
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
15
|
Bottje W. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria. Poult Sci 2019; 98:4223-4230. [DOI: 10.3382/ps/pey405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Guanine-rich RNA binding protein GRSF1 inhibits myoblast differentiation through repressing mitochondrial ROS production. Exp Cell Res 2019; 381:139-149. [DOI: 10.1016/j.yexcr.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022]
|
17
|
Kelly SC, Patel NN, Eccardt AM, Fisher JS. Glucose-dependent trans-plasma membrane electron transport and p70 S6k phosphorylation in skeletal muscle cells. Redox Biol 2018; 27:101075. [PMID: 30578122 PMCID: PMC6859557 DOI: 10.1016/j.redox.2018.101075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/05/2022] Open
Abstract
The reduction of extracellular oxidants by intracellular electrons is known as trans-plasma membrane electron transport (tPMET). The goal of this study was to characterize a role of tPMET in the sensing of glucose as a physiological signal. tPMET from C2C12 myotubes was monitored using a cell-impermeable extracellular electron acceptor, water-soluble tetrazolium salt-1 (WST-1). Superoxide dismutase in the incubation medium or exposure to an NADPH oxidase (NOX) isoform 1/4 inhibitor suppressed WST-1 reduction by 70%, suggesting a role of NOXs in tPMET. There was a positive correlation between medium glucose concentration and WST-1 reduction, suggesting that tPMET is a glucose-sensing process. WST-1 reduction was also decreased by an inhibitor of the pentose phosphate pathway, dehydroepiandrosterone. In contrast, glycolytic inhibitors, 3PO and sodium fluoride, did not affect WST-1 reduction. Thus, it appears that glucose uptake and processing in the pentose phosphate pathway drives NOX-dependent tPMET. Western blot analysis demonstrated that p70S6k phosphorylation is glucose-dependent, while the phosphorylation of AKT and MAPK did not differ in the presence or absence of glucose. Further, phosphorylation of p70S6k was dependent upon NOX enzymes. Finally, glucose was required for full stimulation of p70S6k by insulin, again in a fashion prevented by NOX inhibition. Taken together, the data suggest that muscle cells have a novel glucose-sensing mechanism dependent on NADPH production and NOX activity, culminating in increased p70S6k phosphorylation.
Collapse
Affiliation(s)
- Shannon C Kelly
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Neej N Patel
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Amanda M Eccardt
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Jonathan S Fisher
- Department of Biology, Saint Louis University, St. Louis, MO, United States.
| |
Collapse
|
18
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
19
|
Cervelli M, Leonetti A, Duranti G, Sabatini S, Ceci R, Mariottini P. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. Med Sci (Basel) 2018; 6:medsci6010014. [PMID: 29443878 PMCID: PMC5872171 DOI: 10.3390/medsci6010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy.
Collapse
Affiliation(s)
- Manuela Cervelli
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| | - Alessia Leonetti
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| | - Guglielmo Duranti
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Stefania Sabatini
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Roberta Ceci
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Paolo Mariottini
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| |
Collapse
|
20
|
Masoud R, Serfaty X, Erard M, Machillot P, Karimi G, Hudik E, Wien F, Baciou L, Houée-Levin C, Bizouarn T. Conversion of NOX2 into a constitutive enzyme in vitro and in living cells, after its binding with a chimera of the regulatory subunits. Free Radic Biol Med 2017; 113:470-477. [PMID: 29079525 DOI: 10.1016/j.freeradbiomed.2017.10.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022]
Abstract
During the phagocytosis of pathogens by phagocyte cells, the NADPH oxidase complex is activated to produce superoxide anion, a precursor of microbial oxidants. The activated NADPH oxidase complex from phagocytes consists in two transmembrane proteins (Nox2 and p22phox) and four cytosolic proteins (p40phox, p47phox, p67phox and Rac1-2). In the resting state of the cells, these proteins are dispersed in the cytosol, the membrane of granules and the plasma membrane. In order to synchronize the assembly of the cytosolic subunits on the membrane components of the oxidase, a fusion of the cytosolic proteins p47phox, p67phox and Rac1 named trimera was constructed. The trimera investigated in this paper is composed of the p47phox segment 1-286, the p67phox segment 1-212 and the mutated Rac1(Q61L). We demonstrate that the complex trimera-cyt b558 is functionally comparable to the one containing the separated subunits. Each of the subunits p47phox, p67phox and Rac1Q61L has kept its own activating property. The trimera is produced in an activated conformation as seen by circular dichroism. However, the presence of amphiphile is still necessary in a cell-free system to trigger superoxide anion production. The COS7gp91-p22 cells expressing the trimera produce continuously superoxide anion at high rate. This constitutive activity in cells can be of particular interest for understanding the NADPH oxidase functioning independently of signaling pathways.
Collapse
Affiliation(s)
- Rawand Masoud
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Marie Erard
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Paul Machillot
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Gilda Karimi
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Elodie Hudik
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Frank Wien
- Synchrotron SOLEIL, campus Paris Saclay, Gif-sur-Yvette, France
| | - Laura Baciou
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Chantal Houée-Levin
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Tania Bizouarn
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France.
| |
Collapse
|
21
|
Krezdorn N, Tasigiorgos S, Wo L, Turk M, Lopdrup R, Kiwanuka H, Win TS, Bueno E, Pomahac B. Tissue conservation for transplantation. Innov Surg Sci 2017; 2:171-187. [PMID: 31579751 PMCID: PMC6754021 DOI: 10.1515/iss-2017-0010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Pathophysiological changes that occur during ischemia and subsequent reperfusion cause damage to tissues procured for transplantation and also affect long-term allograft function and survival. The proper preservation of organs before transplantation is a must to limit these injuries as much as possible. For decades, static cold storage has been the gold standard for organ preservation, with mechanical perfusion developing as a promising alternative only recently. The current literature points to the need of developing dedicated preservation protocols for every organ, which in combination with other interventions such as ischemic preconditioning and therapeutic additives offer the possibility of improving organ preservation and extending it to multiple times its current duration. This review strives to present an overview of the current body of knowledge with regard to the preservation of organs and tissues destined for transplantation.
Collapse
Affiliation(s)
- Nicco Krezdorn
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Sotirios Tasigiorgos
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luccie Wo
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marvee Turk
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Lopdrup
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Harriet Kiwanuka
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thet-Su Win
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ericka Bueno
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bohdan Pomahac
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
22
|
Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R. Redox Control of Skeletal Muscle Regeneration. Antioxid Redox Signal 2017; 27:276-310. [PMID: 28027662 PMCID: PMC5685069 DOI: 10.1089/ars.2016.6782] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, Université Claude Bernard Lyon 1, Univ Lyon, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Carole Groussard
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Hassane Zouhal
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| |
Collapse
|
23
|
Espinoza MB, Aedo JE, Zuloaga R, Valenzuela C, Molina A, Valdés JA. Cortisol Induces Reactive Oxygen Species Through a Membrane Glucocorticoid Receptor in Rainbow Trout Myotubes. J Cell Biochem 2016; 118:718-725. [PMID: 27564718 DOI: 10.1002/jcb.25676] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Abstract
Cortisol is an essential regulator of neuroendocrine stress responses in teleosts. Cortisol predominantly affects target tissues through the genomic pathway, which involves interacting with cytoplasmic glucocorticoid receptors, and thereby, modulating stress-response gene expressions. Cortisol also produces rapid effects via non-genomic pathways, which do not involve gene transcription. Although cortisol-mediated genomic pathways are well documented in teleosts, non-genomic pathways are not fully understood. Moreover, no studies have focused on the contribution of non-genomic cortisol pathways in compensatory stress responses in fish. In this study, rainbow trout (Oncorhynchus mykiss) skeletal myotubes were stimulated with physiological concentrations of cortisol and cortisol-BSA, a membrane-impermeable agent, resulting in an early induction of reactive oxygen species (ROS). This production was not suppressed by transcription or translation inhibitors, suggesting non-genomic pathway involvement. Moreover, myotube preincubation with RU486 and NAC completely suppressed cortisol- and cortisol-BSA-induced ROS production. Subcellular fractionation analysis revealed the presence of cell membrane glucocorticoid receptors. Finally, cortisol-BSA induced a significant increase in ERK1/2 and CREB phosphorylation, as well as in CREB-dependent transcriptional activation of the pgc1a gene expression. The obtained results strongly suggest that cortisol acts through a non-genomic glucocorticoid receptor-mediated pathway to induce ROS production and contribute to ERK/CREB/PGC1-α signaling pathway activation as stress compensation mechanisms. J. Cell. Biochem. 118: 718-725, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlen B Espinoza
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Jorge E Aedo
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Rodrigo Zuloaga
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Cristian Valenzuela
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan A Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
24
|
Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med 2016; 98:18-28. [PMID: 27184955 PMCID: PMC4975970 DOI: 10.1016/j.freeradbiomed.2016.05.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/31/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022]
Abstract
The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| |
Collapse
|
25
|
Carnagarin R, Carlessi R, Newsholme P, Dharmarajan AM, Dass CR. Pigment epithelium-derived factor stimulates skeletal muscle glycolytic activity through NADPH oxidase-dependent reactive oxygen species production. Int J Biochem Cell Biol 2016; 78:229-236. [PMID: 27343430 DOI: 10.1016/j.biocel.2016.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/19/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
Pigment epithelium-derived factor is a multifunctional serpin implicated in insulin resistance in metabolic disorders. Recent evidence suggests that exposure of peripheral tissues such as skeletal muscle to PEDF has profound metabolic consequences with predisposition towards chronic conditions such as obesity, type 2 diabetes, metabolic syndrome and polycystic ovarian syndrome. Chronic inflammation shifts muscle metabolism towards increased glycolysis and decreased oxidative metabolism. In the present study, we demonstrate a novel effect of PEDF on cellular metabolism in mouse cell line (C2C12) and human primary skeletal muscle cells. PEDF addition to skeletal muscle cells induced enhanced phospholipase A2 activity. This was accompanied with increased production of reactive oxygen species in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner that triggered a shift towards a more glycolytic phenotype. Extracellular flux analysis and glucose consumption assays demonstrated that PEDF treatment resulted in enhanced glycolysis but did not change mitochondrial respiration. Our results demonstrate that skeletal muscle cells express a PEDF-inducible oxidant generating system that enhances glycolysis but is sensitive to antioxidants and NADPH oxidase inhibition.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Curtin Health Innovation Research Institute, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia; Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin University, Bentley 6102, Australia; School of Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Rodrigo Carlessi
- Curtin Health Innovation Research Institute, Bentley 6102, Australia; School of Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Philip Newsholme
- Curtin Health Innovation Research Institute, Bentley 6102, Australia; School of Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Arun M Dharmarajan
- Curtin Health Innovation Research Institute, Bentley 6102, Australia; Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Health Innovation Research Institute, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
26
|
Zielniok K, Szkoda K, Gajewska M, Wilczak J. Effect of biologically active substances present in water extracts of white mustard and coriander on antioxidant status and lipid peroxidation of mouse C2C12 skeletal muscle cells. J Anim Physiol Anim Nutr (Berl) 2015; 100:988-1002. [PMID: 26452735 DOI: 10.1111/jpn.12412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Abstract
Coriander and white mustard, an annual plants originated in the Mediterranean region, have been cultivated and used as spices for a long time. Recent studies have shown that they may constitute a potential source of phenolic compounds. The aim of this study was to evaluate the content of polyphenols in coriander and white mustard water extracts and to investigate their antioxidant activity in C2C12 mouse skeletal muscle cells, which serve as a good model of cells with intensive metabolism. HPLC analysis showed that polyphenols were able to permeate from the water extracts of studied plants into the undifferentiated myoblasts as well as myocytes undergoing differentiation, increasing the concentration of reduced glutathione and upregulating glutathione reductase and peroxidase activity. White mustard and coriander extracts also decreased the levels of oxysterols and sum of tiobarbituric acid reactive substances (TBARS) in both: myoblasts and differentiating myocytes, demonstrating protective effect on cell membranes. The obtained results indicate that polyphenols synthesized by both herbs may have beneficial effects on muscle tissue.
Collapse
Affiliation(s)
- K Zielniok
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
| | - K Szkoda
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - M Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - J Wilczak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Iyomasa MM, Fernandes FS, Iyomasa DM, Pereira YCL, Fernández RAR, Calzzani RA, Nascimento GC, Leite-Panissi CRA, Issa JPM. Metabolic Changes in Masseter Muscle of Rats Submitted to Acute Stress Associated with Exodontia. PLoS One 2015; 10:e0128397. [PMID: 26053038 PMCID: PMC4459827 DOI: 10.1371/journal.pone.0128397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Clinical evidence has shown that stress may be associated with alterations in masticatory muscle functions. Morphological changes in masticatory muscles induced by occlusal alterations and associated with emotional stress are still lacking in the literature. The objective of this study was to evaluate the influence of acute stress on metabolic activity and oxidative stress of masseter muscles of rats subjected to occlusal modification through morphological and histochemical analyses. In this study, adult Wistar rats were divided into 4 groups: a group with extraction and acute stress (E+A); group with extraction and without stress (E+C); group without extraction and with acute stress (NO+A); and control group without both extraction and stress (NO+C). Masseter muscles were analyzed by Succinate Dehydrogenase (SDH), Nicotinamide Adenine Dinucleotide Diaphorase (NADH) and Reactive Oxygen Species (ROS) techniques. Statistical analyses and two-way ANOVA were applied, followed by Tukey-Kramer tests. In the SDH test, the E+C, E+A and NO+A groups showed a decrease in high desidrogenase activities fibers (P < 0.05), compared to the NO+C group. In the NADH test, there was no difference among the different groups. In the ROS test, in contrast, E+A, E+C and NO+A groups showed a decrease in ROS expression, compared to NO+C groups (P < 0.05). Modified dental occlusion and acute stress - which are important and prevalent problems that affect the general population - are important etiologic factors in metabolic plasticity and ROS levels of masseter muscles.
Collapse
Affiliation(s)
- Mamie Mizusaki Iyomasa
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, 14040–904, SP, Brazil
| | - Fernanda Silva Fernandes
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, 14040–904, SP, Brazil
| | - Daniela Mizusaki Iyomasa
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, 14040–904, SP, Brazil
| | - Yamba Carla Lara Pereira
- Biology Dental Buco Graduate Program, School of Dentistry of Piracicaba, University of Campinas, Piracicaba, 13414–903, SP, Brazil
| | | | - Ricardo Alexandre Calzzani
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, 14040–904, SP, Brazil
| | - Glauce Crivelaro Nascimento
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, 14040–904, SP, Brazil
- Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040–901, SP, Brazil
- * E-mail:
| | - Christie Ramos Andrade Leite-Panissi
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, 14040–904, SP, Brazil
- Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040–901, SP, Brazil
| | - João Paulo Mardegan Issa
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, 14040–904, SP, Brazil
| |
Collapse
|
28
|
Alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats. Brain Dev 2015; 37:563-71. [PMID: 25304916 DOI: 10.1016/j.braindev.2014.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022]
Abstract
PURPOSE To clarify the alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats. METHODS We investigated the impact of prenatal restraint stress on the hipocampal cell proliferation in the progeny with 5-bromo-2'-deoxyuridine (BrdU), which is a marker of proliferating cells and their progeny. In addition, we observed the differentiation of neural stem cells (NSCs) with double labeling of BrdU/neurofilament (NF), BrdU/glial fibrillary acidic protein (GFAP) in the hipocampus. RESULTS Prenatal stress (PS) increased cell proliferation in the dentate gyrus (DG) only in female and neuron differentiation of newly divided cells in the DG and CA4 in both male and female. Moreover, the NF and GFAP-positive cells, but not the BrdU-positive cells, BrdU/NF and BrdU/GFAP-positive cells, were found frequently in the CA3 and CA1 in the offspring of each group. CONCLUSIONS These results possibly suggest a compensatory adaptive response to neuronal damage or loss in hippocampus induced by PS.
Collapse
|
29
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
30
|
Souto Padron de Figueiredo A, Salmon AB, Bruno F, Jimenez F, Martinez HG, Halade GV, Ahuja SS, Clark RA, DeFronzo RA, Abboud HE, El Jamali A. Nox2 mediates skeletal muscle insulin resistance induced by a high fat diet. J Biol Chem 2015; 290:13427-39. [PMID: 25825489 DOI: 10.1074/jbc.m114.626077] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 01/16/2023] Open
Abstract
Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet was mitigated in Nox2-null mice compared with wild-type mice after 3 or 9 months on the diet. High fat feeding increased Nox2 expression, superoxide production, and impaired insulin signaling in skeletal muscle tissue of wild-type mice but not in Nox2-null mice. Exposure of C2C12 cultured myotubes to either high glucose concentration, palmitate, or H2O2 decreases insulin-induced Akt phosphorylation and glucose uptake. Pretreatment with catalase abrogated these effects, indicating a key role for H2O2 in mediating insulin resistance. Down-regulation of Nox2 in C2C12 cells by shRNA prevented insulin resistance induced by high glucose or palmitate but not H2O2. These data indicate that increased production of ROS in insulin resistance induced by high glucose in skeletal muscle cells is a consequence of Nox2 activation. This is the first report to show that Nox2 is a key mediator of insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies 15355 Lambda Drive, San Antonio, Texas 78245, and Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900
| | - Francesca Bruno
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Fabio Jimenez
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Herman G Martinez
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Ganesh V Halade
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Seema S Ahuja
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900
| | - Robert A Clark
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900
| | - Ralph A DeFronzo
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900
| | - Hanna E Abboud
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900
| | - Amina El Jamali
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900,
| |
Collapse
|
31
|
Le Grand JN, Gonzalez-Cano L, Pavlou MA, Schwamborn JC. Neural stem cells in Parkinson's disease: a role for neurogenesis defects in onset and progression. Cell Mol Life Sci 2015; 72:773-97. [PMID: 25403878 PMCID: PMC11113294 DOI: 10.1007/s00018-014-1774-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/09/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to a variety of motor and non-motor symptoms. Interestingly, non-motor symptoms often appear a decade or more before the first signs of motor symptoms. Some of these non-motor symptoms are remarkably similar to those observed in cases of impaired neurogenesis and several PD-related genes have been shown to play a role in embryonic or adult neurogenesis. Indeed, animal models deficient in Nurr1, Pitx3, SNCA and PINK1 display deregulated embryonic neurogenesis and LRRK2 and VPS35 have been implicated in neuronal development-related processes such as Wnt/β-catenin signaling and neurite outgrowth. Moreover, adult neurogenesis is affected in both PD patients and PD animal models and is regulated by dopamine and dopaminergic (DA) receptors, by chronic neuroinflammation, such as that observed in PD, and by differential expression of wild-type or mutant forms of PD-related genes. Indeed, an increasing number of in vivo studies demonstrate a role for SNCA and LRRK2 in adult neurogenesis and in the generation and maintenance of DA neurons. Finally, the roles of PD-related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and DJ-1 have been studied in NSCs, progenitor cells and induced pluripotent stem cells, demonstrating a role for some of these genes in stem/progenitor cell proliferation and maintenance. Together, these studies strongly suggest a link between deregulated neurogenesis and the onset and progression of PD and present strong evidence that, in addition to a neurodegenerative disorder, PD can also be regarded as a developmental disorder.
Collapse
Affiliation(s)
- Jaclyn Nicole Le Grand
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Maria Angeliki Pavlou
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
32
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
33
|
NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2014; 12:5-23. [PMID: 25263488 DOI: 10.1038/cmi.2014.89] [Citation(s) in RCA: 641] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/11/2022] Open
Abstract
Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.
Collapse
|
34
|
Samhan-Arias AK, Gutierrez-Merino C. Purified NADH-cytochrome b5 reductase is a novel superoxide anion source inhibited by apocynin: sensitivity to nitric oxide and peroxynitrite. Free Radic Biol Med 2014; 73:174-89. [PMID: 22922784 DOI: 10.1016/j.freeradbiomed.2014.04.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/14/2022]
Abstract
Cytochrome b5 reductase (Cb5R) is a pleiotropic flavoprotein that catalyzes multiple one-electron reduction reactions with various redox partners in cells. In earlier work from our laboratory, we have shown its implication in the generation of reactive oxygen species (ROS), primarily a superoxide anion overshoot peak, which plays a major role as a triggering event for the acceleration of apoptosis in cerebellar granule neurons in culture. However, the results obtained in that work did not allow us to exclude the possibility that this superoxide anion production could be derived from Cb5R acting in concert with other cellular components. In this work, we have purified Cb5R from pig liver and we have experimentally shown that this enzyme catalyzed NADH-dependent production of superoxide anion, assayed with cytochrome c and nitroblue tetrazolium as detection reagents for this particular ROS. The basic kinetic parameters for this novel NADH-dependent activity of Cb5R at 37°C are Vmax = 3.0 ± 0.5 μmol/min/mg of purified Cb5R and KM(NADH) = 2.8 ± 0.3 μM NADH. In addition, we report that apocynin, a widely used inhibitor of nonmitochondrial ROS production in mammalian cell cultures and tissues, is a potent inhibitor of purified Cb5R activity at the concentrations used in the experiments done with cell cultures. In the presence of apocynin the KM(NADH) value of Cb5R increases, and docking simulations indicate that apocynin can bind to a site near to or partially overlapping the NADH binding site of Cb5R. Other ROS, such as nitric oxide and peroxynitrite, have inhibitory effects on purified Cb5R, providing the basis for a feedback cellular protection mechanism through modulation of excessive extramitochondrial superoxide anion production by Cb5R. Both kinetic assays and docking simulations suggest that nitric oxide-induced nitrosylation (including covalent adduction of nitroso functional groups) of Cb5R cysteines and peroxynitrite-induced tyrosine nitration and cysteine oxidation modified the conformation of the NADH binding domain leading to a decreased affinity of Cb5R for NADH.
Collapse
Affiliation(s)
- Alejandro K Samhan-Arias
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain.
| | - Carlos Gutierrez-Merino
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
35
|
Lactate regulates myogenesis in C2C12 myoblasts in vitro. Stem Cell Res 2014; 12:742-53. [PMID: 24735950 DOI: 10.1016/j.scr.2014.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 01/26/2023] Open
Abstract
Satellite cells (SCs) are the resident stem cells of skeletal muscle tissue which play a major role in muscle adaptation, e.g. as a response to physical training. The aim of this study was to examine the effects of an intermittent lactate (La) treatment on the proliferation and differentiation of C2C12 myoblasts, simulating a microcycle of high intensity endurance training. Furthermore, the involvement of reactive oxygen species (ROS) in this context was examined. C2C12 myoblasts were therefore repeatedly incubated for 2 h each day with 10 mM or 20 mM La differentiation medium (DM) and in some cases 20 mM La DM plus different antioxidative substances for up to 5 days. La free (0 mM) DM served as a control. Immunocytochemical staining, Western blot analysis and colorimetric assays were used to assess oxidative stress, proliferation, and differentiation. Results show that La induces oxidative stress, enhances cell-cycle withdrawal, and initiates early differentiation but delays late differentiation in a timely and dose-dependent manner. These effects can be reversed by the addition of antioxidants to the La DM. We therefore conclude that La has a regulatory role in C2C12 myogenesis via a ROS-sensitive mechanism which elicits implications for reassessing some aspects of training and the use of nutritional supplements.
Collapse
|
36
|
Sandiford SDE, Kennedy KAM, Xie X, Pickering JG, Li SSC. Dual oxidase maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation. Cell Commun Signal 2014; 12:5. [PMID: 24410844 PMCID: PMC3895674 DOI: 10.1186/1478-811x-12-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/23/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dual oxidase maturation factor 1 (DUOXA1) has been associated with the maturation of the reactive oxygen species (ROS) producing enzyme, dual oxidase 1 (DUOX1) in the adult thyroid. However, ROS have also been implicated in the development of several tissues. We found that activated muscle satellite cells and primary myoblasts isolated from mice express robust levels of DUOXA1 and that its levels are altered as cells differentiate. RESULTS To determine whether DUOXA1 levels affect muscle differentiation, we used an adenoviral construct (pCMV5-DUOXA1-GFP) to drive constitutive overexpression of this protein in primary myoblasts. High levels of DUOXA1 throughout myogenesis resulted in enhanced H2O2 production, fusion defects, reduced expression of early (myogenin) and late (myosin heavy chain) markers of differentiation, and elevated levels of apoptosis compared to control cells infected with an empty adenoviral vector (pCMV5-GFP). DUOXA1 knockdown (using a DUOXA1 shRNA construct) resulted in enhanced differentiation compared to cells subjected to a control shRNA, and subjecting DUOXA1 overexpressing cells to siRNAs targeting DUOX1 or apoptosis signal-regulating kinase 1 (ASK1) rescued the phenotype. CONCLUSIONS This study represents the first to demonstrate the importance of DUOXA1 in skeletal muscle myoblasts and that DUOXA1 overexpression in muscle stem cells induces apoptosis and inhibits differentiation through DUOX1 and ASK1.
Collapse
Affiliation(s)
- Shelley DE Sandiford
- Siebens-Drake Research Institute, 1400 Western Road, London, Ontario N6G 2 V4, Canada
| | - Karen AM Kennedy
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xiaojun Xie
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - J Geoffrey Pickering
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Shawn SC Li
- Siebens-Drake Research Institute, 1400 Western Road, London, Ontario N6G 2 V4, Canada
| |
Collapse
|
37
|
Vasilaki A, Jackson MJ. Role of reactive oxygen species in the defective regeneration seen in aging muscle. Free Radic Biol Med 2013; 65:317-323. [PMID: 23851030 PMCID: PMC3859734 DOI: 10.1016/j.freeradbiomed.2013.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 11/16/2022]
Abstract
The ability of muscles to regenerate successfully following damage diminishes with age and this appears to be a major contributor to the development of muscle weakness and physical frailty. Successful muscle regeneration is dependent on appropriate reinnervation of regenerating muscle. Age-related changes in the interactions between nerve and muscle are poorly understood but may play a major role in the defective regeneration. During aging there is defective redox homeostasis and an accumulation of oxidative damage in nerve and muscle that may contribute to defective regeneration. The aim of this review is to summarise the evidence that abnormal reactive oxygen species (ROS) generation in nerve and/or muscle may be responsible for the defective regeneration that contributes to the degeneration of skeletal muscle observed during aging. Identifying the importance of ROS generation in skeletal muscle during aging could have fundamental implications for interventions to prevent muscle degeneration and treatments to reverse the age-related decline in muscle mass and function.
Collapse
Affiliation(s)
- Aphrodite Vasilaki
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK.
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK
| |
Collapse
|
38
|
Choi H, Park JY, Kim HJ, Noh M, Ueyama T, Bae Y, Lee TR, Shin DW. Hydrogen peroxide generated by DUOX1 regulates the expression levels of specific differentiation markers in normal human keratinocytes. J Dermatol Sci 2013; 74:56-63. [PMID: 24332816 DOI: 10.1016/j.jdermsci.2013.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recent studies have demonstrated that the production of reactive oxygen species (ROS) itself plays an indispensable role in the process of differentiation in various tissues. However, it is unclear whether ROS have an effect on the differentiation of keratinocytes essential for the development of the epidermal permeability barrier. OBJECTIVE The aim of the study is to determine a major H2O2-generating source by ionomycin in normal human keratinocytes (NHKs), and elucidate the physiological role of H2O2 generated by identified dual oxidase 1 (DUOX1) on differentiation markers of NHKs. METHODS To detect H2O2 level generated by ionomycin in NHKs, luminal-HRP assays are performed. To examine the effects of DUOX1 on differentiation markers of NHKs, analysis of Q-RT-PCR, siRNA knockdown, and Western blot analysis were performed. RESULTS We found that levels of H2O2 generated by ionomycin, a Ca(2+) signal inducer, showed Ca(2+) dependence manner. In addition, DPI, an inhibitor of NOXes, significantly reversed the ionomycin-induced H2O2 level, and inhibited the mRNA expression levels of keratin 1, keratin 10, and filaggrin compared with other ROS generating system inhibitors. Interestingly, we demonstrated that extracellular Ca(2+) markedly up-regulated mRNA expression levels of DUOX1 among NADPH oxidase (NOX) isoforms. Knockdown of DUOX1 by RNA interference (RNAi) in NHKs significantly antagonized an increase of ionomycin-induced H2O2 level, and specifically decreased the expressions of several keratinocyte differentiation markers such as keratin 1, transglutaminase 3, desmoglein 1, and aquaporin 9. In addition, we also found that formation of cornified envelope was significantly reduced in DUOX1-knockdown NHKs. CONCLUSION These results suggest that DUOX1 is the major H2O2-producing source in NHKs stimulated with Ca(2+), and plays a significant role in regulating the expression of specific markers necessary for the normal differentiation of keratinocytes.
Collapse
Affiliation(s)
- Hyun Choi
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Ju-Yearl Park
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul University, Seoul 151-742, Republic of Korea
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Republic of Korea
| | - Yunsoo Bae
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| |
Collapse
|
39
|
Proteomic analysis identifies an NADPH oxidase 1 (Nox1)-mediated role for actin-related protein 2/3 complex subunit 2 (ARPC2) in promoting smooth muscle cell migration. Int J Mol Sci 2013; 14:20220-35. [PMID: 24152438 PMCID: PMC3821612 DOI: 10.3390/ijms141020220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 11/20/2022] Open
Abstract
A variety of vascular pathologies, including hypertension, restenosis and atherosclerosis, are characterized by vascular smooth muscle cell (VSMC) hypertrophy and migration. NADPH oxidase 1 (Nox1) plays a pivotal role in these phenotypes via distinct downstream signaling. However, the mediators differentiating these distinct phenotypes and their precise role in vascular disease are still not clear. The present study was designed to identify novel targets of VSMC Nox1 signaling using 2D Differential In-Gel Electrophoresis and Mass Spectrometry (2D-DIGE/MS). VSMC treatment with scrambled (Scrmb) or Nox1 siRNA and incubation with the oxidant hydrogen peroxide (H2O2; 50 μM, 3 h) followed by 2D-DIGE/MS on cell lysates identified 10 target proteins. Among these proteins, actin-related protein 2/3 complex subunit 2 (ARPC2) with no previous link to Nox isozymes, H2O2, or other reactive oxygen species (ROS), was identified and postulated to play an intermediary role in VSMC migration. Western blot confirmed that Nox1 mediates H2O2-induced ARPC2 expression in VSMC. Treatment with a p38 MAPK inhibitor (SB203580) resulted in reduced ARPC2 expression in H2O2-treated VSMC. Additionally, wound-healing “scratch” assay confirmed that H2O2 stimulates VSMC migration via Nox1. Importantly, gene silencing of ARPC2 suppressed H2O2-stimulated VSMC migration. These results demonstrate for the first time that Nox1-mediated VSMC migration involves ARPC2 as a downstream signaling target.
Collapse
|
40
|
Chung JH, Kim YS, Noh K, Lee YM, Chang SW, Kim EC. Deferoxamine promotes osteoblastic differentiation in human periodontal ligament cells via the nuclear factor erythroid 2-related factor-mediated antioxidant signaling pathway. J Periodontal Res 2013; 49:563-73. [PMID: 24111577 DOI: 10.1111/jre.12136] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Recently it was reported that deferoxamine (DFO), an iron chelator, stimulates bone formation from MG63 and mesenchymal stem cells, but inhibits differentiation in rat calvarial cells; however, the effect of DFO on osteoblastic differentiation in human periodontal ligament cells (hPDLCs) has not been reported. The aim of this study was to investigate the effects and the possible underlying mechanism of DFO on osteoblastic differentiation of hPDLCs. MATERIAL AND METHODS The effect of DFO on osteoblast differentiation was determined by the staining intensity of calcium deposits with Alizarin red and by RT-PCR analysis of the expression of osteoblastic markers. Signal transduction pathways were analyzed by western blotting. RESULTS DFO increased osteogenic differentiation in a concentration-dependent manner by expression of the mRNA for differentiation markers and calcium nodule formation. Exposure of hPDLCs to DFO resulted in increases in the production of reactive oxygen species and in the levels of nuclear factor erythroid 2-related factor (Nrf2) protein in nuclear extractions, as well as a dose-dependent increase in the expression of Nrf2 target genes, including glutathione (GSH), glutathione S-transferase, γ-glutamylcysteine lygase, glutathione reductase and glutathione peroxidase. Pretreatment with Nrf2 small interfering RNA, GSH depletion by buthionine sulfoximine and diethyl maleate, and with antioxidants by N-acetylcysteine and vitamin E, blocked DFO-stimulated osteoblastic differentiation. Furthermore, pretreatment with GSH depletion and antioxidants blocked DFO-induced p38 MAPK, ERK, JNK and nuclear factor-kappaB pathways. CONCLUSION These data indicate, for the first time, that nontoxic DFO promotes osteoblastic differentiation of hPDLCs via modulation of the Nrf2-mediated antioxidant pathway.
Collapse
Affiliation(s)
- J H Chung
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Carbonyl reductase 1 is an essential regulator of skeletal muscle differentiation and regeneration. Int J Biochem Cell Biol 2013; 45:1784-93. [DOI: 10.1016/j.biocel.2013.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023]
|
42
|
Kim B, Kim JS, Yoon Y, Santiago MC, Brown MD, Park JY. Inhibition of Drp1-dependent mitochondrial division impairs myogenic differentiation. Am J Physiol Regul Integr Comp Physiol 2013; 305:R927-38. [PMID: 23904108 DOI: 10.1152/ajpregu.00502.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles forming a tubular network that is continuously fusing and dividing to control their morphology and functions. Recent literature has shed new light on a potential link between the dynamic behavior of mitochondria and muscle development. In this study, we investigate the role of mitochondrial fission factor dynamin-related protein 1 (Drp1) in myogenic differentiation. We found that differentiation of C2C12 myoblasts induced by serum starvation was accompanied by a gradual increase in Drp1 protein expression (to ∼350% up to 3 days) and a fast reduction of Drp1 phosphorylation at Ser-637 (to ∼30%) resulting in translocation of Drp1 protein from the cytosol to mitochondria. During differentiation, treatment of myoblasts with mitochondrial division inhibitor (mdivi-1), a specific inhibitor of Drp1 GTPase activity, caused extensive formation of elongated mitochondria, which coincided with increased apoptosis evidenced by both enhanced caspase-3 activity and increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Furthermore, the mdivi-1-treated myotubes (day 3 in differentiation media) showed a reduction in mitochondrial DNA content, mitochondrial mass, and membrane potential in a dose-dependent manner indicating defects in mitochondrial biogenesis during myogenic differentiation. Most interestingly, mdivi-1 treatment significantly suppressed myotube formation in both C2C12 cells and primary myoblasts. Likewise, stable overexpression of a dominant negative mutant Drp1 (K38A) dramatically reduced myogenic differentiation. These data suggest that Drp-1-dependent mitochondrial division is a necessary step for successful myogenic differentiation, and perturbation of mitochondrial dynamics hinders normal mitochondrial adaptations during muscle development. Therefore, in the present study, we report a novel physiological role of mitochondrial dynamics in myogenic differentiation.
Collapse
Affiliation(s)
- Boa Kim
- Department of Kinesiology, College of Health Professions and Social Work, Temple University, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
43
|
Whitman SA, Long M, Wondrak GT, Zheng H, Zhang DD. Nrf2 modulates contractile and metabolic properties of skeletal muscle in streptozotocin-induced diabetic atrophy. Exp Cell Res 2013; 319:2673-83. [PMID: 23896025 DOI: 10.1016/j.yexcr.2013.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 12/30/2022]
Abstract
The role of Nrf2 in disease prevention and treatment is well documented; however the specific role of Nrf2 in skeletal muscle is not well described. The current study investigated whether Nrf2 plays a protective role in an STZ-induced model of skeletal muscle atrophy. Modulation of Nrf2 through siRNA resulted in a more robust differentiation of C2C12s, whereas increasing Nrf2 with sulforaphane treatment inhibited differentiation. Diabetic muscle atrophy was not dramatically influenced by Nrf2 genotype, since no differences were observed in total atrophy (all fiber types combined) between WT+STZ and KO+STZ animals. Nrf2-KO animals however illustrated alterations in muscle size of Fast, Type II myosin expressing fibers. KO+STZ animals show significant alterations in myosin isoform expression in the GAST. Similarly, KO controls mimic both WT+STZ and KO+STZ muscle alterations in mitochondrial subunit expression. PGC-1α, a well-established player in mitochondrial biogenesis and myosin isoform expression, was decreased in KO control, WT+STZ and KO+STZ SOL muscle. Similarly, PGC-1α protein levels are correlated with Nrf2 levels in C2C12s after modulation by Nrf2 siRNA or sulforaphane treatment. We provide experimental evidence indicating Nrf2 plays a role in myocyte differentiation and governs molecular alterations in contractile and metabolic properties in an STZ-induced model of muscle atrophy.
Collapse
Affiliation(s)
- Samantha A Whitman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona
| | | | | | | | | |
Collapse
|
44
|
Nadworny AS, Guruju MR, Poor D, Doran RM, Sharma RV, Kotlikoff MI, Davisson RL. Nox2 and Nox4 influence neonatal c-kit(+) cardiac precursor cell status and differentiation. Am J Physiol Heart Circ Physiol 2013; 305:H829-42. [PMID: 23832701 DOI: 10.1152/ajpheart.00761.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox status has emerged as critical in modulating stemness and lineage commitment in several precursor cell types. However, a role for redox genes, specifically NADPH oxidases (Nox), in cardiac precursor cells (CPCs) has not been established. We tested whether CPCs marked by type III receptor tyrosine kinase c-kit (c-kit(+)) exhibit a unique NADPH oxidase signature that confers precursor status and whether alterations in this profile are functionally linked to changes in lineage specification. Dihydroethidium (DHE) microfluorography indicated reduced basal reactive oxygen species (ROS) formation within early postnatal c-kit(+) CPCs. Real-time quantitative PCR revealed downregulation of ROS generator Nox2 and its subunit p67(phox) in c-kit(+) CPCs under basal conditions but upregulation of Nox2 and Nox4 over the course of differentiation. Adenoviral silencing of Nox2 and Nox4 increased expression of CPC markers c-kit and Flk-1 and blunted smooth and cardiac muscle differentiation, respectively, while overexpression of Nox2 and Nox4 significantly reduced c-kit expression. These changes were accompanied by altered expression of transcription factors regulating cardiac lineage commitment, Gata6 and Gata4, and cytokine transforming growth factor (TGF)-β1. Similar to other precursor cell types, RT(2)Profiler PCR Arrays revealed that c-kit(+) CPCs also exhibit enhanced antioxidant capacity at the mRNA level. In conclusion, we report that c-kit(+) CPCs demonstrate reduced Nox2 expression and ROS levels and that increases in Nox2 and Nox4 influence their differentiation into mature cells. We speculate that ROS generators Nox2 and Nox4, along with the antioxidant genes identified by PCR Arrays, may be novel targets in CPCs that could prove useful in cell-based therapy of the heart.
Collapse
Affiliation(s)
- Alyson S Nadworny
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York; and
| | | | | | | | | | | | | |
Collapse
|
45
|
Gao L, Huang W, Li J. NOX1 abet mesangial fibrogenesis via iNOS induction in diabetes. Mol Cell Biochem 2013; 382:185-91. [PMID: 23801050 DOI: 10.1007/s11010-013-1733-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022]
Abstract
Both NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS) are the main sources of reactive oxygen species in kidney. However, their interactions in oxidative stress and contributions to kidney fibrosis during diabetic nephropathy have not been studied. Human mesangial cells were treated with normal glucose (5.6 mmol/L), high glucose (30 mmol/L) in the presence or absence of AGE (200 mg/L). Protein expressions of NOX1, NOX2, NOX4, and iNOS were examined by immunoblotting. NOX was genetically silenced with specific RNAi to study the interactions between NOX and iNOS in diabetic milieu. Superoxide (O(·-)) and peroxynitrite (ONOO(·-)) productions were assessed by dihydroethidium and hydroxyphenyl fluorescein, respectively. Fibrotic factors were determined by biochemistry assay. Superoxide, peroxynitrite, TGF-β, and fibronectin productions as well as the protein expressions of NOX1, NOX2, NOX4, and iNOS were increased in the diabetic milieu (high glucose 30 mmol/L plus AGE 200 mg/L). However, abolishment of iNOS induction with 1400W or iNOS RNAi would restore peroxynitrite, TGF-β, and fibronectin productions completely to basal level and attenuate superoxide production. Moreover, NOX1 inhibition not only prevented iNOS induction but also abrogated changes consequent to iNOS induction such as mesangial fibrogenesis.
Collapse
Affiliation(s)
- Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Jiefang RD 238, Wuhan, 430060, China
| | | | | |
Collapse
|
46
|
Acharya S, Peters AM, Norton AS, Murdoch GK, Hill RA. Change in Nox4 expression is accompanied by changes in myogenic marker expression in differentiating C2C12 myoblasts. Pflugers Arch 2013; 465:1181-96. [PMID: 23503725 DOI: 10.1007/s00424-013-1241-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/10/2013] [Accepted: 02/04/2013] [Indexed: 01/10/2023]
Abstract
Myoblast differentiation is mediated by a cascade of changes in gene expression including transcription factors such as myogenin. Subsequent to myoblast differentiation, there is an increase in expression of the transmembrane protein NADPH oxidase (Nox). Nox is one of the primary factors for the generation of reactive oxygen species (ROS) in myogenic (C2C12) cells. Recently, ROS have been shown to be important regulators of several intracellular signaling pathways, and the full extent of their regulatory roles is yet to be discovered. In the present study, qRT PCR analysis demonstrated that Nox4 isoform is primarily expressed in differentiating C2C12 cells and contributes to the generation of ROS in C2C12 myoblast during differentiation. Over-expression and silencing of Nox4 expression during myoblast differentiation was accompanied by a reduction in intracellular ROS concentrations and an alteration in the expression patterns of Myf5, Pax7, MyoD1, and myogenin. This modulation was found to be associated with ERK1/2 phosphorylation. In both over-expression and reduced expression of Nox4, we found significant reductions in ERK1/2 phosphorylation. This indicates that cellular differentiation may be affected by Nox4-mediated endogenous ROS generation. These data suggest a new opportunity to study the temporal expression of Nox4 in the generation of ROS accompanying changes in myogenic differentiation.
Collapse
Affiliation(s)
- S Acharya
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID 83844, USA
| | | | | | | | | |
Collapse
|
47
|
Reactive oxygen species in vascular formation and development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:374963. [PMID: 23401740 PMCID: PMC3564431 DOI: 10.1155/2013/374963] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/29/2012] [Accepted: 12/29/2012] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are derived from the metabolism of oxygen and are traditionally viewed as toxic byproducts that cause damage to biomolecules. It is now becoming widely acknowledged that ROS are key modulators in a variety of biological processes and pathological states. ROS mediate key signaling transduction pathways by reversible oxidation of certain signaling components and are involved in the signaling of growth factors, G-protein-coupled receptors, Notch, and Wnt and its downstream cascades including MAPK, JAK-STAT, NF-κB, and PI3K/AKT. Vascular formation and development is one of the most important events during embryogenesis and is vital for postnasal tissue repair. In this paper, we will discuss how ROS regulate different steps in vascular development, including smooth muscle cell differentiation, angiogenesis, endothelial progenitor cells recruitment, and vascular cell migration.
Collapse
|
48
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
49
|
Won H, Lim S, Jang M, Kim Y, Rashid MA, Jyothi KR, Dashdorj A, Kang I, Ha J, Kim SS, Ha H. Peroxiredoxin-2 upregulated by NF-κB attenuates oxidative stress during the differentiation of muscle-derived C2C12 cells. Antioxid Redox Signal 2012; 16:245-61. [PMID: 21902453 DOI: 10.1089/ars.2011.3952] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM Many studies have reported that the generation of reactive oxygen species (ROS) increases during the differentiation of muscle-derived C2C12 cells. Peroxiredoxin-2 (Prx-2) is an abundant mammalian enzyme that protects against oxidative stress. However, the role of Prx-2 in muscle differentiation has not been investigated. RESULTS In this study, we demonstrated that Prx-2 expression increases during muscle differentiation and regeneration in response to exogenous H(2)O(2). This increase occurs only in myoblast cell lines because no increase in Prx-2 expression was observed in the NIH3T3, MEF, Chang, or HEK293 cell lines. The antioxidants, N-acetyl L-cysteine (NAC) and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron), both suppressed myogenesis and Prx-2 expression. Moreover, Prx-2 was upregulated at the transcriptional level by NF-κB during the differentiation of muscle-derived C2C12 cells. We also found that inhibition of phosphatidylinositol 3-kinase (PI3K) blocks NF-κB activation and suppresses Prx-2 expression. Interestingly, Prx-2 knockdown increased the expression levels of other antioxidant enzymes, including all of the other Prx family member, thioredoxin-1 (Trx-1) and catalase, but also enhanced the accumulation of endogenous ROS during muscle differentiation. INNOVATION In this study, we demonstrated for the first time that Prx-2 is unregulated during the muscle differentiation and regeneration. CONCLUSION Prx-2 is upregulated via the PI3K/NF-κB pathway and attenuates oxidative stress during muscle differentiation and regeneration.
Collapse
Affiliation(s)
- Hyeran Won
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kennedy KAM, Sandiford SDE, Skerjanc IS, Li SSC. Reactive oxygen species and the neuronal fate. Cell Mol Life Sci 2012; 69:215-21. [PMID: 21947442 PMCID: PMC11114775 DOI: 10.1007/s00018-011-0807-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/29/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
Aberrant or elevated levels of reactive oxygen species (ROS) can mediate deleterious cellular effects, including neuronal toxicity and degeneration observed in the etiology of a number of pathological conditions, including Alzheimer's and Parkinson's diseases. Nevertheless, ROS can be generated in a controlled manner and can regulate redox sensitive transcription factors such as NFκB, AP-1 and NFAT. Moreover, ROS can modulate the redox state of tyrosine phosphorylated proteins, thereby having an impact on many transcriptional networks and signaling cascades important for neurogenesis. A large body of literature links the controlled generation of ROS at low-to-moderate levels with the stimulation of differentiation in certain developmental programs such as neurogenesis. In this regard, ROS are involved in governing the acquisition of the neural fate-from neural induction to the elaboration of axons. Here, we summarize and discuss the growing body of literature that describe a role for ROS signaling in neuronal development.
Collapse
Affiliation(s)
- Karen A. M. Kennedy
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| | - Shelley D. E. Sandiford
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| | - Ilona S. Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Shawn S.-C. Li
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1 Canada
| |
Collapse
|