1
|
Chen X, Xiao L, Yu S, Ren Z, Wang W, Jia Y, Liu M, Wang P, Ji D, Yu Y, Wang X. GYY4137, a H 2S donor, ameliorates kidney injuries in diabetic mice by modifying renal ROS-associated enzymes. Biomed Pharmacother 2023; 162:114694. [PMID: 37054540 DOI: 10.1016/j.biopha.2023.114694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of both type 1 and type 2 diabetes mellitus and often advances to end-stage renal disease. Oxidative stress plays an important role in the pathogenesis and progress of DN. Hydrogen sulfide (H2S) is considered as a promising candidate for the management of DN. But the antioxidant effects of H2S in DN have not been fully studied. In mouse model induced by high-fat diet and streptozotocin, GYY4137, a H2S donor, ameliorated albuminuria at weeks 6 & 8 and decreased serum creatinine at week 8, but not hyperglycemia. Renal nitrotyrosine and urinary 8-isoprostane were reduced along with the suppressed levels of renal laminin and kidney-injury-molecule 1. Renal NADPH oxidase (NOX) 2 was lower but heme oxygenase (HO) 2, paraoxonase (PON) 1, PON2 were higher in DN+GYY than DN group. NOX1, NOX4, HO1, superoxide dismutases 1-3 were similar between groups. Except for a rise at HO2, all the affected enzymes were unchanged in mRNA levels. The affected reactive-oxygen-species (ROS) enzymes were mainly located in the renal sodium-hydrogen-exchanger positive proximal tubules with similar distribution but changed immunofluorence in GYY4137 treated DN mice. Kidney morphological alterations in DN mice under light and electrical-microscopes were also improved by GYY4137. Thus, exogenous H2S administration may improve the renal oxidative damage in DN by reducing ROS production and enhancing ROS cleavage in kidney via the affected enzymes. This study may shed a light on therapeutic applications in diabetic nephropathy with H2S donors in the future.
Collapse
Affiliation(s)
- Xueqi Chen
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Leijuan Xiao
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyue Yu
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwan Wang
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yutao Jia
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingda Liu
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Wang
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Daxi Ji
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yanting Yu
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Fleischhacker AS, Sarkar A, Liu L, Ragsdale SW. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit Rev Biochem Mol Biol 2022; 57:16-47. [PMID: 34517731 PMCID: PMC8966953 DOI: 10.1080/10409238.2021.1961674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbβ, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anindita Sarkar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Hanna DA, Moore CM, Liu L, Yuan X, Dominic IM, Fleischhacker AS, Hamza I, Ragsdale SW, Reddi AR. Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. J Biol Chem 2021; 298:101549. [PMID: 34973332 PMCID: PMC8808069 DOI: 10.1016/j.jbc.2021.101549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Heme oxygenases (HOs) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms of HO: the inducible HO-1, which is upregulated in response to excess heme and other stressors, and the constitutive HO-2. Much is known about the regulation and physiological function of HO-1, whereas comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or overexpressed HO-2, as well as various HO-2 mutant alleles, we found that endogenous heme is too limiting a substrate to observe HO-2-dependent heme degradation. Rather, we discovered a novel role for HO-2 in the binding and buffering of heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor that controls heme bioavailability. When heme is in excess, HO-1 is induced, and both HO-2 and HO-1 can provide protection from heme toxicity via enzymatic degradation. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with labile heme being oxidized, thereby providing new insights into heme trafficking and signaling.
Collapse
Affiliation(s)
- David A. Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iramofu M. Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA,For correspondence: Amit R. Reddi
| |
Collapse
|
4
|
Li Y, Dong Y, Meng L, Yu P, Zhao P, Gong M, Gao Q, Shi H, Meng C, Gao Y. Effects of Exogenous Biliverdin Treatment on Neurobehaviors in Mice. Biol Pharm Bull 2021; 44:325-331. [PMID: 33642542 DOI: 10.1248/bpb.b20-00340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuroprotective effects of heme oxygenase (HO) have been well investigated. The potential effects of exogenous supplementation of biliverdin (BVD), one of the main products catalyzed by HO, on neurobehaviors are still largely unknown. The present study aimed to investigate the effects of BVD treatment on depression, anxiety, and memory in adult mice. Mice were injected with BVD through tail vein daily for a total 5 d, and depression- and anxiety-like behaviors were conducted by using open field test (OFT), novelty suppressed feeding (NSF), forced swimming test (FST) and tail suspension test (TST) since the third day of BVD administration. Novel object recognition (NOR) paradigm was used for memory formation test. After the final test, serum and hippocampal levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) of mice were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that BVD treatment at low dose (2 mg/kg) induced depression-like behaviors, and high dose (8 mg/kg) BVD injection increased anxiety-like behaviors and impaired memory formation in mice. ELISA data showed that BVD treatment significantly increased hippocampal IL-6 and TNF-α level while only decreasing serum IL-6 level of mice. The present data suggest that exogenous BVD treatment induced depression- and anxiety-like phenotypes, which may be related to inflammatory factors, providing BVD may be a potential target for the prevention of mental disorders.
Collapse
Affiliation(s)
- Yueyi Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Yan Dong
- Intensive Care Unit of Hebei Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Panpan Yu
- Department of State Assets and Laboratory Administrative, Hebei Medical University
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University
| | - Cuili Meng
- Department of Biochemistry, School of Basic Medicine, Xingtai Medical College
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University
| |
Collapse
|
5
|
Nath KA, Garovic VD, Grande JP, Croatt AJ, Ackerman AW, Farrugia G, Katusic ZS, Belcher JD, Vercellotti GM. Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex. Am J Physiol Renal Physiol 2019; 317:F695-F704. [PMID: 31215802 PMCID: PMC6842883 DOI: 10.1152/ajprenal.00085.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase (HO) activity is exhibited by inducible (HO-1) and constitutive (HO-2) proteins. HO-1 protects against ischemic and nephrotoxic acute kidney injury (AKI). We have previously demonstrated that HO-2 protects against heme protein-induced AKI. The present study examined whether HO-2 is protective in ischemic AKI. Renal ischemia was imposed on young and aged HO-2+/+ and HO-2-/- mice. On days 1 and 2 after renal ischemia, there were no significant differences in renal function between young male HO-2+/+ and HO-2-/- mice, between young female HO-2+/+ and HO-2-/- mice, or between aged female HO-2+/+ and HO-2-/- mice. However, in aged male mice, HO-2 deficiency worsened renal function on days 1 and 2 after ischemic AKI, and, on day 2 after ischemia, such deficiency augmented upregulation of injury-related genes and worsened histological injury. Renal HO activity was markedly decreased in unstressed aged male HO-2-/- mice and remained so after ischemia, despite exaggerated HO-1 induction in HO-2-/- mice after ischemia. Such exacerbation of deficiency of HO-2 protein and HO activity may reflect phosphorylated STAT3, as activation of this proinflammatory transcription factor was accentuated early after ischemia in aged male HO-2-/- mice. This exacerbation may not reflect impaired induction of nephroprotectant genes, since the induction of HO-1, sirtuin 1, and β-catenin was accentuated in aged male HO-2-/- mice after ischemia. We conclude that aged male mice are hypersensitive to ischemic AKI and that HO-2 mitigates such sensitivity. We speculate that this protective effect of HO-2 may be mediated, at least in part, by suppression of phosphorylated STAT3-dependent signaling.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - John D Belcher
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
6
|
Caglayan M, Kocamıs SI, Sarac O, Tatli Dogan H, Kosekahya P, Ayan M, Cagil N. Investigation of Heme Oxygenase 2 Enzyme Protein Expression in Keratoconus and Normal Human Corneal Epithelium: An Immunohistochemical Study. Curr Eye Res 2018; 44:25-29. [DOI: 10.1080/02713683.2018.1521980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mehtap Caglayan
- Department of Ophthalmology, Mardin State Hospital, Mardin, Turkey
| | | | - Ozge Sarac
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| | | | - Pinar Kosekahya
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Murat Ayan
- Department of Ophthalmology, Yenimahalle State Hospital, Ankara, Turkey
| | - Nurullah Cagil
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
7
|
Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation 2016; 13:26. [PMID: 26831741 PMCID: PMC4736638 DOI: 10.1186/s12974-016-0490-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/23/2016] [Indexed: 01/10/2023] Open
Abstract
Background Following intracerebral hemorrhage (ICH), red blood cells release massive amounts of toxic heme that causes local brain injury. Hemopexin (Hpx) has the highest binding affinity to heme and participates in its transport, while heme oxygenase 2 (HO2) is the rate-limiting enzyme for the degradation of heme. Microglia are the resident macrophages in the brain; however, the significance and role of HO2 and Hpx on microglial clearance of the toxic heme (iron-protoporphyrin IX) after ICH still remain understudied. Accordingly, we postulated that global deletion of constitutive HO2 or Hpx would lead to worsening of ICH outcomes. Methods Intracerebral injection of stroma-free hemoglobin (SFHb) was used in our study to induce ICH. Hpx knockout (Hpx−/−) or HO2 knockout (HO2−/−) mice were injected with 10 μL of SFHb in the striatum. After injection, behavioral/functional tests were performed, along with anatomical analyses. Iron deposition and neuronal degeneration were depicted by Perls’ and Fluoro-Jade B staining, respectively. Immunohistochemistry with anti-ionized calcium-binding adapter protein 1 (Iba1) was used to estimate activated microglial cells around the injured site. Results This study shows that deleting Hpx or HO2 aggravated SFHb-induced brain injury. Compared to wild-type littermates, larger lesion volumes were observed in Hpx−/− and HO2−/− mice, which also bear more degenerating neurons in the peri-lesion area 24 h postinjection. Fewer Iba1-positive microglial cells were detected at the peri-lesion area in Hpx−/− and HO2−/− mice, interestingly, which is associated with markedly increased iron-positive microglial cells. Moreover, the Iba1-positive microglial cells increased from 24 to 72 h postinjection and were accompanied with improved neurologic deficits in Hpx−/− and HO2−/− mice. These results suggest that Iba1-positive microglial cells could engulf the extracellular SFHb and provide protective effects after ICH. We then treated cultured primary microglial cells with SFHb at low and high concentrations. The results show that microglial cells actively take up the extracellular SFHb. Of interest, we also found that iron overload in microglia significantly reduces the Iba1 expression level and resultantly inhibits microglial phagocytosis. Conclusions This study suggests that microglial cells contribute to hemoglobin-heme clearance after ICH; however, the resultant iron overloads in microglia appear to decrease Iba1 expression and to further inhibit microglial phagocytosis.
Collapse
|
8
|
Takeda TA, Mu A, Tai TT, Kitajima S, Taketani S. Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage. Sci Rep 2015; 5:10488. [PMID: 25990790 PMCID: PMC4438432 DOI: 10.1038/srep10488] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/15/2015] [Indexed: 11/09/2022] Open
Abstract
It is well known that haem serves as the prosthetic group of various haemoproteins that function in oxygen transport, respiratory chain, and drug metabolism. However, much less is known about the functions of the catabolites of haem in mammalian cells. Haem is enzymatically degraded to iron, carbon monoxide (CO), and biliverdin, which is then converted to bilirubin. Owing to difficulties in measuring bilirubin, however, the generation and transport of this end product remain unclear despite its clinical importance. Here, we used UnaG, the recently identified bilirubin-binding fluorescent protein, to analyse bilirubin production in a variety of human cell lines. We detected a significant amount of bilirubin with many non-blood cell types, which was sensitive to inhibitors of haem metabolism. These results suggest that there is a basal level of haem synthesis and its conversion into bilirubin. Remarkably, substantial changes were observed in the bilirubin generation when cells were exposed to stress insults. Since the stress-induced cell damage was exacerbated by the pharmacological blockade of haem metabolism but was ameliorated by the addition of biliverdin and bilirubin, it is likely that the de novo synthesis of haem and subsequent conversion to bilirubin play indispensable cytoprotective roles against cell damage.
Collapse
Affiliation(s)
- Taka-aki Takeda
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Anfeng Mu
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tran Tien Tai
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Sakihito Kitajima
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
9
|
Profiling status epilepticus-induced changes in hippocampal RNA expression using high-throughput RNA sequencing. Sci Rep 2014; 4:6930. [PMID: 25373493 PMCID: PMC4894418 DOI: 10.1038/srep06930] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/09/2014] [Indexed: 12/30/2022] Open
Abstract
Status epilepticus (SE) is a life-threatening condition that can give rise to a number of neurological disorders, including learning deficits, depression, and epilepsy. Many of the effects of SE appear to be mediated by alterations in gene expression. To gain deeper insight into how SE affects the transcriptome, we employed the pilocarpine SE model in mice and Illumina-based high-throughput sequencing to characterize alterations in gene expression from the induction of SE, to the development of spontaneous seizure activity. While some genes were upregulated over the entire course of the pathological progression, each of the three sequenced time points (12-hour, 10-days and 6-weeks post-SE) had a largely unique transcriptional profile. Hence, genes that regulate synaptic physiology and transcription were most prominently altered at 12-hours post-SE; at 10-days post-SE, marked changes in metabolic and homeostatic gene expression were detected; at 6-weeks, substantial changes in the expression of cell excitability and morphogenesis genes were detected. At the level of cell signaling, KEGG analysis revealed dynamic changes within the MAPK pathways, as well as in CREB-associated gene expression. Notably, the inducible expression of several noncoding transcripts was also detected. These findings offer potential new insights into the cellular events that shape SE-evoked pathology.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Heme oxygenase activity, possessed by an inducible heme oxygenase-1 (HO-1) and a constitutive isoform (HO-2), catalyzes the conversion of heme to biliverdin, liberates iron, and generates carbon monoxide. First shown in acute kidney injury (AKI), HO-1 is now recognized as a protectant against diverse insults in assorted tissues. This review summarizes recent contributions to the field of HO-1 and AKI. RECENT FINDINGS Recent findings elucidate the following: the transcriptional regulation and significance of human HO-1 in AKI; the protective effects of HO-1 in age-dependent and sepsis-related AKI, cardiorenal syndromes, and acute vascular rejection in renal xenografts; the role of heme oxygenase in tubuloglomerular feedback and renal resistance to injury; the basis for cytoprotection by HO-1; the protective properties of ferritin and carbon monoxide; HO-1 and the AKI-chronic kidney disease transition; HO-1 as a biomarker in AKI; the role of HO-1 in mediating the protective effects of specific cytokines, stem cells, and therapeutic agents in AKI; and HO-2 as a protectant in AKI. SUMMARY Recent contributions support, and elucidate the basis for, the induction of HO-1 as a protectant against AKI. Translating such therapeutic potential into a therapeutic reality requires well tolerated and effective modalities for upregulating HO-1 and/or administering its products, which, optimally, should be salutary even when AKI is already established.
Collapse
|
11
|
Muñoz-Sánchez J, Chánez-Cárdenas ME. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:604981. [PMID: 25136403 PMCID: PMC4127239 DOI: 10.1155/2014/604981] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
Hemeoxygenase (HO) system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia.
Collapse
Affiliation(s)
- Jorge Muñoz-Sánchez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| | - María Elena Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| |
Collapse
|
12
|
Leonardo CC, Agrawal M, Singh N, Moore JR, Biswal S, Doré S. Oral administration of the flavanol (-)-epicatechin bolsters endogenous protection against focal ischemia through the Nrf2 cytoprotective pathway. Eur J Neurosci 2013; 38:3659-68. [PMID: 24112193 DOI: 10.1111/ejn.12362] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/25/2013] [Indexed: 11/29/2022]
Abstract
Consumption of flavan-3-ols, notably (-)-epicatechin (EC), has been highly recommended in complementary and alternative medicine (CAM) due to reports that flavan-3-ols boost antioxidant activity, support vascular function, and prevent cardiovascular disease. To date, in vivo efficacy and mechanisms of action for many CAM therapies, including EC, remain elusive in brain ischemia. In contrast to its purported direct antioxidant role, we hypothesized protection through activation of the endogenous transcriptional factor Nrf2. To screen cellular protection and investigate Nrf2 activation, we adopted a pretreatment paradigm using enriched primary neuronal cultures from mice and washed out EC prior to oxygen glucose deprivation to attenuate direct antioxidant effects. EC protected primary neurons from oxygen glucose deprivation by increasing neuronal viability (40.2 ± 14.1%) and reducing protein oxidation, effects that occurred concomitantly with increased Nrf2-responsive antioxidant protein expression. We also utilized wildtype and Nrf2 C57BL/6 knockout mice in a permanent model of focal brain ischemia to evaluate glial cell regulation and complex sensorimotor functioning. EC-treated wildtype mice displayed a reduction or absence of forelimb motor coordination impairments that were evident in vehicle-treated mice. This protection was associated with reduced anatomical injury (54.5 ± 8.3%) and microglia/macrophage activation/recruitment (56.4 ± 13.0%). The protective effects elicited by EC in both model systems were abolished in tissues and neuronal cultures from Nrf2 knockout mice. Together, these data demonstrate EC protection through Nrf2 and extend the benefits to improved performance on a complex sensorimotor task, highlighting the potential of flavan-3-ols in CAM approaches in minimizing subsequent stroke injury.
Collapse
Affiliation(s)
- Christopher C Leonardo
- Department of Anesthesiology, University of Florida, College of Medicine, 1275 Center Drive, Gainesville, FL, 32610, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kang L, Grande JP, Farrugia G, Croatt AJ, Katusic ZS, Nath KA. Functioning of an arteriovenous fistula requires heme oxygenase-2. Am J Physiol Renal Physiol 2013; 305:F545-52. [PMID: 23678042 DOI: 10.1152/ajprenal.00234.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heme oxygenase-2 (HO-2), the constitutive isoform of the heme-degrading enzyme heme oxygenase, may serve as an anti-inflammatory vasorelaxant, in part, by generating carbon monoxide. Arteriovenous fistulas (AVFs) are employed as hemodialysis vascular accesses because they provide an accessible, high-blood-flow vascular segment. We examined the role of vascular expression of HO-2 in AVF function. An AVF was created in mice by anastomosing the carotid artery to the jugular vein. HO-2 expression was detected by immunohistochemistry in the intact carotid artery, mainly in endothelial cells and smooth muscle cells; expression of HO-2 protein and mRNA was modestly increased in the artery of the AVF. Creating an AVF in HO-2(-/-) mice compared with an AVF in HO-2(+/+) mice led to markedly reduced AVF blood flow and increased numbers of nonfunctioning AVFs. The impairment of AVF function in the setting of HO-2 deficiency could not be ascribed to either preexisting intrinsic abnormalities in endothelium-dependent and endothelium-independent relaxation of the carotid artery in HO-2-deficient mice or to impaired vasorelaxant responses in the intact carotid artery in vivo. HO-1 mRNA was comparably induced in the AVF in HO-2(+/+) and HO-2(-/-) mice, whereas the AVF in HO-2(-/-) mice compared with that in HO-2(+/+) mice exhibited exaggerated induction of matrix metalloproteinase (MMP)-9 but similar induction of MMP-2. HO-2 deficiency also led to lower AVF blood flow when AVFs were created in uremia, the latter induced by subtotal nephrectomy. We conclude that HO-2 critically contributes to the adequacy of AVF blood flow and function.
Collapse
Affiliation(s)
- Lu Kang
- Mayo Clinic, Guggenheim 542, 200 First St. SW, Rochester, MN 55905.
| | | | | | | | | | | |
Collapse
|
14
|
Halilovic A, Patil KA, Bellner L, Marrazzo G, Castellano K, Cullaro G, Dunn MW, Schwartzman ML. Knockdown of heme oxygenase-2 impairs corneal epithelial cell wound healing. J Cell Physiol 2011; 226:1732-40. [PMID: 21506105 DOI: 10.1002/jcp.22502] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heme oxygenase (HO) represents an intrinsic cytoprotective system based on its anti-oxidative and anti-inflammatory properties mediated via its products biliverdin/bilirubin and carbon monoxide (CO). We showed that deletion of HO-2 results in impaired corneal wound healing with associated chronic inflammatory complications. This study was undertaken to examine the role of HO activity and the contribution of HO-1 and HO-2 to corneal wound healing in an in vitro epithelial scratch injury model. A scratch wound model was established using human corneal epithelial (HCE) cells. These cells expressed both HO-1 and HO-2 proteins. Injury elicited a rapid and transient increase in HO-1 and HO activity; HO-2 expression was unchanged. Treatment with biliverdin or CORM-A1, a CO donor, accelerated wound closure by 10% at 24 h. Inhibition of HO activity impaired wound closure by more than 50%. However, addition of biliverdin or CORM-A1 reversed the effect of HO inhibition on wound healing. Moreover, knockdown of HO-2 expression, but not HO-1, significantly impaired wound healing. These results indicate that HO activity is required for corneal epithelial cell migration. Inhibition of HO activity impairs wound healing while amplification of its activity restores and accelerates healing. Importantly, HO-2, which is highly expressed in the corneal epithelium, appears to be critical for the wound healing process in the cornea. The mechanisms by which it contributes to cell migration in response to injury may reside in the cytoprotective properties of CO and biliverdin.
Collapse
Affiliation(s)
- Adna Halilovic
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu JY, Qu HY, Shang ZL, Tao ST, Xu GH, Wu J, Wu HQ, Zhang SL. Reciprocal regulation of Ca²+-activated outward K+ channels of Pyrus pyrifolia pollen by heme and carbon monoxide. THE NEW PHYTOLOGIST 2011; 189:1060-1068. [PMID: 21133925 DOI: 10.1111/j.1469-8137.2010.03564.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
• The regulation of plant potassium (K+) channels has been extensively studied in various systems. However, the mechanism of their regulation in the pollen tube is unclear. • In this study, the effects of heme and carbon monoxide (CO) on the outward K+ (K+(out)) channel in pear (Pyrus pyrifolia) pollen tube protoplasts were characterized using a patch-clamp technique. • Heme (1 μM) decreased the probability of K+(out) channel opening without affecting the unitary conductance, but this inhibition disappeared when heme was co-applied with 10 μM intracellular free Ca²+. Conversely, exposure to heme in the presence of NADPH increased channel activity. However, with tin protoporphyrin IX treatment, which inhibits hemeoxygenase activity, the inhibition of the K+(out) channel by heme occurred even in the presence of NADPH. CO, a product of heme catabolism by hemeoxygenase, activates the K+(out) channel in pollen tube protoplasts in a dose-dependent manner. The current induced by CO was inhibited by the K+ channel inhibitor tetraethylammonium. • These data indicate a role of heme and CO in reciprocal regulation of the K+(out) channel in pear pollen tubes.
Collapse
Affiliation(s)
- Ju-You Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Yong Qu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong-Lin Shang
- College of Life Sciences, HeBei Normal University, Shi Jia Zhuang 050016, China
| | - Shu-Tian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Hua Xu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua-Qing Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Ling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Shah ZA, Li RC, Ahmad AS, Kensler TW, Yamamoto M, Biswal S, Doré S. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 2010; 30:1951-61. [PMID: 20442725 PMCID: PMC3002885 DOI: 10.1038/jcbfm.2010.53] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidemiologic studies have shown that foods rich in polyphenols, such as flavanols, can lower the risk of ischemic heart disease; however, the mechanism of protection has not been clearly established. In this study, we investigated whether epicatechin (EC), a flavanol in cocoa and tea, is protective against brain ischemic damage in mice. Wild-type mice pretreated orally with 5, 15, or 30 mg/kg EC before middle cerebral artery occlusion (MCAO) had significantly smaller brain infarcts and decreased neurologic deficit scores (NDS) than did the vehicle-treated group. Mice that were posttreated with 30 mg/kg of EC at 3.5 hours after MCAO also had significantly smaller brain infarcts and decreased NDS. Similarly, WT mice pretreated with 30 mg/kg of EC and subjected to N-methyl-D-aspartate (NMDA)-induced excitotoxicity had significantly smaller lesion volumes. Cell viability assays with neuronal cultures further confirmed that EC could protect neurons against oxidative insults. Interestingly, the EC-associated neuroprotection was mostly abolished in mice lacking the enzyme heme oxygenase 1 (HO1) or the transcriptional factor Nrf2, and in neurons derived from these knockout mice. These results suggest that EC exerts part of its beneficial effect through activation of Nrf2 and an increase in the neuroprotective HO1 enzyme.
Collapse
Affiliation(s)
- Zahoor A Shah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
He JZ, Ho JJD, Gingerich S, Courtman DW, Marsden PA, Ward ME. Enhanced translation of heme oxygenase-2 preserves human endothelial cell viability during hypoxia. J Biol Chem 2010; 285:9452-9461. [PMID: 20118244 DOI: 10.1074/jbc.m109.077230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heme oxygenases (HOs) -1 and -2 catalyze the breakdown of heme to release carbon monoxide, biliverdin, and ferrous iron, which may preserve cell function during oxidative stress. HO-1 levels decrease in endothelial cells exposed to hypoxia, whereas the effect of hypoxia on HO-2 expression is unknown. The current study was carried out to determine if hypoxia alters HO-2 protein levels in human endothelial cells and whether this enzyme plays a role in preserving their viability during hypoxic stress. Human umbilical vein endothelial cells (HUVECs), human aortic endothelial cells (HAECs), and human blood outgrowth endothelial cells were exposed to 21% or 1% O(2) for 48 or 16 h in the presence or absence of tumor necrosis factor-alpha (10 ng/ml) or H(2)O(2) (100 microm). In all three endothelial cell types HO-1 mRNA and protein levels were decreased following hypoxic incubation, whereas HO-2 protein levels were unaltered. In HUVECs HO-2 levels were maintained during hypoxia despite a 57% reduction in steady-state HO-2 mRNA level and a 43% reduction in total protein synthesis. Polysome profiling revealed increased HO-2 transcript association with polysomes during hypoxia consistent with enhanced translation of these transcripts. Importantly, inhibition of HO-2 expression by small interference RNA increased oxidative stress, exacerbated mitochondrial membrane depolarization, and enhanced caspase activation and apoptotic cell death in cells incubated under hypoxic but not normoxic conditions. These data indicate that HO-2 is important in maintaining endothelial viability and may preserve local regulation of vascular tone, thrombosis, and inflammatory responses during reductions in systemic oxygen delivery.
Collapse
Affiliation(s)
- Jeff Z He
- Terrence Donnelly Laboratories, Toronto, Ontario M5B 1W8; Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario M5B 1W8; Departments of Laboratory Medicine and Pathobiology, Toronto, Ontario M5S 1A8, Canada
| | - J J David Ho
- Medical Biophysics, Toronto, Ontario M5S 1A8, Canada
| | - Sheena Gingerich
- Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David W Courtman
- Terrence Donnelly Laboratories, Toronto, Ontario M5B 1W8; Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario M5B 1W8
| | - Philip A Marsden
- Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario M5B 1W8; Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Michael E Ward
- Terrence Donnelly Laboratories, Toronto, Ontario M5B 1W8; Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario M5B 1W8; Departments of Laboratory Medicine and Pathobiology, Toronto, Ontario M5S 1A8, Canada; Divisions of Respirology, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
An oxygen-sensitive mechanism in regulation of epithelial sodium channel. Proc Natl Acad Sci U S A 2009; 106:2957-62. [PMID: 19196957 DOI: 10.1073/pnas.0809100106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Epithelial sodium channels (ENaCs) are of immense importance, controlling Na(+) transport across epithelia and thus playing a central role in all aspects of fluid clearance as well as numerous other functions. Regulation of these channels is critical. Here, we show that haem, a regulator of Na(+) transport, directly influences ENaC activity, decreasing channel-open probability (but not unitary conductance) in inside-out patches (but not outside-out). Conversely, exposure to the protein in the presence of NADPH and at normoxic O(2) tension (requirements for activity of hemeoxygenase) increases channel activity. CO, a product of hemeoxygenase activity, activated ENaC in a manner similar to that of haem plus NADPH. However, under hypoxic conditions, inhibition of ENaC by haem occurred even in the presence of NADPH. These data demonstrate a potent, O(2)-sensitive mechanism for regulation of ENaC, in which hemeoxygenase acts as the O(2) sensor, its substrate and product inhibiting and stimulating (respectively) the activity of ENaC.
Collapse
|
19
|
Kinobe RT, Dercho RA, Nakatsu K. Inhibitors of the heme oxygenase - carbon monoxide system: on the doorstep of the clinic? Can J Physiol Pharmacol 2008; 86:577-99. [PMID: 18758507 DOI: 10.1139/y08-066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has seen substantial developments in our understanding of the physiology, pathology, and pharmacology of heme oxygenases (HO), to the point that investigators in the field are beginning to contemplate therapies based on administration of HO agonists or HO inhibitors. A significant amount of our current knowledge is based on the judicious application of metalloporphyrin inhibitors of HO, despite their limitations of selectivity. Recently, imidazole-based compounds have been identified as potent and more selective HO inhibitors. This 'next generation' of HO inhibitors offers a number of desirable characteristics, including isozyme selectivity, negligible effects on HO protein expression, and physicochemical properties favourable for in vivo distribution. Some of the applications of HO inhibitors that have been suggested are treatment of hyperbilirubinemia, neurodegenerative disorders, certain types of cancer, and bacterial and fungal infections. In this review, we address various approaches to altering HO activity with a focus on the potential applications of second-generation inhibitors of HO.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON Canada
| | | | | |
Collapse
|
20
|
Bellner L, Vitto M, Patil KA, Dunn MW, Regan R, Laniado-Schwartzman M. Exacerbated corneal inflammation and neovascularization in the HO-2 null mice is ameliorated by biliverdin. Exp Eye Res 2008; 87:268-78. [PMID: 18602389 DOI: 10.1016/j.exer.2008.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022]
Abstract
Heme oxygenase (HO-1 and HO-2) represents an intrinsic cytoprotective and anti-inflammatory system based on its ability to modulate leukocyte migration and to inhibit expression of inflammatory cytokines and proteins. HO-2 deletion leads to unresolved corneal inflammation and chronic inflammatory complications including ulceration, perforation and neovascularization. We examined the consequences of HO-2 deletion on hemangiogenesis and lymphangiogenesis in the model of suture-induced inflammatory neovascularization. An 8.0 silk suture was placed at the corneal apex of wild type and HO-2 null mice. Neovascularization was assessed by vital microscopy and quantified by image analysis. Hemangiogenesis and lymphangiogenesis were determined by immunofluorescence staining using anti-CD31 and anti-LYVE-1 antibodies, respectively. Inflammation was quantified by histology and myeloperoxidase activity. The levels of HO-1 expression and inflammatory cytokines were determined by real time PCR and ELISA, respectively. Corneal sutures produced a consistent inflammatory response and a time-dependent neovascularization. The response in HO-2 null mice was associated with a greater increase compared to the wild type in the number of leukocytes (827,600+/-129,000 vs. 294,500+/-57,510; p<0.05), neovessels measured by vital microscopy (21.91+/-1.05 vs. 12.77+/-1.55 mm; p<0.001) 4 days after suture placement. Hemangiogenesis but not lymphangiogenesis was more pronounced in HO-2 null mice compared to wild type mice. Induction of HO-1 in sutured corneas was greatly attenuated in HO-2 null corneas and treatment with biliverdin diminished the exaggerated inflammatory and neovascular response in HO-2 null mice. The demonstration that the inflammatory responses, including expression of proinflammatory proteins, inflammatory cell influx and hemangiogenesis are exaggerated in HO-2 knockout mice strongly supports the notion that the HO system is critical for controlling the inflammatory and neovascular response in the cornea. Hence, pharmacological amplification of this system may constitute a novel therapeutic strategy for the treatment of corneal disorders associated with excessive inflammation and neovascularization.
Collapse
Affiliation(s)
- Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
21
|
Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Jacob HS, Eaton JW, Balla G. Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid Redox Signal 2007; 9:2119-37. [PMID: 17767398 DOI: 10.1089/ars.2007.1787] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Iron-derived reactive oxygen species are involved in the pathogenesis of numerous vascular disorders. One abundant source of redox active iron is heme, which is inherently dangerous when it escapes from its physiologic sites. Here, we present a review of the nature of heme-mediated cytotoxicity and of the strategies by which endothelium manages to protect itself from this clear and present danger. Of all sites in the body, the endothelium may be at greatest risk of exposure to heme. Heme greatly potentiates endothelial cell killing mediated by leukocytes and other sources of reactive oxygen. Heme also promotes the conversion of low-density lipoprotein to cytotoxic oxidized products. Hemoglobin in plasma, when oxidized, transfers heme to endothelium and lipoprotein, thereby enhancing susceptibility to oxidant-mediated injury. As a defense against such stress, endothelial cells upregulate heme oxygenase-1 and ferritin. Heme oxygenase opens the porphyrin ring, producing biliverdin, carbon monoxide, and a most dangerous product-redox active iron. The latter can be effectively controlled by ferritin via sequestration and ferroxidase activity. These homeostatic adjustments have been shown to be effective in the protection of endothelium against the damaging effects of heme and oxidants; lack of adaptation in an iron-rich environment led to extensive endothelial damage in humans.
Collapse
Affiliation(s)
- József Balla
- Department of Medicine, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sheftel AD, Kim SF, Ponka P. Non-heme induction of heme oxygenase-1 does not alter cellular iron metabolism. J Biol Chem 2007; 282:10480-6. [PMID: 17242398 DOI: 10.1074/jbc.m700240200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catabolism of heme is carried out by members of the heme oxygenase (HO) family. The products of heme catabolism by HO-1 are ferrous iron, biliverdin (subsequently converted to bilirubin), and carbon monoxide. In addition to its function in the recycling of hemoglobin iron, this microsomal enzyme has been shown to protect cells in various stress models. Implicit in the reports of HO-1 cytoprotection to date are its effects on the cellular handling of heme/iron. However, the limited amount of uncommitted heme in non-erythroid cells brings to question the source of substrate for this enzyme in non-hemolytic circumstances. In the present study, HO-1 was induced by either sodium arsenite (reactive oxygen species producer) or hemin or overexpressed in the murine macrophage-like cell line, RAW 264.7. Both of the inducers elicited an increase in active HO-1; however, only hemin exposure caused an increase in the synthesis rate of the iron storage protein, ferritin. This effect of hemin was the direct result of the liberation of iron from heme by HO. Cells stably overexpressing HO-1, although protected from oxidative stress, did not display elevated basal ferritin synthesis. However, these cells did exhibit an increase in ferritin synthesis, compared with untransfected controls, in response to hemin treatment, suggesting that heme levels, and not HO-1, limit cellular heme catabolism. Our results suggest that the protection of cells from oxidative insult afforded by HO-1 is not due to the catabolism of significant amounts of cellular heme as thought previously.
Collapse
Affiliation(s)
- Alex D Sheftel
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
23
|
Chen-Roetling J, Regan RF. Effect of heme oxygenase-1 on the vulnerability of astrocytes and neurons to hemoglobin. Biochem Biophys Res Commun 2006; 350:233-7. [PMID: 16999934 PMCID: PMC1636847 DOI: 10.1016/j.bbrc.2006.09.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 09/09/2006] [Indexed: 12/28/2022]
Abstract
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown. Prior studies have demonstrated that the vulnerability of neurons and astrocytes to hemoglobin is modified in cells lacking HO-2, the constitutive isoform. The present study assessed the effect of the inducible isoform, HO-1. Wild-type astrocytes treated for 3-5 days with 3-30 microM hemoglobin sustained no loss of viability, as quantified by LDH and MTT assays. The same treatment resulted in death of 25-50% of HO-1 knockout astrocytes, and a 4-fold increase in protein oxidation. Cell injury was attenuated by transfer of the HO-1 gene, but not by bilirubin, the antioxidant heme breakdown product. Conversely, neuronal protein oxidation and cell death after hemoglobin exposure were similar in wild-type and HO-1 knockout cultures. These results suggest that HO-1 induction protects astrocytes from the oxidative toxicity of Hb, but has no effect on neuronal injury.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Thomas Jefferson University, 1020 Sansom Street, Thompson 239, Philadelphia, PA 19107, USA
| | | |
Collapse
|
24
|
Ahmad AS, Zhuang H, Doré S. Heme oxygenase-1 protects brain from acute excitotoxicity. Neuroscience 2006; 141:1703-8. [PMID: 16828975 DOI: 10.1016/j.neuroscience.2006.05.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/05/2006] [Accepted: 05/06/2006] [Indexed: 11/23/2022]
Abstract
Heme oxygenase is a rate-limiting enzyme that degrades heme, a pro-oxidant, into carbon monoxide, iron, and bilirubin. Heme oxygenase has two active isoforms: heme oxygenase-1 and heme oxygenase-2. Heme oxygenase-1 can be induced by various insults. Several investigators have postulated that it has cytoprotective activities, although its role in the nervous system is not fully understood, especially considering that normally heme oxygenase-2 accounts for the vast majority of heme oxygenase activity in the brain. Here, the basal effect of heme oxygenase-1 was investigated in acute glutamatergic excitotoxicity to test the hypothesis that N-methyl-D-aspartate-induced acute toxicity in brain is attenuated by heme oxygenase-1. N-methyl-D-aspartate was unilaterally injected into the striatum of wildtype and heme oxygenase-1 knockout mice. After 48 h, brains were harvested, sectioned, and stained with Cresyl Violet to measure the lesion size. Lesion volume was significantly (P<0.05) greater in brains of heme oxygenase-1 knockout mice (15.2+/-3.1 mm(3); n=10) than in those of wildtype mice (6.2+/-1.5 mm(3); n=11). In addition, Western blot analysis indicated no detectable differences between wildtype and heme oxygenase-1 knockout mouse brains in the levels of the glutamate or N-methyl-D-aspartate receptors studied. To test whether heme oxygenase-1 could specifically protect neurons, mouse primary neuronal cell cultures of wildtype and heme oxygenase-1 knockout mice were treated with or without N-methyl-D-aspartate. Cell viability of the heme oxygenase-1 knockout neurons was significantly less than that of wildtype neurons at each of the N-methyl-D-aspartate concentrations tested (12.8+/-1.3%, 16.0+/-1.4%, and 18.4+/-1.8% at 30, 100, and 300 microM N-methyl-D-aspartate, respectively). These results indicate that heme oxygenase-1 provides neuroprotection against acute excitotoxicity and suggest that potential intervention that can increase heme oxygenase-1 activity within the brain should be considered as a therapeutic target in acute and potentially chronic neurological disorders.
Collapse
Affiliation(s)
- A S Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building 364-365, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
25
|
Abbasoğlu SD, Erbil Y, Eren T, Giriş M, Barbaros U, Yücel R, Olgaç V, Uysal M, Toker G. The effect of heme oxygenase-1 induction by octreotide on radiation enteritis. Peptides 2006; 27:1570-6. [PMID: 16375990 DOI: 10.1016/j.peptides.2005.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/07/2005] [Accepted: 11/09/2005] [Indexed: 01/11/2023]
Abstract
Radiation enteritis occurs as a response to abdominal radiation, which can cause mucosal damage in the gastrointestinal mucosal epithelium. The small intestine is one of the most radiosensitive organs in the abdomen. The present study was undertaken to investigate the effect of octreotide (OCT) administration on heme oxygenase-1 (HO-1) expression of the radiation enteritis model. Rats received 50 mg/kg/day OCT for 4 days before irradiation and continued for 3 days after irradiation. Intestinal myeloperoxidase (MPO) activities, malondialdehyde (MDA) levels are indicators of oxidative damage while caspase-3 activities reveal apoptosis degree of the small intestine. At histological examination, the terminal ileum tissue was analyzed for morphological changes. Irradiation significantly increased the intestinal MPO and caspase-3 activities, MDA levels and HO-1 expression in comparison to sham control group. OCT treatment was associated with increased HO-1 expression and caspase-3 activity, decreased MPO activity and MDA levels. Histological examination revealed that the intestinal mucosal structure was preserved in the OCT treated group. OCT appears to have protective effects against radiation-induced intestinal damage. This protective effect is, in part, mediated by modification of the inflammatory response and the induction of HO-1 expression.
Collapse
Affiliation(s)
- Semra Doğru Abbasoğlu
- Istanbul University, Istanbul Medical Faculty, Department of Biochemistry, Capa, 34340 Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen-Roetling J, Benvenisti-Zarom L, Regan RF. Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury. J Neurosci Res 2006; 82:802-10. [PMID: 16273550 DOI: 10.1002/jnr.20681] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hemin, the oxidized form of heme, is released from hemoglobin after CNS hemorrhage and may contribute to injury to surrounding tissue. The heme oxygenase (HO) enzymes catalyze the breakdown of hemin to biliverdin, carbon monoxide, and ferric iron. Although HO-2, the isoform expressed predominantly in neurons, accelerates heme-mediated neuronal injury, inhibitor studies suggest that HO-1 induction has a protective effect on astrocytes. In the present study, we directly compared the vulnerability of cultured HO-1 knockout and wild-type astrocytes to hemin. Consistent with prior observations, exposure of wild-type cultures to hemin for 24 hr resulted in protein carbonylation and concentration-dependent cell death between 10 and 60 microM, as determined by MTT and lactate dehydrogenase release assays. In cultures prepared from mice lacking the HO-1 gene, oxidative cell injury was approximately doubled. Both protein oxidation and cell death in HO-1 knockout astrocytes were significantly reduced by pretreating cultures with an adenovirus encoding the HO-1 gene prior to hemin exposure. HO-2 expression was observed in both knockout and wild-type cultures and was not altered by HO-1 gene deletion. Cell hemin accumulation after 20 hr hemin exposure was 4.7-fold higher in knockout cells. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Selectively increasing its expression in astrocytes may be beneficial after hemorrhagic CNS injuries.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
27
|
|